正弦余弦定理教案

2024-11-01 版权声明 我要投稿

正弦余弦定理教案(共12篇)

正弦余弦定理教案 篇1

一、教学目标

1.掌握正弦定理及其向量法推导过程;

2.掌握用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

二、教学重点正弦定理及其推导过程,正弦定理在三角形中的应用;

教学难点正弦定理的向量法证明以及运用正弦定理解三角形时解的个数的判定.

三、教学准备

直尺、投影仪.

四、教学过程

1.设置情境

师:初中我们已学过解直角三角形,请同学们回忆一下直角三角形的边角关系: 生:RtABC中有abc 22

2acsinA

bcsinB

atanAb

AB90

ab sinAsinB

师:对!利用直角三角形中的这些边角关系对任给直角三角形的两边或一边一角可以求出这个三角形的其他边与其他角.

师:在直角三角形中,你能用其他的边角表示斜边吗?

生:在直角三角形ABC中,cabc。sinAsinBsinC

师:这个式子在任意三角形中也是成立的,这就是我们今天要学的正弦定理(板书正弦定理).

2.探索研究

(1)师:为了证明正弦定理(引导学生复习向量的数量积),ababcos,式子的左边与要证明的式子有相似之处吗?你能否构造一个可以用来证明的式子.

生:如图,在锐角ABC中,过A作单位向量j垂直于,则j与的夹角为90A,j与的夹角为90C。

由向量的加法可得



对上面向量等式两边同取与向量j的数量积运算,得到

j

ACCBjAB

9090C)

90A)

asinCcsinA

同理,过点C作与垂直的单位向量j,可得

cb sinCsinB

∴abc sinAsinBsinC

师:当ABC为钝角三角形时,设A90,如图,过点A作与AC垂直的向量j,则j与的夹角为A90,j与的夹角为90C,同样可证得

abc sinAsinBsinC

师:课后同学考虑一下正弦定理还有没有其它的方法证明?

师:请同学们观察正弦定理,利用正弦定理可以解什么类型的三

角形问题?

生:已知两角和任意一边,可以求出其他两边和一角;已知两边和其中一边的对角,可以求出三角形的其他的边和角。

(2)例题分析

例1在ABC中,已知c10,A45,C30,求b(保留两个有效数字)bc且B180(AC)105 sinBsinC

csinB10sin105∴b19 sinCsin30解:∵

例2在ABC中,已知a4,b42,B45,求A。abasinB1得sinA sinAsinBb2

∵ABC中ab∴A为锐角∴A30 解:由

例3在ABC中,B45,C60,a2(1),求ABC的面积S。解:首先可证明:SABC

这组结论可作公式使用。

其次求b边 1111ahabsinCbcsinAacsinB。2222

A180(BC)75

∴由正弦定理,basinBsinA2(31)(2)4 2

∴SABC11absinC2(31)4()623 222

3.演练反馈

(1)在ABC中,一定成立的等式是()

A.asinAbsinBB.acosAbcosB

C.asinBbsinAD.acosBbcosA

(2)在ABC中,若a

Acos2bBcos2cCcos2,则ABC是()

A.等腰三角形B.等腰直角三角形

C.直角三角形D.等边三有形

(3)在任一ABC中,求证a(sinBsinC)b(sinCsinA)c(sinAsinB)0 参考答案:(1)C;(2)D;(3)证:由于正弦定理:令aksinA,BksinB,cksinC代入左边得:左边=k(sinAsinBsinAsinCsinBsinCsinBsinAsinCsinAsinCsinB)0=右边

4.总结提炼

(1)三角形常用公式:ABC;S

弦定理以及下节将要学习的余弦定理。111absinCbcsinAcasinB;正222

a2RsinAabc(2);b2RsinB;2R(外接圆直径)sinAsinBsinCc2RsinC

a:b:csinA:sinB:sinC。

(3)正弦定理应用范围:

①已知两角和任一边,求其他两边及一角。

②已知两边和其中一边对角,求另一边的对角。

正弦余弦定理教案 篇2

一、可以转化正弦余弦定理的问题

例1在△ABC中,若9a2+9b2=19c2,求

分析:通过将P化简,就可以结合正弦定理、余弦定理求解.

正弦定理、余弦定理有,,,代入P中,得到

又由已知有,代入上式得到

评注:对于某些三角问题,通过观察是需要找出边和角之间的关系,则不妨尝试采用三角形的方法,再用正弦定理和余弦定理,得出新颖而简捷的解法.

变式题:在△ABC中,如果

答案:,则,所以,所以

二、可以构造成正弦余弦定理的问题

例2求sin220°+cos250°+sin20°cos50°的值.

分析:注意到该三角函数式与余弦定理形式相似,可以构造三角形来解决.

解:sin220°+cos250°+sin20°sin40°的结构与三角形中的余弦定理形式相似,通过构造一个内角分别为20°,40°,120°的三角形,且使其外接圆的半径为1,那么由正弦定理知道这个三角形的三边分别为sin20°,sin40°,sin120°,再由余弦定理有sin2120°=sin220°+sin240。-2sin20°sin40。.cosl20°,从而sin220。+cos250°+sin20°cos50°=

评注:有些三角函数问题,观察其构造形式与三角形中的余弦定理形式相似,则这时也尝试通过利用正弦定理和余弦定理进行解决问题.

变式题:求值:sin285°+sin280°-2sin85°sin80°sin75°.

答案:在△ABC中,设∠A=85°,∠B=80°,∠C=15°,外接圆半径为R,

三、可以通过变形为正弦余弦定理的问题

例3已知α、β、γ都是锐角,且满足sin2求α+β+γ的值.

分析:该题同样也通过构造来解决.

解:已知等式变形为

上式与余弦定理类似,通过构造△ABC,使

根据正弦定理有,

而C>90°,α、β都是锐角,那么A、B、、都是锐角,则,,故A+B+C=

评注:注意到三角函数式的形式类似于余弦定理,则可以通过构造三角形,并结合正弦定理解决.

变式题:在任意一个△ABC中,求证:a(sinB-sinC)+b(sinC-siiL4)+c(sinA-sinB)=0.

答案:左式=2/?sirb4(sinB-sinC)+2RsinB(sinC-sinA)+2/fsinC(sinA-sin8)=2R[sinAsinB-sinAsinC+sinfisinC-sinBsinA+sinCsinA-sinCsinB]=0.

四、可利用正余弦定理解决的函数问题

例4在平面上有A、B、P、Q四个点,A、B为定点,,P、Q为动点,且AP=PQ=QB=1,记△ABP与△PQB的面积分别为S、T;(1)求S2+T2的取值范围;(2)当S2+T2取最大值时,判断△APB的形状.

分析:本题主要通过余弦定理来研究函数知识,已知条件中有两个三角形的面积,应该想办法把两个三角形联系起来,可以分别在△APB与△PQB中由余弦定理得出PB的关系解决.

解:(1)在△ABP与△PQB中,由余弦定理可以得到:PB2=AB2+AP2-2AB·APcosA

PB2=BQ2+PQ2-2BQ•PQcosQ=1+1-2cosQ=2-2cosQ,

所以,即,

所以

因为-10,

所以S2+T2的取值范围是;

(2)由(1)可以知道当时,S2+T2的最大值为,此时,所以,故当S2+T2取最大值时,△APB是等腰三角形.

点评:此题的关键是想办法建立两个三角形之间的关系,从而得出函数S2+T2的表达式,利用函数知识求解.

练习:若△ABC的三边长为a、b、c,且f(x)=b2x2+(b2+c2-a2)x+c2,判断f(x)的图象与x轴的位置关系.

正弦定理和余弦定理的应用 篇3

正弦定理和余弦定理的承载背景是三角形。正弦定理和余弦定理架起了沟通三角形的边和角的桥梁。下面结合具体的例题谈谈正弦定理和余弦定理在三角形中的应用。

1利用正弦、余弦定理解斜三角形

例1.在△ABC中,已知a=2,b=3,A=45°,求B、C及c。

思路:已知a, b, A,由正弦定理可求B,从而可求C, c。

点评归纳:(1)在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判明是否有解,例如在△ABC中,已知a=1,b=2,A=60°,则sinB=basinA=3>1, 问题就无解。如果有解,是一解,还是二解。

(2)正、余弦定理可将三角形边角关系互相转化。

(3)在三角形的判断中注意应用“大边对大角”来确定。

2面积问题

例2.△ABC中角A、B、C的对边分别为a, b, c,且b2+c2-a2+bc=0

(1)求角A的大小;

(2)若a=3,求SΔABC的最大值;

(3)求asin(30°-c)b-c的值。

思路:(1)由b2+c2-a2+bc=0的结构形式,可联想余弦定理,求出cosA,从而求出A的值。

(2)由a=3及b2+c2-a2+bc=0,可求出关于b, c的关系式,利用不等式,即可求出bc的最大值,进而求出SΔABC的最大值。

(3)由正弦定理可实现将边化为角的功能。从而达到化简求值的目的。

解析:(1)因为cosA=b2+c2-a22bc=-bc2bc=-12,所以A=120°

(2)由a=3,得b2+c2=3-bc,又因为b2+c22bc(当且仅当c=b时取等号),所以3-bc2bc,当且仅当c=b=1时,bc取得最大值为1,

所以SΔABC=12bcsinA34,所以SΔABC的最大值为34

点评归纳:(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用。 (2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理。 (3)在求三角形面积时,通过正、余弦定理求一个角,两边乘积,是一种常见思路。

3判断三角形形状

例3.在△ABC中,a, b, c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),该判断三角形的形状。

思路:利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系。

解析:已知即a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)]

所以2a2cosAsinB=2b2cosBsinA,由正弦定理,即sin2AcosAsinB=sin2BcosBsinA

所以sinAsinB(sinAcosA-sinBcosB)=0,所以sin2A=sin2B,

由,0<2A<2π,0<2B<2π,得2A=2B或2A=π-2B

即△ABC是等腰三角形或直角三角形。

点评归纳:三角形形状的判定方法

(1)通过正弦定理和余弦定理,化边为角(如a=2RsinA,a2+b2-c2=2abcosc等),利用三角变换得出三角形内角之间的关系进行判断。此时注意一些常见的三角等式所体现的内角关系,如sinA=sinBA=B;sin(A-B)=0A=B;sin2A=sin2BA=B或A+B=π2等。

(2)利用正弦定理、余弦定理化角为边,如sinA=a2R,cosA=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断。

正弦定理和余弦定理2 篇4

第一章

解三角形

§1.1.2正弦定理和余弦定理

班级

姓名

学号

得分

一、选择题

1.在△ABC中,已知b=43,c=23,∠A=120°,则a等于……………….()

A.221 B.6

C.221或6

D.21563

2.在△ABC中,已知三边a、b、c满足(a+b+c)(a+b-c)=3ab,则∠C等于…..()

A.15° B.30°

C.45°

D.60°

3.已知在△ABC中,sinA∶sinB∶sinC=3∶5∶7,那么这个三角形的最大角是…()

A.135° B.90°

C.120°

D.150°

4.在△ABC中,若c4-2(a2+b2)c2+a4+a2b2+b4=0,则∠C等于………………….()

A.90° B.120°

C.60°

D.120°或60°

5.已知A、B、C是△ABC的三个内角,则在下列各结论中,不正确的为………...()

A.sinA=sinB+sinC+2sinBsinCcos(B+C)

B.sin2B=sin2A+sin2C+2sinAsinCcos(A+C)

C.sin2C=sin2A+sin2B-2sinAsinBcosC

D.sin(A+B)=sinA+sinB-2sinBsinCcos(A+B)6*.在△ABC中,AB=5,BC=7,AC=8,则ABBC的值为……………………()

A.79

二、填空题

7.已知△ABC中,A=60°,最大边和最小边是方程x2-9x+8=0的两个正实数根,那么BC边长是________.

13222222 B.69

C.5

D.-5 8.在△ABC中,已知a=7,b=8,cosC=14,则最大角的余弦值是________.

abac=________. 9.在△ABC中,∠C=60°,a、b、c分别为∠A、∠B、∠C的对边,则bc9 10*.在△ABC中,若AB=5,AC=5,且cosC=10,则BC=________.

三、解答题

11.已知a=33,c=2,B=150°,求边b的长及S△.

大毛毛虫★倾情搜集★精品资料 大毛毛虫★倾情搜集★精品资料

A12.在△ABC中,cos2 bc2c910,c=5,求△ABC的内切圆半径.

13.已知△ABC的三边长a、b、c和面积S满足S=a2-(b-c)2,且b+c=8,求S的最大值.

14*.已知a、b、c为△ABC的三边,且a-a-2b-2c=0,a+2b-2c+3=0,求这个三角形的最大内角.

大毛毛虫★倾情搜集★精品资料

2大毛毛虫★倾情搜集★精品资料

§1.1.2正弦定理和余弦定理参考答案

一、选择题

A D C D D D

二、填空题

17.57

8.-7

9.1 10.4或

5三、解答题

11.解:b2=a2+c2-2accosB=(33)2+22-2·23·2·(-2)=49.

∴ b=7,1113

S△=2acsinB=2×33×2×2=2bc93.

12.解:∵ c=5,2cA210,∴ b=4

b1cosA22 又cos222bc2cbca2bc222 ∴ cosA=c 又cosA=

bca

∴ 2bcb2222222c∴ b+c-a=2b∴ a+b=c

∴ △ABC是以角C为直角的三角形.a=cb=3

∴ △ABC的内切圆半径r=2(b+a-c)=1.

112222

13.解:∵ S=a-(b-c)又S=2bcsinA∴ 2bcsinA=a-(b-c)

bca222

∴ 2bc114(4-sinA)∴ cosA=4(4-sinA)∴ sinA=4(1-cosA)

2tanAcosA28sin2A22AA ∴ 2sin22∴ tan214∴ sinA=

1tanA24812171()4

21大毛毛虫★倾情搜集★精品资料 大毛毛虫★倾情搜集★精品资料

SS41712bCsinA(bc)424176417bc64∴ c=b=4时,S最大为17

14.解:∵ a2-a-2b-2c=0,a+2b-2c+3=0

由上述两式相加,相减可得

c=4(a2+3),b=4(a-3)(a+1)1

∴ c-b=2(a+3)

∵ a+3>0,∴ c>b

c-a=4(a2+3)-a=4(a2-4a+3)=4(a-3)(a-1)1

∵ b=4(a-3)(a+1)>0,∴ a>3 1

∴ 4(a-3)(a-1)>0

∴ c>a

∴ c边最大,C为最大角

abc222

∴ cosC=a22ab2

2116(a3)(a1)2a14116(a3)2212(a3)(a1)

∴ △ABC的最大角C为120°

正弦定理和余弦定理练习题 篇5

一.选择题:

1.在ABC中,a23,b22,B45,则A为()

A.60或120B.60C.30或150D.30

sinAcosB

2.在C中,若,则B()

abB.45C.60D.90

A.30

3.在ABC中,a2b2c2bc,则A等于()B.45C.120D.30

A.60|AB|1,|BC|2,(ABBC)(ABBC)523,4.在ABC中,则边|AC|等于()

A.5B.523C.523D.523

5.以4、5、6为边长的三角形一定是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.锐角或钝角三角形

6.在ABC中,bcosAacosB,则三角形为()

A.直角三角形

B.锐角三角形

C.等腰三角形

D.等边三角形

7.在ABC中,cosAcosBsinAsinB,则ABC是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.正三角形

8.三角形的两边分别为5和3,它们夹角的余弦是方程5x27x60的根,则三角形的另一边长为()

A.52 B.21

3C.16 D.4

二.填空题:

9.在ABC中,ab12,A60,B45,则a_______,b________

10.在ABC中,化简bcosCccosB___________

11.在ABC中,已知sinA:sinB:sinC654::,则cosA___________

12.在ABC中,A、B均为锐角,且cosAsinB,则ABC是_________

三.解答题:

13.已知在ABC中,A45,a2,c6,解此三角形。

14.在四边形ABCD中,BCa,DC2a,四个角A、B、C、D的度数的比为3:7:4:10,求AB的长。

15.已知ABC的外接圆半径是2,且满足条件22(sin2Asin2C)(ab)sinB。

(1)求角C。

(2)求ABC面积的最大值。

四大题

证明在△ABC中abc===2R,其中R是三角形外接圆半径 sinAsinBsinC

证略

见P159

注意:1.这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例 二 在任一

△ABC中求证:a(sinBsinC)b(sinCsinA)c(sinAsinB)0

证=

:左边=2RsinA(sinBsinC)2RsinB(sinCsinA)2RsinC(sinAsinB)

2R[sinAsinBsinAsinCsinBsinCsinBsinAsinCsinAsinCsinB]=0=右边

例三 在△ABC中,已知a3,b2,B=45 求A、C及c

asinB3sin453解一:由正弦定理得:sinA b22∵B=45<90 即b

∴A=60或120

bsinC2sin7562当A=60时C=75 c sinB2sin45bsinC2sin1562当A=120时C=15 c sinB2sin45解二:设c=x由余弦定理 b2a2c22accosB 将已知条件代入,整理:x26x10 解之:x62 2222622)3bca13622 当c时cosA2bc2622(31)22222(从而A=60

C=75

当c62时同理可求得:A=120

C=15 2例四 试用坐标法证明余弦定理 证略见P161 例五 在△ABC中,BC=a, AC=b, a, b是方程x223x20的两个根,且 2cos(A+B)=1 求 1角C的度数 2AB的长度 3△ABC的面积 解:1cosC=cos[(A+B)]=cos(A+B)=ab232由题设:

ab2∴AB=AC+BC2AC•BC•osCab2abcos120 22∴C=120 222a2b2ab(ab)2ab(23)2210

即AB=10

111333S△ABC=absinCabsin1202 22222例六 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长 解:在△ABD中,设BD=x 则BA2BD2AD22BDADcosBDA 即142x2102210xcos60 整理得:x210x960

A

B D

C 解之:x116 x26(舍去)由余弦定理:

BCBD16sin3082

∴BCsinCDBsinBCDsin135例七(备用)△ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。

解:1设三边ak1,bk,ck1 kN且k1

a2b2c2k4∵C为钝角 ∴cosC0解得1k4

2ac2(k1)∵kN ∴k2或3 但k2时不能构成三角形应舍去

1当k3时 a2,b3,c4,cosC,C109

42设夹C角的两边为x,y xy4 SxysinCx(4x)当x2时S最大=15

三、作业:《教学与测试》76、77课中练习

a2b2b2c2c2a20 补充:1.在△ABC中,求证:

cosAcosBcosBcosCcosCcosAD

1515(x24x)442.如图ABBC CD=33 ACB=30 BCD=75 BDC=45 求AB的长(112)

A

B

C 3 【试题答案】

一.选择题:

1.A

提示:aba3,sinAsinB sinAsinBb

22.B

提示:由题意及正弦定理可得tanB3.C

1提示:由余弦定理及已知可得cosA

24.D 2

提示:ACABBC,AC(ABBC)(ABBC)

2AC52

32|AC|AC523

5.A

提示:长为6的边所对角最大,设它为

1625361

则cos0

2458

090

6.C

提示:由余弦定理可将原等式化为

b2c2a2a2c2b2a

b

2bc2ac

即2b22a2,ab

7.C

提示:原不等式可变形为cos(AB)0

0AB,B(0,)

从而C(AB)(8.B

2,)

3提示:由题意得cos或2(舍去)三角形的另一边长5232253cos52213 二.填空题:

9.36126,1262提示:absinAsin606,abbb sinAsinBsinBsin452

又ab12,a36126,b12624

10.a

a2b2c2a2c2b2ca

提示:利用余弦定理,得原式b2ab2ac1

11.8提示:由正弦定理得a:b:c654::

设1份为k,则a6k,b5k,c4k

b2c2a21

再由余弦定理得cosA2bc8

12.钝角三角形

提示:由cosAsinB得sin(A、B均为锐角,2A)sinB

A(0,),B(0,)222

而ysinx在(0,)上是增函数 2AB

即AB2

C(AB)(,)

2三.解答题:

13.解:由正弦定理得:

sinCc623sinAa222

C60或120

当C60时,B180(AC)75 a262sinB31 sinA422

当C120时,B180(AC)15

b

ba2sinBsinA226231 b31,C60,B75

或b31,C120,B15

14.解:设四个角A、B、C、D的度数分别为3x、7x、4x、10x

则有3x7x4x10x360

解得x15

A45,B105,C60,D150

连BD,在BCD中,由余弦定理得:

BD2BC2DC22BCDCcosCa24a22a2a3a2

BD3a

此时,DC2BD2BC2

BCD是以DC为斜边的直角三角形

CDB30

BDA15030120

在BD中,由正弦定理有:

ABBDsinBDAsinA3a3232a

2225 32a 2

15.解:(1)R2且22(sin2Asin2C)(ab)sinB

AB的长为2

(22)2(si2nAsinC)(ab)22sinB

即(2R)2sin2A(2R)2sin2C(ab)2RsinB

由正弦定理知a2c2(ab)b

即a2b2c2ab

a2b2c2ab1

由余弦定理得cosC2ab2ab2

C60

(2)SabsinC

2RsinA2RsinBsin60

232sinAsinB3[cos(AB)cos(AB)]

3[cos(18060)cos(AB)]13[cos(AB)]2

133

正弦余弦定理教案 篇6

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

教学重难点

教学重点:熟练运用定理.

教学难点:应用正、余弦定理进行边角关系的相互转化.

教学过程

一、复习准备:

1. 写出正弦定理、余弦定理及推论等公式.

2. 讨论各公式所求解的三角形类型.

二、讲授新课:

1. 教学三角形的解的讨论:

① 出示例1:在△ABC中,已知下列条件,解三角形.

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况. (A为锐角时)

② 练习:在△ABC中,已知下列条件,判断三角形的解的情况.

2. 教学正弦定理与余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角.

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△ABC中,,试判断△ABC的形状.

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

三、巩固练习:

正弦余弦定理教案 篇7

1. 正弦定理余弦定理

( 1) 正弦定理⇒余弦定理

已知△ABC中,a,b,c所对的角分别为A,B,C,求证: a2= b2+ c2- 2bc·cos A.

证明: 由正弦定理(R 是 △ABC的外接圆半径) 得:

∴ 原式得证.

( 2) 余弦定理⇒正弦定理

已知△ABC中,a,b,c所对的角分别为A,B,C,求证:

2. 余弦定理射影定理

( 1) 余弦定理⇒射影定理

已知△ABC中,a,b,c所对的角分别为A,B,C,求证: a = b·cos C + c·cos B.

∴ 原式得证.

( 2) 射影定理⇒余弦定理

已知△ABC中,a,b,c所对的角分别为A,B,C,求证: a2= b2+ c2- 2bc·cos A.

证明: 原命题即证a2- b2= c2- 2bc·cos A.

由正弦定理( R是△ABC的外接圆半径) 得:

∴ 原式得证.

正弦函数、余弦函数的图象教案 篇8

1、了解利用正弦线作正弦函数图象的方法;

2、掌握正、余弦函数图象间的关系;

3、会用“五点法”画出正、余弦函数的图象。

预习课本P30———33页的内容

【新知自学】

知识回顾:

1、正弦线、余弦线、正切线:

设角α的终边落在第一象限,第二象限,…

则有向线段 为正弦线、余弦线、正切线。

2、函数图像的画法:

描点法:列表,描点,连线

新知梳理:

1、正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有向线段_________叫做角α的正弦线,有向线段___________叫做角α的余弦线。

2、正弦函数图象画法(几何法):

(1)函数y=sinx,x∈的图象

第一步:12等分单位圆;

第二步:平移正弦线;

第三步:连线。

根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为______,就得到y=sinx,x∈R的图象。

感悟:一般情况下,两轴上所取的单位长度应该相同,否则所作曲线的“胖瘦不一”,形状各不相同。

(2)余弦函数y=cosx,x∈的图象

根据诱导公式 ,还可以把正弦函数x=sinx的图象向左平移 单位即得余弦函数y=cosx的图象。

探究: 正弦函数曲线怎么变换可以得到余弦曲线?方法唯一吗?

3、正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线。

4、“五点法”作正弦函数和余弦函数的简图:

(1)正弦函数y=sinx,x∈的图象中,五个关键点是:

(0,0),__________, (p,0),

_________,(2p,0)。

(2) 余弦函数y=cosx,x?的图象中,五个 关键点是:

(0,1),_________,(p,—1),__________,(2p,1)。

对点练习:

1、函数y=cosx的图象经过点( )

A、( ) B、( )

C、( ,0 ) D、( ,1)

2、函数y=sinx经过点( ,a),则的值是( )

A、1 B、—1 C、0 D、

3、函数y=sinx,x∈的图象与直线y= 的交点个数是( )

A、1 B、2 C、0 D、3

4、sinx≥0,x∈的解集是________________________、

【合作探究】

典例精析:

题型一:“五点法”作简图

例1、作函数y=1+sinx,x∈ 的简图。

变式1、画出函数y=2sinx ,x∈〔0,2π〕的简图。

题型二:图象变换作简图

例2、用图象变换作 下列函数的简图:

(1)y=—sinx;

(2)y=|cosx|,x 、

题型三:正、余弦函数图象的应用

例3 利用函数的图象,求满足条件sinx ,x 的x的集合。

变式2 、求满足条件cosx ,x 的x的集合。

【课堂小结】

知识&nbs

p; 方法 思想

【当堂达标】

1、函数y=—sinx的图象经过点( )

A、( ,—1) B、( ,1)

C、( ,—1) D、( ,1)

2、函数y=1+sinx, x 的图象与直线y=2的交点个数是( )

A、0 B、1 C、2 D、3

3、方程x2=cosx的解的个数是( )

A、0 B、1 C、2 D、3

4、求函数 的定义域。

【课时作业】

1、用“五点法”画出函数y=sin x—1,x 的图象。

2、用变换法画出函数y=—cosx, x 的图象。

3、求满足条件cosx (x 的x的集合。

4、在同一 坐标系内,观察正、余弦函数的图象,在区间 内,写出满足不等式sinx≤cos的集合。

【延伸探究】

5、方程sinx=x的解的个数是_____________________、

余弦定理教案 篇9

天印高级中学张梅

一、教材分析及设计思路

1、教材分析

“余弦定理”是全日制普通高级中学教科书(数学必修5)第一章第一节的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

2、设计思路

根据“情境--问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:

(1)创设一个现实问题情境作为提出问题的背景

(2)启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边

(3)为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生如何将向量关系转化成数量关系

(4)由学生独立使用已证明的结论去解决中所提出的问题

教学目标:

1、掌握余弦定理及其证明方法;

2、会运用余弦定理解三角形;

能力目标:

培养学生推理探索数学规律和归纳总结的思维能力,以及观察、分析、类比、计算能力;

德育目标:

通过知识间的联系,体现事物的普遍联系与辩证统一;

教学重难点:

余弦定理的推导、证明及应用;

教法学法:

教师的“引导式教学”和学生的“研究性学习”相结合二、教学过程

Ⅰ、设置情境

自动卸货汽车的车箱采用液压机构。设计时需要计算油泵顶杆 BC的长度(如下图),已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为

1.95m,AB与水平线之间的夹角为6°20′,AC的长为1.40m,计算BC的长(保留三个有效数字)。

Ⅱ、提出问题

师:大家想一想,能否把这个实际问题抽象为数学问题?(数学建模)

能,在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的长。

师:能用正弦定理求解吗?为什么?

不能。正弦定理主要解决:已知三角形的两边与一边的对角,求另一边的对角;已知三角形的两角与一边,求角的对边。

师:这个问题的实质是什么?

在三角形中,已知两边和它们的夹角,求第三边。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。

III、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 先从特殊图形入手,寻求答案或发现解法。(特殊化)

可以先在直角三角形中试探一下。

直角三角形中 c 2 =a 2 +b 2(勾股定理角C为直角)斜三角形ABC中(如图

3),过A作BC边上的高AD,将斜三角形转化为直角三角形。(联想构造)师:垂足 D一定在边BC上吗?

不一定,当角 C为钝角时,点D在BC的延长线上。

(分类讨论,培养学生从不同的角度研究问题)

在锐角三角形 ABC中,过A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, CD=ACcosC 即AD=bsinC, CD=bcosC

又 BD=BC-CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)

2=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C

=a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

在钝角三角形 ABC中,不妨设角C为钝角,过A作AD垂直BC交BC的延长线于D,在直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD=-bcos C,又BD=BC+CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C

=a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

同理可证 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

师:大家回想一下,在证明过程易出错的地方是什么?

IV、反思应用

师:同学们通过自己的努力,发现并证明了余弦定理。余弦定理揭示了三角形中任意两边与夹角的关系,请大家考虑一下,余弦定理能够解决哪些问题?

知三求一,即已知三角形的两边和它们的夹角,可求另一边;已知三角形的三条边,求角。

余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

师:请同学们用余弦定理解决本节课开始时的问题。

(请一位同学将他的解题过程写在黑板上)

解:由余弦定理,得BC≈1.89(m)

答:顶杆BC约长1.89m。

师:大家回想一想,三角形中有六个元素,三条边及三个角,知道其中任意三个元素,是否能求出另外的三个元素?

不能,已知的三个元素中,至少要有一个边。

师:解三角形时,何时用正弦定理?何时用余弦定理?

已知三角形的两边与一边的对角或两角与一角的对边,解三角形时,利用正弦定理;已知三角形的两边和它们的夹角或三条边,解三角形时,利用余弦定理。巩固练习:课本第 9页练习2、3、4三、教学反思

高中数学正弦定理教案 篇10

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的`学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理。

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

解斜三角形之余弦定理 教案 篇11

一、教学类型: 新知课

二、教学目的:

1、2、掌握余弦定理的推导过程(向量法); 会解斜三角形。

三、教学重点:余弦定理的推导

教学难点:余弦定理在解三角形中的应用

四、教具: 黑板

五、教学过程:

(一)引入新课:

上节课我们学习了正弦定理:a/sinA=b/sinB=c/sinC ,是三角形的边与其角的正弦之间的关系,它的应用范围是什么呢?

1、2、已知两角,一边,求其他两边,一角;已知两边及一边的对角,求另一边的对角。

现在我提出一个问题:已知三边,如何求三角?

经过这一节课的学习,就可以回答这个问题了。下面我们来研究这个问题:

(二)讲解新课 这一节课,我们继续沿用向量法研究,仍然用“从特殊到一般”的数学思想。

如图所示,在直角三角形中,b²=a²+c²,在斜三角形中,它们又有什么关系呢?

AC=AB+BC |AC|²=AC·AC=(AB+BC)(AB+BC)=|AB|²+2BC·AB+|BC|²

=|AB|²+2|BC|·|AB|COS(180°-B)+|BC|² =|AB|²-2|BC|·|AB|COSB+|BC|²

b² = c²2bccosA c ² = b ² + a²-2abcosC 他们是不是也成立呢?这个留作思考题,不过答案是肯定的。这三个式子就是今天所要学习的余弦定理:

三角形任何一边的平方等于其他两边平方的和减去这两边

与它们夹角的余弦的两倍。

将上述定理中的三个式子稍作变形,即得

cosA=﹙b ² + c ²-a ²﹚/2bc cosB=﹙c² + a²-b²﹚/2ac cosC=﹙ b ² + a²-c ²﹚/2ab 我们来看余弦定理的应用范围:

1、2、已知两边及夹角,求第三边极其他两角: 已知三边,求三角。

六、举例子:

在△ABC中,已知a=7,b=10,c=6,求A,B,C(精确到1°)。解:已知三边,求三角。

cosA=﹙b ² + c ²-a ²﹚/2bc =(10 ²+6 ²-7 ²)/2×10×6 =0.725 查表,得 A≈44° cosC=﹙ b ² + a²-c ²﹚/2ab =(7 ²+10 ²-6 ²)/2×10×7 =0.8071 查表,得 B≈36° B=180°-(A+C)≈180°-(44°+36°)=100°

七、布置作业:

1、2、余弦定理的其他两种形式的证明; 课本131页:3.﹙3﹚(4)4.(2)

正弦余弦定理教案 篇12

一、课题:正弦定理(2)

二、教学目标:1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形,解决实际问题;

2.熟记正弦定理abc2R(R为ABC的外接圆的半 sinAsinBsinC

径)及其变形形式。

三、教学重点:正弦定理和三角形面积公式及其应用。

四、教学难点:应用正弦定理和三角形面积公式解题。

五、教学过程:

(一)复习:

1.正弦定理:在一个三角形中各边和它所对角的正弦比相等,abc2R(R为ABC的外接圆的半径); sinAsinBsinC

1112.三角形面积公式:SABCbcsinAacsinBabsinC. 222 即:

(二)新课讲解:

1.正弦定理的变形形式:

①a2RsinA,b2RsinB,c2RsinC;

2.利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:

(1)两角和任意一边,求其它两边和一角;

(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

一般地,已知两边和其中一边的对角解斜三角形,有两解或一解(见图示)。C aaB1 B 2abc,sinB,sinC; 2R2R2R③sinA:sinB:sinCa:b:c. ②sinABabsinAbsinAababab一解两解一解一解

3.正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化: 例如,判定三角形的形状时,经常把a,b,c分别用2RsinA,2RsinB,2RsinC来替代。

4.例题分析:

例1在ABC中,1 AB2 sinAsinB的()

A.1只能推出2B.2只能推出1 C.

1、2可互相推出D.

1、2不可互相推出

解:在ABC中,ABab2RsinA2RsinBsinAsinB,因此,选C.

说明:正弦定理可以用于解决ABC中,角与边的相互转化问题。

例2在ABC中,若lgalgclgsinB,且B为锐角,试判断此三角形的形状。解

:由lgalgclgsinB,得:sinB

B450B90,2asinA① 

c2sinC2

将A135CC2sin(135C)。

∴sinCsinCcosC,∴cosC0,故C90,

A45,∴ABC是等腰直角三角形。

说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角?

(2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断。

例3某人在塔的正东方沿南60西的道路前进40米后,望见塔在东北方向上,若沿途测得

塔的最大仰角为30,求塔高。

D解:如图,由题设条件知:CAB1906030,ABC451453015,

北 C

∴ACB180BACABC1803015135,又∵AB40米,在ABC中,B

AC40

,sin15sin135

40sin15

30)1),∴AC

sin13

5在图中,过C作AB的垂线,设垂足E,则沿AB测得塔的最大仰角是CED,∴CED30,在RtABC中,ECACsinBACACsin301),

在RtDCE中,塔高CDCEtanCED1)tan30

10(3(米).

3例4如图所示,在等边三角形中,ABa,O为中心,过O的直线交AB于M,交AC

于N,求

1的最大值和最小值。OM2ON

2解:由于O为正三角形ABC的中心,∴AO

设MOA,则

,MAONAO,6A



2,在AON中,由正弦定理得: 3

OMOA,∴OM,

sinMAOsin[()]sin()

M

N

B

在

AOM中,由正弦定理得:ON

sin()

6,1112121222

[sin()sin()](sin),2222

OMONa66a223∵,∴sin1,33

41118

故当时取得最大值,2OM2ON2a2

2311152

所以,当,or时sin,此时取得最小值. 222

334OMONa

六、课练:《

七、课堂小结:1.正弦定理能解给出什么条件的三角形问题?

2.由于有三角形面积公式,故解题时要注意与三角形面积公式及三角形外

接圆直径联系在一起。

八、作业:

1.在ABC中,已知atanBbtanA,试判断这个三角形的形状;

222

上一篇:阿姨过生日的祝福语下一篇:上网真奇妙作文400字

热门文章
    相关推荐