三年级音乐期末测试卷

2025-03-21 版权声明 我要投稿

三年级音乐期末测试卷(共6篇)

三年级音乐期末测试卷 篇1

一、填空:50%

1、常见的演唱形式有、、、等.2、我国的国歌是《》,我们少先队的队歌是《》。

3、你知道的中华民族乐器有:、等;你知道的西洋乐器有:、等。

4、在力度记号中,ƒ表示,p表示,mp表示,mƒ表示。

5、学习了第二单元《十二生肖》后,请你将正确的十二生肖排列填写下来:鼠、牛、、蛇、马、鸡、狗、猪。你知道的有关马的成语有等

6、中国京剧中的角色行当有、、净、。京剧的主要表演形式有、念、、打。

二、选择:20%

(1)()在京剧中占有重要地位,唱念做打都离不开它。A、二胡B、京胡C、锣鼓D、月琴

(2)《牧童》是()的儿童歌曲。

A、美国B、中国C、日本D、捷克斯洛伐克(3)乐曲《赛

马》是一首()独奏曲。

A、二胡B、琵琶C、古筝D、马头琴(4)锣鼓经是吸取

打击乐器各种谱式的泛称。其中“仓”表示大锣,“台”表示小锣,“大”表示()。

A、板B、鼓C、钹D、休止符

三、连线:15%

《金孔雀轻轻跳》爱尔兰民歌 《我们的学校亚克西》法国民歌 《顽皮的杜鹃》奥地利民歌 《再见吧,朋友》新疆民歌 《最后一枝玫瑰》傣族民歌

四、圈出下面一段旋律中的切分节奏,并在括号里填写这首歌曲的名字:15%12︱354 ︱ 32 ︱ 11 0 ︱ 5 56︱721︱ 76 ︱ 4

0︱132 ︱ 17 ︱ 665︱ 43 ︱2 23 ︱554 ︱ 32 ︱ 11

三年级音乐期末测试卷 篇2

1.There are a great number of styles ____, but I am at a loss which

to buy.

A. to be chosenB. to choose from

C. to chooseD. for choosing

2.The old man kept all the children around him ____ with his stories.

A. amuseB. amusingC. amusedD. to amuse

3.——Do you think it’s going to be sunny over the weekend?

——____. It is raining all these days.

A. I don’t believeB. I don’t believe it

C. I believe not soD. I believe not

4.I ____ Mr. Johnson’s house, but he wasn’t in. Then I ____ him, but I couldn’t get through either.

A. called at, called onB. called on, called at

C. called at, called upD. called on, called on

5.He didn’t answer my phone. He ____ asleep.

A. must beB. must have been

C. should beD. may be

6.In order to improve listening, ____.

A. Mary bought a lot of tapes for herself

B. Mary’s father bought her a lot of tapes

C. a lot of tapes were bought by Mary

D. a lot of tapes were bought by Mary’s father

7. ____ role she played in the class!No wonder she has been elected

as the monitor for so many years.

A. How importantB. How an important

C. What importantD. What an important

8. ——The light in the office is still on.

——Oh, I forgot ____.

A. turning it offB. turn it off

C. to turn it offD. having turned it off

9.The director had him ____ the hero in the film all the time,

____ made him a deep impression.

A. act as, thatB. to act, which

C. acting as, whichD. acting as, it

10. I think ____ important ____ my spoken English half an hour a day.

A. this; practiseB. it; to practise

C. this; to practiseD. it; practicing

11. The ancient coins are well worth ____.

A. collectB. being collected

C. collecting D. to collect

12.I will do ____ I can to help you. I won’t ____ your trouble.

A. whatever; add toB. what; add up to

C. as; add toD. what; add up

13.To his surprise, he found himself ____ in the direction of the

countryside.

A. walkB. walkingC. walkedD. to walk

14.It was ____ I arrived there ____ I heard about the terrible traffic

accident.

A. until, whenB. until, that

C. not until, thatD. not when, that

15. They put the plants in the greenhouses so that they ____ the cold

weather.

A. protected fromB. prevented from

C. were protected fromD. were prevented from

16. I soon realized that what I was doing has already been finished by

someone else. ____, I was wasting my time.

A. In a wordB. What’s more

C. By the wayD. In other words

17. I came into ____ with all kinds of people in my work.

A. contractB. contactC. attractD. attack

18. ____ finished my homework, I asked my brother ____ interrupt.

A. Having not, not toB. Having not, to not

C. Not having, to notD. Not having, not to

19. Our country now is trying to ____ more advanced technical

information from abroad to develop economy.

A. bring aboutB. bring inC. bring outD. bring back

20. You like music, ____ I’d rather read.

A. while B. since C. when D. as

Ⅱ.完形填空

__1__ the past hundred years, the railway, the car, the radio, the cinema and now the TV, have produced very great __2__ in the amusement(娱乐活动) with which people pass their __3__ time.

A __4__ years ago, people were in the habit of making their own amusements. When a group of people __5__ together, they talked, played cards or __6__ games, read aloud to each other, or went __7__ riding,shooting or walking. Most people could sing __8__, or play the piano, so at a party the guests amused each other. Above all, conversation was an art: amusing conversation could __9__ people happy for hours.

As for games __10__ football and tennis, people were also in the habit of playing __11__ themselves. Most of them did not play very well, but they amused themselves and their friends. Nowadays we are amused__12__ professional(专业的) singers or players. __13__ listen to your friends __14__ when you can hear the great singers of the world __15__the radio or on TV? Why play football with players who __16__ very good at it when you can see some of the best players playing an important match? You may just sit comfortably __17__ and watch the game __18__ the trouble of going outside.

The art of conversation and the habit of playing and singing are dying: people are becoming more and more lookers and listeners, and __19__ doers and talkers. This change does people more harm than good; it is better to do something not very well oneself than __20__ to sit and watch others doing it.

1. A. OnB. AtC. AfterD. During

2. A. singerB. pleasureC. changesD. danger

3. A. busy B. free C. workD. day

4. A. hundredB. thousandC. centuryD. few

5. A. cameB. putC. gotD. worked

6. A. otherB. the otherC. anotherD. else

7. A. out B. onC. insideD. to

8. A. littleB. a littleC. lot D. a lot

9. A. made B. bringC. letD. keep

10. A. such asB. for exampleC. likeD. for

11. A. itB. themC. that D. ones

12. A. ofB. byC. inD. on

13. A. WhyB. Why notC. What aboutD. How about

14. A. sayingB. talkingC. playingD. singing

15. A. fromB. inC. byD. over

16. A. is notB. are notC. isD. are

17. A. at homeB. at a cinemaC. at schoolD. at a hospital

18. A. withB. inC. withinD. without

19. A. muchB. littleC. moreD. less

20. A. sometimesB. usuallyC. alwaysD. never

Ⅲ.阅读理解

(A)

Crosstalk is a kind of Chinese two-person stand-up comedy. Comedy has a comparatively small role, song and dance. The crosstalk comedy was really easy to understand and quite entertaining. As early as the Qin Dynasty, the traditional crosstalk shows had made people all over China roar with laughters for centuries. To the Song Dynasty, there had been many forms and this kind of art had been perfect.

Crosstalk show is very typical for China. The artists play on words, together with body language. They also perform in different forms, such as talking, learning a certain kind of skill, amusing, and tongue twister. Skilled artists make use of all the richness of the spoken language to create a rapid flow of fun. The funny performances always make the audience applaud. In China, there are many famous crosstalk artists, such as Hou Baolin, Hou Yaowen, Niu Qun and Feng Gong, Li Guosheng and Xiao Lin and so on. There is also a famous crosstalk show artist from abroad that is Dashan from Canada.

“Dashan” is the stage name of Mark Rowswell, a Canadian performer in China. Almost unknown by his English name, Dashan is the most famous foreigner in China. He has become a regular fixture on Chinese television and a cultural icon across the nation. Ask anyone in Mainland China—8 out of 10 will be able to tell you who Dashan is.

For the past 17 years Dashan has been appearing on Chinese television to audiences as large as 800 million viewers. Dashan first made his name performing xiangsheng, a traditional form of Chinese comic dialogue often translated as “crosstalk”, which Rowswell began study in 1988 while at Peking University. Dashan still makes guest appearances during the holiday season to perform comedic skits, but more as a hobby than a profession.

1.According to the passage, which of the following statements is wrong?

____.

A. Crosstalk is a typical art form in China

B. Crosstalk performance has many different forms

C. Crosstalk shows often make audience laugh or cry

D. Crosstalk is often performed by two persons

2.____ is not the form of crosstalk performance.

A. TalkingB. SingingC. Tongue twisterD. Magic

3.The first two paragraphs mainly tell us that ____.

A. crosstalk is a typical Chinese two-person stand-up comedy that

brings happiness

B. Dashan is successful at crosstalk performance

C. the crosstalk artists play on words, together with body language

D. in China, there are famous crosstalk artists, such as Hou Baolin,

Hou Yaowen and so on

4. Dashan, a Canadian performer in China, ____.

A. is the most famous crosstalk show artist in China

B. has been a household name in China

C. is known by his English name Mark Rowswell by 88 percent of

Chinese.

D. began studying crosstalk from 15 years ago in Peking University

5.The correct order of the following events is ____.

a. Dashan has become the most famous foreigner across the whole

nation

b. Dashan began to perform on Chinese television

c. Dashan began learning crosstalk while at Peking University

d. Dashan attracted about 800 million viewers

A. b-a-c-dB. c-d-b-aC. b-c-d-aD. c-b-d-a

(B)

David Brown and Anne are two patients in the Adult Day Care Program at Merey Hospital. David Brown is seventy-two years old. He’s friendly and likes to talk. He lives with his wife in the city. But David is becoming forgetful. His wife says, “He’ll heat up some soup, then forget to turn off the gas.” She is sixty-one and still works. She is worried about leaving her husband alone by himself.

Anne is eighty and lives with her daughter, who is sixty. Her daughter says that she needs a rest, “Mom follows me everywhere. She follows me from room to room when I clean. She sits down next to me when I read the newspaper. I need a rest and she does, too.”

小学三年级语文期末测试卷 篇3

一、识字、认字我能行!

1.我是小小书法家。

yù shì bài nián dào yìng bào zhú dǒuqiào

xiàn mù suí biàn huán rào qiàng liè cā xǐ

2.给加点字选择正确的读音,把序号写在括号里。

(1)jǐn (2)jìn

尽管( ) 尽量( ) 尽头( ) 尽力( )

(1)cān (2)shēn

参加( ) 海参( ) 人参( ) 参观( )

(1)sè (2)sāi

塞子( ) 堵塞( ) 木塞( ) 阻塞( )

3.火眼金精。(改正下面词语中的错别字)

辛福( ) 严历( ) 拨河( ) 观查( )

奇导( ) 零钱( ) 酒水( ) 水滴( )

4.看拼音写出同音字。

pào jìng lìng huàn

大( ) ( )争 命( ) ( )醒

水( ) ( )然 ( )外 ( )想

二、词句积累我最棒!

1.照样子写成语。

朝思暮想(含“想 ”)

五光十色(含数字)

2.写出画线词的反义词。

①冬天来了,室外非常寒冷。 ( )

②这里的服务员招待客人非常热情。 ( )

③我在心里不知道已责备自己多少遍了。 ( )

④教室里安静下来,同学开始认真地画画。 ( )

3.选词填空:

不但……而且…… 因为……所以…… 连续 继续

①( )我们热爱和平,( )不希望发生战争。

②海底景色( )景色奇异,( )物产丰富。

③哥哥大学毕业后,爸爸鼓励他( )深造。

④大雨已经( )下了三天,还没有停下来的迹象。

4.按要求写句子。

①病句门诊:《老北京的春节》一文的作者是老舍写的。

—————————————————————————。

②改为比喻句:降落伞从空中缓缓飘落,特别美丽。

—————————————————————————。

③用“有的……有的……还有的………”说一句话。

—————————————————————————。

④照样子,写一写。

这真是一朵神奇的花,我要把它插在最好的花瓶里。

这真是 ,我要 。

⑤我把这朵神奇的花插在最好的花瓶里。(改为“被”字句)

——————————————————————————。

⑥东西 包含 意思 这些 什么 呢 着(连词成句)

————————————————————————————。

三、课内外阅读我能行!

课内知识大回放

1.填空:

,子在巢中望母归。

海内存知己, 。

老北京人过春节的习俗有: 、、、等。

学习了《丑小鸭》这篇课文,我的感悟是: 。

2.判断下列句子,对的打“√”,错的打“ :

①电话的发明人是亚历山大?贝尔。 ( )

② “瞳瞳日”意思是“初升的太阳”。 ( )

③马拉松比赛的长度是42千米。 ( )

④学习了课文《一只小鸟》,我们要懂得爱护鸟类。 ( )

课外阅读:

(一)

早市上人很多,熙熙攘攘,非常热闹。初了卖蔬菜的,还有卖其他各类商品的。妈妈领着我,让我仔细地看,那带刺的黄瓜还扎手;圆圆的茄子还透着亮光;长长的苦瓜直挺挺的;扁扁的豆角还带着叶子;青青的芹菜满身露水;黄黄的萝卜还沾着泥土……菜农裤腿上又是泥又是水,好象脸也没洗过。

1.在( )里填上合适的词语。

( )的晨风 ( )的黄瓜 ( )的茄子

( )的豆角 ( )的芹菜 ( )的萝卜

2.早市上除了文中介绍的黄瓜、茄子、豆角、芹菜、萝卜这些蔬菜外,还有( )的( )、( )的( )。

(二)会“飞”的青蛙

鸟类开运动会,比赛飞翔。

河岸上的一只青蛙看热了眼,鼓着腮帮说:“这有什么了不起,看我的!”于是,爬到山崖上,猛蹬后腿,一头向山下扎去,结果摔到地上。显然,它摔得很疼。因为在落地的一刹那,它不由自主地“哇”了一声,而且“哇”得岔了气。

鸟类哈哈大笑。

青蛙鼓着眼睛说 这有什么好笑的 我一落地 就能唱歌

鸟类发出更大的`笑声。

故意自我表现,结果总是自己出丑。

1.根据句子的意思,在文中选择恰当的词语。

①由不得自己,控制不住自己。 ( )

②形容时间非常短暂。 ( )

③有意、存心。 ( )

2.用“ ”画出短文的中心句。

3.青蛙为什么飞不起来?

—————————————————————————————。

—————————————————————————————

4.这则短文给你学习或生活上怎样的启示?

—————————————————————————————

————————————————————————————。

四、习作天地,大显身手。

在你成长的经历中,一定发生过很多事情,有满意的,有伤心的,也有最想做的……请以“成长经历中最————的一件事”题写一篇作文。要求语句通顺,内容具体。

小朋友,你真棒,全都做完了,再认真检查一下吧!相信你会有很大的收获。

小学三年级上册语文期末测试卷 篇4

gǎi biàn shēnqíngzhǔn bèi lǐngdǎofàndiàn

二、下面的每组字你能分清吗?请你分别用这些字组词。(16分)

遍()报()喝()借()

扁()服()渴()错()

参()纸()诚()扬()

珍()低()城()场()

三、照样子填写字、词语。(18分)

氵:江、河、、、礻:、、少:吵、沙、、、分:、、美丽的花朵 辽阔的 碧绿的 乌黑的洁白的云朵 的稻谷 的葫芦 的阳光

四、下面的语句是从要求背诵的课文中选出来的,请你把它们填写完整。

半塘 采莲女,一盏灯。

那时,又高又长,挎着 的 在上面

走来走去,一点儿 也。

五、填空。(6分)

读了《盲人摸象》,我觉得这四个盲人 ;

读了《送给奶奶的阳光》,我觉得鹿儿是个 的孩子;读了《苏珊的画》中爸爸说的话:“好多事情并不像当初想像的那么坏。你只要会动脑筋,坏事就会变成好事。”我觉得爸爸说的很有道理,我们不应该,应该。这一册中我最喜欢的一篇课文是,因为。

六、认真读短文,然后根据要求回答问题。(20分)

红枫叶

秋天,一片片红枫叶飘下来。

小白兔抬头说:“枫叶姐姐,我记得夏天你穿绿衣服,现在怎么换上了红外套(tào)啦?”

枫叶说:“秋天气温下降(jiànɡ),我叶子里的叶绿素(sù)减(jiǎn)少了,红色的花青素增(zēnɡ)多了,所以我就换上红外套了。”

小白兔说:“哦,yuán来是这样。”

1、要从字典中用音序查字法,查到“yuán来”的“yuán”字,先查大写字母(),再查音节()。在字典的正文中,音节是“yuán”的字有许多,如:①元 ②员 ③原 ④园。“yuán来”的“yuán”字应选()种。(6分)

2、“一片片”是什么意思呢?请在正确答案后面画“√”。(3分)

一片()两三片()许多片()

3、枫树一到秋天,颜色就要变红了,这是为什么?请在文中用“ ”画出有关语句。(3分)

4、到了秋天,你还发现什么植物发生变化?并且能向小白兔那样提个问题吗?想好后写在下面。(8分)

七、根据对话内容写留言条。(8分)

李明:奶奶,叔叔在家吗?

奶奶:他不在家,有事吗?

李明:我家电脑该修(xiū)了,想请他今天晚上去修理(lǐ)。

三年级上册数学的期末测试卷 篇5

一、想一想,填一填。

1、我今年( )岁了,我的身高是( ),体重是( )。我每天背着重约3( )的书包, 7:20从家出发, 大约( )分钟后到达学校,我到学校的时间是( )

2、一套《少儿百科》294元,买5套大约需要( )钱。

3、一条绳子长12分米,绕着桌子的四周正好可以围两圈,桌子的周长是( )分米。

4、要使□233的积是四位数,□里最小应填( )。

5、妈妈买来9个苹果,小明吃了3个,姐姐吃了2个。小明吃了总数的( ),姐姐吃了总数的( ),剩下的留给妈妈吃,妈妈吃了总数的( )。

6、三位数乘一位数的积可能是( )位数,也可能是( )位数。

7、把16个面包,每5个装成一包,可以装成( )包,还剩( )个; 如果每( )个装成一包,就可以正好装完,正好可以装成( )包。

8、在里填上><=

70毫米()7厘米

100分()1时

8分米()100厘米

4吨()4000克

千克()2吨

二、请你来当小裁判,正确的画,错的画。

1、3千克的铁块比3千克的棉花重。 ( )

2、一个数除以8,商是9,如果有余数,这个数最大是79。 ( )

3、每只船限坐4人,25人只要租6只船就可以一次过河。 ( )

4、四条边都相等的四边形一定是正方形。 ( )

5、把1米长的木材锯成四段每段是( ) 米。 ( )

三、快乐A BC。

1、妈妈每天工作8( ),我吃饭要花20( ),跑30米用5( )。

A 、时 B、秒 C、分

2、□4=△○,○最大是( )。

A、2 B、3 C、4

3、钟面上,分针和时针成一条线是( )。

A、9时 B、12时 C、6时

4、4个小朋友互通电话,每两人通一次话,一共要通( )次电话。

A、10 B、8 C、6 D、4

5、一个正方体3面涂黄色,2面涂绿色,1面涂红色,掷一下落在地上后,朝上的面( )色的`可能性最大。

A、黄色 B、绿色 C、红色

四、我会口算得很快。

486=

507=

3005=

407=

=

2083

475

3958

五、笔算我最拿手。

135+937

978-497

455

367

2287

2606

六、列式计算。

1、一个数减去385,差是273,这个数是多少?

2、137的5倍是多少?

3、把70平均分成9份,每份是多少?余几?

4、从 里减去 ,再减去 ,差是多少?

七、应用题。

1、在今年的献爱心活动中,三年级6个班共捐书900本,其中5个班各捐了145本,另一个班捐了多少本?

2、学校操场是一个长方形,长35米,宽15米,如果每天早上围着操场跑5圈,李大爷每天至少要走多少米?

3、两名老师带领32名学生去郊游,每辆车限坐9人,至少需要租几辆这样的车?

4、一张长方形纸的 涂上红色, 涂上黑色,剩下的不涂色。涂色的是这张纸的几分之几?不涂色的占这张纸的几分之几?

5、元旦这天,黄帝故里上午有游客472人,中午有273人离去,下午又来了209人,这时园内有多少游客?这一天一共来了多少游客?

6、小明今年15岁,爸爸年龄是小明的3倍,爸爸比小明大几岁?

7、(1)上半场用了多长时间?

(2)中场休息用了多长时间?

期末考试测试卷(一) 篇6

1.抛物线y=mx2的准线方程为y=2,则m的值为    .

2.若函数f(x)=a-x+x+a2-2是偶函数,则实数a的值为    .

3.若sin(α+π12)=13,则cos(α+7π12)的值为   .

4.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是    .

5.已知向量a的模为2,向量e为单位向量,e⊥(a-e),则向量a与e的夹角大小为    .

6.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)=    .

7.已知直线x=a(0

8.已知双曲线x2a2-y2=1(a>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为   .

9.已知函数f(x)=ax(x<0),

(a-3)x+4a(x≥0)满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是    .

10.设x∈(0,π2),则函数y=2sin2x+1sin2x的最小值为    .

11.△ABC中,C=π2,AC=1,BC=2,则f(λ)=|2λCA+(1-λ)CB|的最小值是

12.给出如下四个命题:

①x∈(0,+∞),x2>x3;

②x∈(0,+∞),x>ex;

③函数f(x)定义域为R,且f(2-x)=f(x),则f(x)的图象关于直线x=1对称;

④若函数f(x)=lg(x2+ax-a)的值域为R,则a≤-4或a≥0;

其中正确的命题是    .(写出所有正确命题的题号).

13.在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,以点P为切点作切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为    .

14.若关于x的方程|ex-3x|=kx有四个实数根,则实数k的取值范围是    .

二、解答题

15.已知sin(A+π4)=7210,A∈(π4,π2).

(1)求cosA的值;

(2)求函数f(x)=cos2x+52sinAsinx的值域.

16.在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

(1)求四棱锥PABCD的体积V;

(2)若F为PC的中点,求证PC⊥平面AEF;

(3)求证CE∥平面PAB.

17.某企业有两个生产车间分别在A、B两个位置,A车间有100名员工,B车间有400名员工.现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐.已知A、B、C中任意两点间的距离均有1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为s.

(1)写出s关于α的函数表达式,并指出α的取值范围;

(2)问食堂D建在距离A多远时,可使总路程s最少.

18.已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:x2a2+y2b2=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;

(2)设Q为椭圆E上的一个动点,求AP·AQ的取值范围.

19.幂函数y=x的图象上的点Pn(t2n,tn)(n=1,2,…)与x轴正半轴上的点Qn及原点O构成一系列正△PnQn-1Qn(Q0与O重合),记an=|QnQn-1|

(1)求a1的值;

(2)求数列{an}的通项公式an;

(3)设Sn为数列{an}的前n项和,若对于任意的实数λ∈[0,1],总存在自然数k,当n≥k时,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.

20.已知函数f(x)=(x2-3x+3)·ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.

(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;

(2)求证:n>m;

(3)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,并确定这样的x0的个数.

附加题

21.[选做题] 本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分.

A.选修41:几何证明选讲

自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

B.选修42:矩阵与变换

已知二阶矩阵A=1a

34对应的变换将点(-2,1)变换成点(0,b),求实数a,b的值.

C.选修44:坐标系与参数方程

椭圆中心在原点,焦点在x轴上.离心率为12,点P(x,y)是椭圆上的一个动点,

若2x+3y的最大值为10,求椭圆的标准方程.

D.选修45:不等式选讲

若正数a,b,c满足a+b+c=1,求13a+2+13b+2+13c+2的最小值.

[必做题] 第22、23题,每小题10分,计20分.

22.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=m.

(1)试确定m,使直线AP与平面BDD1B1所成角为60°;

(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.

23.(本小题满分10分)

已知,(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)

(1)求a0及Sn=a1+a2+a3+…+an;

(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.

参考答案

一、填空题

1. -18

2. 2

3. -13

4. 0.75

5. π3

6. 12

7. 710

8. x24-y2=1

9. (0,14]

10. 3

11. 2

12. ③④

13. 3324

14. (0,3-e)

二、解答题

15.解:(1)因为π4<A<π2,且sin(A+π4)=7210,

所以π2<A+π4<3π4,cos(A+π4)=-210.

因为cosA=cos[(A+π4)-π4]

=cos(A+π4)cosπ4+sin(A+π4)sinπ4

=-210·22+7210·22=35.所以cosA=35.

(2)由(1)可得sinA=45.所以f(x)=cos2x+52sinAsinx

=1-2sin2x+2sinx=-2(sinx-12)2+32,x∈R.因为sinx∈[-1,1],所以,当sinx=12时,f(x)取最大值32;当sinx=-1时,f(x)取最小值-3.

所以函数f(x)的值域为[-3,32].

16.解:(1)在Rt△ABC中,AB=1,

∠BAC=60°,∴BC=3,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,

∴CD=23,AD=4.

∴SABCD=12AB·BC+12AC·CD

=12×1×3+12×2×23=523.则V=13×523×2=533.

(2)∵PA=CA,F为PC的中点,

∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,

∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,

∴EF∥CD.则EF⊥PC.

∵AF∩EF=F,∴PC⊥平面AEF.

(3)取AD中点M,连EM,CM.则EM∥PA.

∵EM平面PAB,PA平面PAB,

∴EM∥平面PAB.

在Rt△ACD中,∠CAD=60°,AC=AM=2,

∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

∵MC平面PAB,AB平面PAB,

∴MC∥平面PAB.

∵EM∩MC=M,

∴平面EMC∥平面PAB.

∵EC平面EMC,

∴EC∥平面PAB.

17.解:(1)在△BCD中,

∵BDsin60°=BCsinα=CDsin(120°-α),

∴BD=32sinα,CD=sin(120°-α)sinα,

则AD=1-sin(120°-α)sinα.

s=400·32sinα+100[1-sin(120°-α)sinα]

=50-503·cosα-4sinα,其中π3≤α≤2π3.

(2)s′=-503·-sinα·sinα-(cosα-4)cosαsin2α=503·1-4cosαsin2α.

令s′=0得cosα=14.记cosα0=14,α0∈(π3,2π3);

当cosα>14时,s′<0,当cosα<14时,s′>0,

所以s在(π3,α0)上单调递减,在(α0,2π3)上单调递增,

所以当α=α0,即cosα=14时,s取得最小值.

此时,sinα=154,

AD=1-sin(120°-α)sinα=1-32cosα+12sinαsinα

=12-32·cosαsinα=12-32·14154=12-510.

答:当AD=12-510时,可使总路程s最少.

18.解:(1)点A代入圆C方程,得(3-m)2+1=5.

∵m<3,∴m=1.

圆C:(x-1)2+y2=5.

设直线PF1的斜率为k,则PF1:y=k(x-4)+4,即kx-y-4k+4=0.

∵直线PF1与圆C相切,∴|k-0-4k+4|k2+1=5.解得k=112,或k=12.

当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.

当k=12时,直线PF1与x轴的交点横坐标为-4,

∴c=4,F1(-4,0),F2(4,0).

2a=AF1+AF2=52+2=62,a=32,a2=18,b2=2.

椭圆E的方程为:x218+y22=1.

(2)AP=(1,3),设Q(x,y),AQ=(x-3,y-1),

AP·AQ=(x-3)+3(y-1)=x+3y-6.

∵x218+y22=1,即x2+(3y)2=18,

而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.

则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].

x+3y的取值范围是[-6,6].

∴AP·AQ=x+3y-6的取值范围是[-12,0].

19.解:(1)由P1(t21,t1)(t>0),得kOP1=1t1=tanπ3=3t1=33,

∴P1(13,33),a1=|Q1Q0|=|OP1|=23.

(2)设Pn(t2n,tn),得直线PnQn-1的方程为:y-tn=3(x-t2n),

可得Qn-1(t2n-tn3,0),

直线PnQn的方程为:y-tn=-3(x-t2n),可得Qn(t2n+tn3,0),

所以也有Qn-1(t2n-1+tn-13,0),得t2n-tn3=t2n-1+tn-13,由tn>0,得tn-tn-1=13.

∴tn=t1+13(n-1)=33n.

∴Qn(13n(n+1),0),Qn-1(13n(n-1),0),

∴an=|QnQn-1|=23n.

(3)由已知对任意实数时λ∈[0,1]时,n2-2n+2≥(1-λ)(2n-1)恒成立,

对任意实数λ∈[0,1]时,(2n-1)λ+n2-4n+3≥0恒成立

则令f(λ)=(2n-1)λ+n2-4n+3,则f(λ)是关于λ的一次函数.

对任意实数λ∈[0,1]时,f(0)≥0

f(1)≥0.

n2-4n+3≥0

n2-2n+2≥0n≥3或n≤1,

又∵n∈N*,∴k的最小值为3.

20.(1)解:因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex

由f′(x)>0x>1或x<0;由f′(x)<00<x<1,所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减

欲f(x)在[-2,t]上为单调函数,则-2<t≤0.

(2)证:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值e

又f(-2)=13e2<e,所以f(x)在[-2,+∞)上的最小值为f(-2)

从而当t>-2时,f(-2)<f(t),即m<n.

(3)证:因为f′(x0)ex0=x20-x0,所以f′(x0)ex0=23(t-1)2即为x20-x0=23(t-1)2,

令g(x)=x2-x-23(t-1)2,从而问题转化为证明方程g(x)=x2-x-23(t-1)2=0

在(-2,t)上有解,并讨论解的个数.

因为g(-2)=6-23(t-1)2=-23(t+2)(t-4),g(t)=t(t-1)-23(t-1)2=13(t+2)(t-1),所以

①当t>4或-2<t<1时,g(-2)·g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解.

②当1<t<4时,g(-2)>0且g(t)>0,

但由于g(0)=-23(t-1)2<0,

所以g(x)=0在(-2,t)上有解,且有两解.

③当t=1时,g(x)=x2-x=0x=0或x=1,所以g(x)=0在(-2,t)上有且只有一解;

当t=4时,g(x)=x2-x-6=0x=-2或x=3,

所以g(x)=0在(-2,4)上也有且只有一解.

综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,

且当t≥4或-2<t≤1时,有唯一的x0适合题意;当1<t<4时,有两个x0适合题意.

(说明:第(2)题也可以令φ(x)=x2-x,x∈(-2,t),然后分情况证明23(t-1)2在其值域内,并讨论直线y=23(t-1)2与函数φ(x)的图象的交点个数即可得到相应的x0的个数)

附加题

21.(A)解:因为MA为圆O的切线,所以MA2=MB·MC.

又M为PA的中点,所以MP2=MB·MC.

因为∠BMP=∠BMC,所以△BMP∽△PMC.

于是∠MPB=∠MCP.

在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB=20°.

(B)解:∵0

b=1a

34-2

1=-2+a

-6+4,

∴0=-2+a

b=-2,即a=2,b=-2.

(C)解:离心率为12,设椭圆标准方程是x24c2+y23c2=1,

它的参数方程为x=2cosθ

y=3sinθ,(θ是参数).

2x+3y=4ccosθ+3csinθ=5csin(θ+φ)最大值是5c,

依题意tc=10,c=2,椭圆的标准方程是x216+y212=1.

(D)解:因为正数a,b,c满足a+b+c=1,

所以,(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,

即13a+2+13b+2+13c+2≥1,

当且仅当3a+2=3b+2=3c+2,即a=b=c=13时,原式取最小值1.

22.解:(1)建立如图所示的空间直角坐标系,则

A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),

B1(1,1,1),D1(0,0,2).

所以BD=(-1,-1,0),BB1=(0,0,2),

AP=(-1,1,m),AC=(-1,1,0).

又由AC·BD=0,AC·BB1=0知AC为平面BB1D1D的一个法向量.

设AP与面BDD1B1所成的角为θ,

则sinθ=cos(π2-θ)=|AP·AC||AP|·|AC|

=22·2+m2=32,解得m=63.

故当m=63时,直线AP与平面BDD1B1所成角为60°.

(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,

则Q(x,1-x,2),D1Q=(x,1-x,0).

依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP.等价于

D1Q⊥APAP·D1Q=0x+(1-x)=0x=12

即Q为A1C1的中点时,满足题设的要求.

23.解:(1)取x=1,则a0=2n;取x=2,则a0+a1+a2+a3+…+an=3n,

∴Sn=a1+a2+a3+…+an=3n-2n;

(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,

当n=1时,3n>(n-1)2n+2n2;

当n=2,3时,3n<(n-1)2n+2n2;

当n=4,5时,3n>(n-1)2n+2n2;

猜想:当n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明:

由上述过程可知,n=4时结论成立,

假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,

两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]

而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,

∴3k+1>((k+1)-1)2k+1+2(k+1)2

即n=k+1时结论也成立,∴当n≥4时,3n>(n-1)2n+2n2成立.

综上得,当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;

上一篇:电缆维护方案文档下一篇:初中班主任工作总结202