初中数学等差数列(精选10篇)
<教师备案>
.已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本讲就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习,不涉及具体某一题目的独特解法与技巧.
.教师在上课时需要注意:
⑴
确保学生基础知识的熟练,如基本的等差和等比数列的通项.
⑵
明确数列可以产生衍生数列,如:等等,而这些数列中的“”也会随着的项号的变化而变化.这点可以在后面第一次讲到用辅助数列的时候提到,但一定要举一些例子让学生体会.
⑶
教师要清晰的了解在高中阶段从递推关系求通项的核心思想就是通过代数变形将递推式转化为等差数列或等比数列的递推式.
⑷
高中阶段除了将递推数列转化为等差或等比数列进行求通项外,还有一小部分递推数列是周期数列.比如,就是周期数列.
考点1:
叠加法
知识点睛
由数列的递推公式求通项公式的方法有:(以下)
方法1.叠加法:若数列递推公式为,则通项.
<教师备案>我们知道等差数列可以通过叠加法求通项公式,对于数列有形如的递推式,且的和是可求的,我们可以用同样的方法来求,将递推式变形为,……
将各式相加,得
.
经典精讲
【铺垫】已知数列满足,求.
【解析】
.
【例1】
⑴已知数列满足,且求.
⑵已知数列满足且(),求.
⑶已知数列满足求.
⑷在数列中,,则()
A.
B.
C.
D.
【解析】
⑴
.
⑵
.
⑶
.
⑷
A;
【点评】
在运用叠加法时,要特别注意项数,计算时项数容易出错.正确写出要累加的首项和末项很重要.
考点2:
叠乘法
知识点睛
由数列的递推公式求通项公式的方法有:(以下)
方法2.叠乘法:若数列递推公式为,则通项.
<教师备案>我们知道叠乘法可以求等比数列的通项,对于数列有形如“”的递推式,且的积是可求的时候,我们可以用同样的方法来求,将递推式变形成,……
将各式相乘,得.
经典精讲
【铺垫】已知数列中,求.
【解析】
.
【例2】
⑴已知数列中,,则数列的通项公式为()
A.
B.
C.
D.
⑵已知数列中,求数列的通项公式.
⑶已知数列中,,求.
【解析】
⑴
B.
⑵
.
⑶
.
考点3:
构造法
知识点睛
由数列的递推公式求通项公式的方法有:(以下)
方法3.构造法:
⑴
若数列递推公式为,可以设成立,解得,即是等比数列.
⑵
(其中,且,是关于的多项式函数),可设,其中为与的次数相等的多项式函数,各项的系数都待定,通过比较与的各项系数确定待定系数,即为等比数列;
⑶,其中且,,.
①若,则,即为等差数列;
②若,则可以设;
也可两边同时除以或:得或.
<教师备案>
构造法的主要思想是通过观察递推公式的形式,进行合适的代数恒等变换,构造出我们比较熟悉的等差、等比数列,或者类似等差数列(叠加)、类似等比数列(叠乘).它主要处理递推形式给出的数列,一阶递推主要有两种:⑴;⑵.
这两种递推形式的处理方式如下:
⑴,;
与等比数列的递推公式作对比,发现多一个常数,故考虑构造一个等比数列,于是令,解得,从而得到的表达式,解得的表达式;
例3⑴就是这种形式.
⑵,①当时,即,且数列可以求和时,就是“叠加法”的情形,即;
②当时,ⅰ.是等差数列,故也可以像一样分解:
令,可解得的值,于是成等比数列,可得到的通项公式.
例3⑵就是这种形式.
ⅱ.当成等比数列时,即,若,两边同除以,则,得到数列是一个等差数列;
若,则用待定系数法:设;
也可两边同时除以或:得或,前边的递推式中可以用叠加法求得通项公式,后面的递推式中,可以用(ⅰ)中的待定系数法得到一个等差数列.
例3⑶就是这种形式.
经典精讲
【例3】
⑴在数列中,当时,有,求.
⑵在数列中,,.求.
【追问】如果递推关系中出现了更为复杂的函数,那么该如何进行配凑?
如:在数列中,.求.
⑶已知数列满足,求.
【解析】
⑴
.
⑵
.
【追问】
.
⑶
.
【挑战十分钟】⑴
在数列中,求的通项公式.
⑵
在数列中,求的通项公式.
⑶
在数列中,求的通项公式.
【解析】
⑴
.
⑵
.
⑶
.
【例4】
数列中,求数列的通项公式.
【解析】
.
【点评】本题和例3的区别在于,例3可以说完全是按部就班的套公式,本题需要先代数变形,变成可以去套公式的形式,不过两道例题的整体思想仍然是将递推式左右两边变化出形式类似的代数式,换元后形成(类似)等差或(类似)等比数列.
考点4:
倒数法
知识点睛
由数列的递推公式求通项公式的方法有:(以下)
方法4.倒数法:若数列递推公式为,两边式子取倒数,然后转化为方法3的情形.
<教师备案>
除了一阶递推形式可以用构造法得到一个等差数列或等比数列,或是可以用叠加法或叠乘法处理的数列之外,高中数学中还常常会遇到递推形式为的分式递推数列.这样的数列形式与我们以前的一次分式函数非常相似,对于这样的递推形式,取倒数后分子上就没有了,实现了“变量分离”,得到的形式,于是数列满足的递推式就可以通过叠加法()或构造法()去求通项了.
经典精讲
【例5】
⑴已知数列满足,则_________.
⑵已知在数列中,求数列的通项公式.
【解析】
⑴;
⑵
5.2
两种形式的处理
考点5:
前项和与通项
知识点睛
1.已知求,直接用公式:
2.已知与的关系有两种处理方式:
⑴
把题目中的用替换,转化为关于的递推关系,从而得到的通项公式,再转为的通项公式.
⑵
分别写出和的表达式,两式相减转化为关于的递推关系.
注意:使用得到的通项是在这个前提下成立的,所以要注意验证的情况.
<教师备案>由与的关系式求通项是高中阶段的重点,前面的讲次也有涉及到,在本讲我们结合前面求通项的方法进行一个简单的总结.例6是只有一种方法比较可行的,例7则是两种方法都可以.
经典精讲
【铺垫】已知在数列中,求数列的通项公式.
【解析】
.
【例6】
已知数列中,且对于任意正整数有,求通项.
【解析】
.
【点评】此题即属于将用替换,进而转化为关于的递推关系,从而得到的通项公式,再转为的通项公式.如果用和的表达式相减的话则很难求出通项.
【例7】
设是正数组成的数列,其前项和为,并且对于所有的自然数,与的等差中项等于与的等比中项,求数列的通项公式.
【解析】
.
【备选】(2010朝阳二模理20)
已知是递增数列,其前项和为,且.
⑴
求数列的通项;
⑵
是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由.
【解析】
⑴.
⑵
满足条件的正整数不存在,证明如下:
假设存在,使得.
则.
整理,得
………①
显然,左边为整数,所以①式不成立.
故满足条件的正整数不存在.
<教师备案>
若数列的递推公式的一般形式为,这时的通项公式也可以求出.
分两种情况:
①当时,有.
是以为首项,为公比的等比数列.
②当时,存在,满足,与比较系数得,.
可见是二次方程的两个根,通过解此方程求,的值,再进一步推导的表达式.这种方法又称特征根法.
下面的竞赛题就用到了这样的方法,高中对这样的二阶递推式不作要求,这道题仅供学有余力的同学选做.
(2009年全国高中数学联合竞赛一试)
已知,是实数,方程有两个实根,数列
满足,⑴
求数列的通项公式(用,表示);
⑵
若,求的前项和.
【解析】
⑴
由韦达定理知,又,所以,整理得
令,则.所以是公比为的等比数列.
数列的首项为:.
所以,即.
所以.
①当时,,变为.整理得,.
所以,数列成公差为的等差数列,其首项为.
所以.
于是数列的通项公式为;
②当时,.
整理得,.
所以,数列成公比为的等比数列,其首项为.所以.
于是数列的通项公式为.
⑵
若,则,此时.
由⑴的结果得,数列的通项公式为,所以,的前项和为,以上两式相减整理得,所以.
<教师备案>
此题老师可以再提及斐波那契数列,它的递推公式为,也是一个二阶递推式,可以用特征根法求得通项公式.
实战演练
【演练1】已知数列中,则_______.
【解析】
.
【演练2】在数列中,.则_______.
【解析】
.
【演练3】在数列中,.求的通项公式.
【解析】
.
【演练4】⑴
已知数列满足,求.
⑵
数列中,求.
【解析】
⑴
.
⑵
.
【演练5】已知数列满足:,又,求.
【解析】
.
【演练6】在数列中,为其前项和,且成等差数列,求的通项公式.
【解析】.
大千世界
(2012年北京高中数学联赛一试)
已知数列的各项均为非零实数,且对于任意的正整数,都有如下关系成立:
问是否存在满足条件的无穷数列,使得?若存在,求出这样的无穷数列的一个通项公式,若不存在则说明理由.
【解析】当时,∵
①
∴
②
①②有:
③
因各项均非零,所以③式两边约掉,有:
④
∴
⑤
④⑤有:
∴或
一、错误理解公差的取值而漏解
学生作为学习知识的主体, 在等差数列概念、性质等内容的学习过程中, 由于受思维能力水平局限性的影响 (在等差数列中公差的取值可能为正值、负值或0) , 在解题时往往会主观地认为公差大于0而造成漏解。在教学活动中, 教师要引导学生正确而全面地理解概念及其性质, 从而运用全面的思维理念, 进行问题的有效解答。
例题:已知b是a, c的等差中项, 且lg (a+1) , lg (b-1) , lg (c-1) 成等差数列, 且a+b+c=15, 求a、b、c的值.
某一学生解题过程如下:
解:∵2b=a+c, a+b+c=15, ∴3b=15, b=5.
设等差数列a, b, c的公差为d, 则a=5-d, c=5+d.
∵2lg (b-1) =lg (a+1) +lg (c-1) ,
∴2lg4=lg (5-d+1) +lg (5+d-1) =lg[25- (d-1) 2].
∴16=25- (d-1) 2∴ (d-1) 2=9, ∴d-1=3, d=4.∴a, b, c依次为1, 5, 9.
通过对等差数列公差的概念和取值方法等内容的分析, 发现该解答过程中, 在解 (d-1) 2=9时, 开平方得d-1=3, 仅取了算术平方根是错误的。应该注意到在解题过程中, 遇到求某数的算术平方根时一般应求出两个值, 再根据题设条件来决定取舍, 如果仅取算术平方根, 那么往往会发生漏解的现象。因此, 正确的解答过程如下。
解:∵2b=a+c, a+b+c=15, ∴3b=15, b=5.
设等差数列a, b, c的公差为d, 则a=5-d, c=5+d.
∵2lg (b-1) =lg (a+1) +lg (c-1) , ∴2lg4=lg (6-d) +lg (4+d) , ∴16= (6-d) (4+d) ,
∴d=4或-2, ∴a, b, c的值依次是1, 5, 9或7, 5, 3.
二、不能正确理解等差数列的性质而出现解题错误
在等差数列{an}中, 如果m, n, p, q∈N*, 且m+n=p+q, 则am+an=ap+aq.但在解答相类似的问题过程中, 学生一般会错误地将该结果总结为ap+q=ap+aq.这就要求教师在进行这一问题教学过程中, 在进行问题练习的基础上, 还要注意有效引导学生对等差数列的性质内容进行正确理解, 找到进行等差数列解答的两种最基本和最广泛的性质: (1) 若m+n=p+q (m, n, p, q∈N*) , 一定有am+an=ap+aq (反之亦然) ; (2) 若 (m+n) /2=p (m, n, p∈N*) , 则一定有am+an=2ap.从而使学生能够熟记并灵活运用, 实现学生对等差数列性质的正确运用。
例题:设{an}是等差数列, ap=q, aq=p (p≠q) , 试求ap+q.
学生由于对等差数列的性质不能正确地理解, 进行了如下解答:
∵设{an}是等差数列, ∴ap+q=ap+aq=p+q.
这时, 我引导学生对等差数列的性质进行复习, 学生发现了上述解题过程错误.纷纷说出正确解题过程为:
解:∵ap=a1+ (p-1) d, aq=a1+ (q-1) d, ∴a1+ (p-1) d=q, a1+ (q-1) d=p,
组成方程组, 得出: (p-q) d=q-p.
∵p≠q, ∴d=-1.代入方程中, 有a1+ (p-1) (-1) =q,
∴a1=p+q-1, 故ap+q=0.
为使学生对等差数列的性质有准确和熟练的掌握和运用, 我在进行上述问题训练活动后, 还向学生布置了“已知5个数成等差数列, 且它们的和为25, 它们的平方和为165, 求这5个数.”等凸显等差数列性质有效运用的综合性问题, 让学生进行有效训练, 为学生提供进行问题解答的时机, 从而为正确高效解答类似问题提供经验和方法基础。
三、错用等差数列前n项和的性质
等差数列前n项和的性质作为等差数列章节性质内容的重要部分, 是学生掌握等差数列知识内涵, 正确解答等差数列问题的重要手段和途径, 但由于学生在解答等差数列{an}的前m项和Sm的过程中, 往往由于思维惯性, 经常将Sm, S2m-Sm, S3m-S2m成等差数列, 误认为Sm, S2m, S3m成等差数列而导致解题出错。如在讲解“等差数列{an}中, S10=10, S20=30, 求S30.”问题时, 教师引导学生在进行这一问题解答过程中, 有意提醒学生, 要注意解答该类问题过程中, 要切实避免“Sm, S2m-Sm, S3m-S2m成等差数列, 误认为Sm, S2m, S3m成等差数列”情况的发生。学生在教师的提醒和引导下, 通过结合等差数列前n项和的性质解答方法, 得出以下解题过程:
解:由条件得S10=10, S20-S10=20, 由性质得S30-S20=30, 从而S30=60.
总之, 新课程教学目标的提出, 为高中数学教师教学活动的开展提出了明确的要求, 同时, 通过对历年高考试卷命题知识点的分析, 数列内容在整个试卷总分的比重较大, 考查的内容中包含了等差数列的知识要点及其性质内容, 有效地考查了学生逻辑思维推理能力、运算能力, 以及运用数列中的知识和方法分析问题与解决问题的能力。因此, 在等差数列知识教学中, 教师要善于寻找规律, 找出学生解题错误所在, 实行“针对性”、“实效性”的解题活动, 帮助学生改正解题中的错误方法, 实现学生良好思维习惯和学习能力的有效形成。
摘要:本文对解题过程中的问题进行了整理、梳理、汇总和研析, 总结出学生易出现错误解答的原因:错误理解公差的取值而漏解, 不能正确理解等差数列的性质, 错用等差数列前几项和的性质。
1 斐波那契数列在图形探索问题中的应用
在有些树形图的图形探索问题中可以应用斐波那契数列知识解决问题.
例1 如图1,是一个树形图的生长过程,依据图中所示的生长规律,第16行的实心圆点的个数有几个?(迎春杯赛题)
通过以上问题的解决,可以培养学生的自主探索和解决图形问题的能力,形成数形结合的数学思想意识. 上面的问题还可做如下的变式训练.
变式训练:如图2,结出一个“三角形”的生长过程,依据图中的数字变化规律,问:第四行的数中能被2001整除的是什么数?
2 斐波那契数列在生活实际问题中的应用
有时,还可以利用斐波那契数列知识解决生活实际中的问题.
例2 共有10级台阶,规定每步可以迈一级台阶或二级台阶,从地面到最上面一级台阶,一共可以有多少种不同的走法?
通过以上问题的解决,不但拓宽了学生的解题思路,而且培养了学生应用数学知识解决生活实际问题的能力,并形成了应用数学知识的思想意识. 以上问题还可以做如下的变式训练.
变式训练1 一只青蛙从宽5米的水田的一边要跳往另一边,它每次只能跳0.5米或1米,这只青蛙跳过水田共有多少种不同的方法?
变式训练2 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同的取法?
3 斐波那契数列在数学活动中的应用
在数学活动中也会经常用到斐波那契数列知识解决问题.
例4 如下图,小方和小张进行跳格子游戏,小方从A跳到B,每次可跳1格或2格;小张从C跳到D,每次可跳1格,2格或3格. 试比较:谁跳到目标处的不同跳法多?多几种?
通过以上问题的解决,不但增强了学生学习数学竞赛的兴趣,而且增强了学生的数学转换思想意识,从而提高了解决问题的能力. 上面的问题还可做这样的变式训练. 如下图:若小方向左退一格,其余条件不变,试比较:谁跳到目标处的不同跳法多?多几种?
ACBD 通过以上3个方面问题的探讨,并根据中学数学课标中指出:“要培养学生分析问题和解决问题的能力”,同时要注意数学思想方法的运用和创新意识的培养,因此,要把培养学生的“应用数学意识”落实到初中数学竞赛的教学中去,使学生了解数学在实际生活等方面的广泛应用,从而提高学生对数学竞赛学习的兴趣,并逐步形成应用数学的良好习惯.
参考文献
[1] 岑申,王而冶.数学竞赛阶梯训练[M].杭州:浙江教育出版社,2002.
[2] 马复编. 设计合理的数学教学[M]. 高等教育出版社,2003年.
[3] 编委会.中学理科初中竞赛数学[M].杭州:浙江教育出版社,2004.
[4] 编委会.全国初中数学竞赛模拟试卷[M].北京:初等教育出版社,2004.
[5] 教育部.全日制义务教育数学课程标准(实验稿)[S].北京:北京师范大学出版社,2002.6.
作者简介:蒋必昆,男,1972年生,汉族,永嘉,本科,永嘉县上塘中学一级数学教师.
毛光寿,男,1967年生,中学数学高级教师,永嘉县教研室教研员,温州市“教坛新秀”,教育硕士,浙师大数学教育硕士研究会秘书长. 已在国家级刊物上发表论文25篇,目前主研方向:数学教师的专业发展.
1、已知等差数列的首项a1,项数n,公差d,求末项an
公式:末项=首项+(项数-1)×公差an= a1+(n-1)×d
(1)一个等差数列的首项为5,公差为2,那么它的第10项是()。
2、已知等差数列的首项a1,末项an,公差d,求项数n
公式:项数=(末项-首项)÷公差+1n=(an-a1)÷d+1
(1)等差数列7、11、15……、87,问这个数列共有()项。
(2)等差数列3、7、11…,这个等差数列的第()项是43。
3、已知等差数列的首项a1,末项an,项数n, 求公差d
公式:公差=(末项-首项)÷(项数-1)d=(an-a1)÷(n-1)
(1)已知等差数列的第1项为12,第6项为27。求公差()。
4、已知等差数列的末项an,项数n, 公差d,求首项a1
公式:首项=末项-(项数-1)×公差a1=an-(n-1)×d
(1)已知一个等差数列的公差为2,这个等差数列的第10项是为23,这个等差数列的首项是()。
(2)一堆木料,最下层有24根,往上每一层都比下一层少2根,共10层,最上层有()根木料。
5、把70拆成7个自然数,使这7个数从小到大排成一行后,相邻两个数的差都相等,那么,中间的数是()。
6、5个连续奇数的和是35,其中最大的奇数是()。
第二类:已知等差数列的首项a1,末项an,项数n,求和用公式:sn=(a1+ an)×n÷2[或 sn=中间数×项数]
1、已知等差数列2,5,8,11,14,17,20,求这个数列的和是()。
2、等差数列7+11+15+19+23+27+31+35的和是()。
3、求1+2+3+4+5+6+7+……+20=4、1+3+5+7+9+11+……+19=
5、已知等差数列的首项是5,末项是47,求这个数列共有8项求这个数列的和是()。
6、王师傅每天工作8小时,第一小时加工零件5个,从第二小时起每小时比前一小时多加工相同的零件,第8小时加工了23个,王师傅一天加工零件()个。
等差数列分组练习题
已知等差数列的首项a1,末项an,项数n,求和用公式:sn=(a1+ an)×n÷2
如果题中有缺项,需要先求缺项再求和
第一类缺项是()
1、已知等差数列2,5,8,11,14…,求前11项的和是多少?
2、数列1、4、7、10、……,求它的前21项的和是多少?
第二类缺项是()
1、等差数列7,11,15,……… 87,这个数列的和是多少?
2、已知等差数列5,8,11…47,求这个数列的和是多少?
第三类缺项是()
1、一个剧场设置了16排座位,后每一排都比前一排多2个座位,最后一排有68个座位,这个剧场共有多少个座位?
2、有10个数,后一个比前一个多5,第10个数是100,求这10个数的和是多少? 第四类缺项是()
一、创设情景,揭示课题
1.复习等差数列的定义、通项公式(1)等差数列定义
(2)等差数列的通项公式:ana1(n1)d(anam(nm)d或andnp(p是常数))(3)公差d的求法:① dan-an1 ②d2.等差数列的性质:
(1)在等差数列an中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列an中,相隔等距离的项组成的数列是AP
如:a1,a3,a5,a7,……;a3,a8,a13,a18,……;
ana1aam ③dn n1nmanam(mn);
nm(4)在等差数列an中,若m,n,p,qN且mnpq,则amanapaq(3)在等差数列an中,对任意m,nN,anam(nm)d,d3.问题:(1)已知a1,a2,a3,an,an1,,a2n是公差为d的等差数列。①an,an1,,a2,a1也成等差数列吗?如果是,公差是多少? ②a2,a4,a6,a2n也成等差数列吗?如果是,公差是多少?(2)已知等差数列an的首项为a1,公差为d。
①将数列an中的每一项都乘以常数a,所得的新数列仍是等差数列吗?如果是,公差是多少?
②由数列an中的所有奇数项按原来的顺序组成的新数列cn是等差数列吗?如果是,它的首项和公差分别是多少?
(3)已知数列an是等差数列,当mnpq时,是否一定有amanapaq?(4)如果在a与b中间插入一个数A,使得a,A,b成等差数列,那么A应满足什么条件?
二、研探新知
1.等差中项的概念:
如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中A a,A,b成等差数列A2.一个有用的公式:
(1)已知数列{an}是等差数列
①2a5a3a7是否成立?2a5a1a9呢?为什么? ②2anan1an1(n1)是否成立?据此你能得到什么结论? ③2anankank(nk0)是否成立??你又能得到什么结论? 求证:①amanapaq ②apaq(pq)d 证明:①设首项为a1,则(2)在等差数列an中,d为公差,若m,n,p,qN且mnpq
ab 2ab. 2amana1(m1)da1(n1)d2a1(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d
∵ mnpq ∴amanapaq
五、归纳整理,整体认识
本节课学习了以下内容:
aba,A,b,成等差数列,等差中项的有关性质意义 22.在等差数列中,mnpqamanapaq(m,n,p,qN)1.A3.等差数列性质的应用;掌握证明等差数列的方法。
六、承上启下,留下悬念
1.在等差数列{an}中, 已知a3+a4+a5+a6+a7=450, 求a2+a8及前9项和S9.解:由等差中项公式:a3+a7=2a5,a4+a6=2a5由条件a3+a4+a5+a6+a7=450, 得5a5=450, a5=90, ∴a2+a8=2a5=180.S9=a1+a2+a3+a4+a5+a6+a7+a8+a9
=(a1+a9)+(a2+a8)+(a3+a7)+(a4+a6)+a5=9a5=810.七、板书设计(略)
八、课后记:
判断一个数列是否成等差数列的常用方法 1.定义法:即证明 anan1d(常数)
例:已知数列an的前n项和Sn3n22n,求证数列an成等差数列,并求其首项、公差、通项公式。解:
n2a1S1321 当时
anSnSn13n22n[3(n1)22(n1)]6n5
n1时 亦满足
∴ an6n5
首项a11
anan16n5[6(n1)5]6(常数)
∴an成AP且公差为6 2.中项法: 即利用中项公式,若2bac 则a,b,c成AP。
111bccaab 例:已知,成AP,求证,也成AP。
abcabc111211 证明: ∵,成AP ∴ 化简得:2acb(ac)
abcbacbcabbcc2a2abb(ac)a2c22aca2c2
acacacac(ac)2(ac)2acbccaab= ∴,也成AP 2b(ac)acbabc2 3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。
例:设数列an其前n项和Snn22n3,问这个数列成AP吗?
解:n1时 a1S12
n2时 anSnSn12n3,a1不满足an2n3
n12 ∴ an
∴ 数列an不成AP 但从第2项起成AP。
知识点:
1、等差数列的前项和的公式:①;②.
2、等差数列的前项和的性质:①若项数为,则,且,.
②若项数为,则,且,(其中,).
同步练习:
1、首项为的等差数列的前项和为,则与的关系是()
A.
B.
C.
D.
2、已知等差数列,,则等于()
A.
B.
C.
D.
3、已知等差数列满足,且,则其前项之和为()
A.
B.
C.
D.
4、等差数列中,…,…,则为()
A.
B.
C.
D.
5、已知等差数列的首项为,公差是整数,从第项开始为负值,则公差为()
A.
B.
C.
D.
6、若等差数列共有项,且奇数项的和为,偶数项的和为,则项数为()
A.
B.
C.
D.
7、等差数列中,它的前项的平均值为,若从中抽去一项,余下的项的平均值为,则抽去的是()
A.
B.
C.
D.
8、已知数列的通项公式为,则的前项和等于()
A.
B.
C.
D.
9、一个等差数列共项,其中奇数项的和为,偶数项的和为,则第项是()
A.
B.
C.
D.
10、在等差数列中,公差,首项,如果这个数列的前项的和,则应是()
A.
B.
C.
D.
11、在等差数列中,若,是数列的前项和,则的值为()
A.
B.
C.
D.
12、已知某等差数列共有项,其奇数项之和为,偶数项之和为,则公差为()
A.
B.
C.
D.
13、等差数列中,,则此数列前项和等于()
A.
B.
C.
D.
14、设数列是等差数列,且,是数列的前项和,则()
A.
B.
C.
D.
15、设是等差数列的前项和,若,则()
A.
B.
C.
D.
16、在等差数列中,已知,则等于()
A.
B.
C.
D.
17、等差数列的前项和为,当,变化时,若是一个定值,那么下列各数中也为定值的是()
A.
B.
C.
D.
18、在等差数列中,、是方程的两个根,则是()
A.
B.
C.
D.
19、在等差数列中,,则此数列前项和等于()
A.
B.
C.
D.
20、已知数列的通项为,若要使此数列的前项和最大,则的值为()
A.
B.
C.或
D.
21、数列的前项和,则它的通项公式是()
A.
B.
C.
D.
22、在数列中,,且它的通项公式是关于自然数的一次函数,则它的前项的和为_________.
23、在等差数列中,,则________.
24、在等差数列中,,则_______.
25、若一个等差数列前项的和为,最后项的和为,且所有项的和为,则这个数列有________项.
26、设为等差数列的前项和,,则___________.
27、设等差数列的前项和,若,则公差为________(用数字作答).
28、求下列数列中的前项和:
①,;②,;③,.
29、在等差数列中,若,求该数列前项和.
30、在等差数列中,已知,公差,求.
一、对于等差数列{an}中, 任意两项an、am的关系都有如下关系:an=am+ (n-m) d或am=an+ (m-n) d【例1】 {an}为等差数列, 已知a5=10, a3=6, 求{an}的通项公式.解法一:根据等差数列的定义 ,
∵ an=a1+ (n-1) d,
∴a5=a1+4d=10, a3=a1+2d=6,
解得a1=2, d=2.
∴ an=a1+ (n-1) d=2 +2 (n-1 ) =2n.
解法二:由等差数列性质可得,
an=am+ (n-m) d, ∵ n=5, m=3,
∴a5=a3+2d.
而a5=10, a3=6,
∴2d=4, d=2.
∴an=a5+ (n-5) d=10+2 (n-5) =2n .
第二种方法运用了等差数列的性质, 解题过程简洁明了.
二、对于等差数列{an}来说, 如果m+n=p+q (m、n、p、q都是正整数) , 那么就有am+an=ap+aq【例2】 {an}为等差数列, 已知a3=5, a17=33, 求S19.解法一:根据题意可得:
a3=a1+2d=5, ①
a17=a1+16d=33, ②
由②-①得14d=28, d=2, a1=1 .
∵Sn=na1+n (n-1) d÷2,
∴S19=19a1+19 (19-1) d÷2
=19×1+19×18×2÷2
=19+342=361.
解法二:∵{an}为等差数列, ∴Sn=n (a1+an) ÷2.
∵a3 +a17=a1+a19=38,
∴S19=19 (a1+a19) ÷2=19 (a3+a17) ÷2=19 (5+33) ÷2=19×19=361.
很显然解法二非常快捷, 计算量小.
三、{an}为等比数列, Sm为其前m项和, 则Sm, S2m-Sm, S3m-S2m也成等比数列【例3】 已知等比数列{an}的前m项和Sm=30, 前2m项的和S2m=510, 求S3m.解法一:根据判断得知公比q≠1,
则Sm=a1 (1-qm) ÷ (1-q) =30.
S2m=a1 (1-q2m) ÷ (1-q) =510.
②÷①:1+qm=17, 则qm=16.
由①和qm=16可得:a1÷ (1- q) =-2,
因此S3m=a1 (1-q3m) ÷ (1-q)
=a1 (1-qm) (1+qm+q2m) ÷ (1-q)
=-2× (1-16) (1+16+256)
=8190.
解法二:∵{an}是等比数列,
∴Sm, S2m-Sm, S3m-S2m,
即30, 510-30, S3m-510也成等比数列.
∴ (S3m-S2m) ÷ (S2m-Sm) = (S2m-Sm) ÷Sm,
即30 (S3m-510) =230400 ,
∴S3m-510=7680,
即S3m=8190.
两种解法一对照, 第二种方法就显得简便多了.
一、函数思想
利用函数的有关性质,解决数列的有关问题.即以运动和变化的观点,分析数列问题的数量关系,建立函数关系,运用函数的图象和性质求解,从而使问题获得解决.
例1 设等差数列{an}的前n项和Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1,S2,…,S12中哪一个值最大?并说明理由.
分析 对于(1)可考虑由S12>0,S13<0建立关于d的不等式组,然后求解;对于(2),由已知条件可知Sn是n的二次函数,转化为求二次函数的最值问题.
解 (1)由a3=a1+2d=12,得a1=12-2d.∴S12=12a1+66d=144+42d>0,S13=13a1+78d=156+52d<0.解得-247 (2)∵Sn=na1+12n(n-1)d=12dn2+12-52dn,而d<0,∴Sn是n的二次函数,其对称轴方程为52-12d.∵-247 评注 对于等差数列有Sn=an2+bn,一般可利用二次函数求解;对于等比数列有Sn=a1(1-qn)1-q=aqn+b(q≠1),一般可利用指数函数求解. 二、归纳思想 在解决某一数学问题时,如果采用不完全归纳法或完全归纳法来做,我们就称这两种思想方法为归纳的数学思想方法.归纳思想方法是数列解题的重要思想方法之一. 例4 设数列{an}的前n项和Sn与an的关系是Sn=-ban+1-1(1+b)n. (1)求an与an-1的关系; (2)写出用n和b表示an的关系式. 分析 (1)利用an=Sn-Sn-1求an与an-1的关系;(2)利用(1)的结果,分别计算当n=1,2,3,时的值,归纳、猜想an的关系式. 解 (1)∵Sn=-ban+1-1(1+b)n,① ∴Sn-1=-ban-1+1-1(1+b)n-1.(n≥2)② ①-②得an=Sn-Sn-1=ban-1-ban+1(1+b)n-1-1(1+b)n. ∴an=bb+1an-1+b(1+b)n+1.(n≥2)③ (2)当n=1时,a1=S1=-ba1+1-11+b, ∴a1=b(1+b)2;由③式,得a2=b1+b•b(1+b)2+b(1+b)3=b+b2(1+b)3;a3=b1+b•b+b2(1+b)3+b(1+b)4=b+b2+b3(1+b)4;……; 猜想an=b+b2+…+bn(1+b)n+1.④ (理科附加题) 用数学归纳法证明猜想④成立. (Ⅰ)当n=1时,a1=b(1+b)2,即④式成立; (Ⅱ)假设n=k时,④式成立,即ak=b+b2+…+bk(1+b)k+1; 当n=k+1时,由③式,得ak+1=b1+bak+b(1+b)k+2=b1+b•b+b2+……+bk(1+b)k+1+b(1+b)k+2=b+b2+…+bk+1(1+b)(k+1)+1.∴当n=k+1时,④式成立. 由(Ⅰ)和(Ⅱ)可知,对一切正整数n,④式都成立,即通项公式为an=b+b2+…+bn(1+b)n+1=n2n+1(b=1)b-bn+1(1-b)(1+b)n+1(b≠1). 评注 这里先求得数列的前三项,由前三项的规律用不完全归纳法猜想出通项,然后再用数学归纳法证明猜想的正确性,这是运用归纳思想方法的全过程. 三、方程思想 在解数列问题时,经过一系列的数学变换把数列问题化为方程问题,并运用方程的有关性质求解,进而使问题得到解决. 例5 已知数列{cn},其中cn=2n+3n,且数列{cn+1-pcn}为等比数列,求常数p. 分析:利用{cn+1-pcn}为等比数列这一条件列出方程,从方程中就可求出常数p的值. 解 设Rn=cn+1-pcn=2n(2-p)+3n(3-p),由{cn+1-pcn}为等比数列,由题意,得R2n=Rn-1•Rn+1 ∴2n-1•3n-1(2-p)(3-p)[2×3×2-32-22]=0, ∴(2-p)(3-p)=0,解得p=2或p=3. 评注 此题用方程的思想方法求解,思路清晰、过程简捷.当然,此题还可以由Rn+1Rn为与n无关的常数,确定p的值.或由R1,R2,R3为等比数列求出P的值,然后验证即可. 四、数形结合思想 数列的通项公式和前n项和公式可以看做关于正数n的函数,因此可以借助函数与图象的关系,利用“图形”讨论数列问题. 例6 已知{an}是等差数列,an>0,且公差d≠0;{bn}是等比数列,bn>0,且公比q>1. (1)若a1=b1,a2n+1=b2n+1,请比较an+1与bn+1的大小,并证明你的结论. 图1-1图1-2 (2)若a1=b1,a2=b2,当n>2时,请比较an+1与bn+1的大小,并证明你的结论. 分析 由数列的通项公式,知等差数列{an}满足an=nd+(a1-d),所以点(n,an)都在同一直线上,等比数列{bn}满足bn=b1qqn,所以点(n,bn)都在一“指数函数型”图象上.借助函数图象讨论数列项之间的大小关系. 解 因为等差数列满足an>0,所以d>0,即{an}是单调递增数列;因为bn>0,且公比q>1,所以{bn}也是单调递增数列.根据(1)可得图1-1,此时an+1>bn+1;由(2)可得图1-2,此时an+1 (1)由a2n+1=b2n+1,得a1+2nd=b1q2n,nd=12(b1q2n-a1).an+1-bn+1=a1+nd-b1qn=a1+12(b1q2n-a1)-b1qn=a12(q2n-2qn+1)=a12(qn-1)2>0,所以an+1>bn+1. (2)由a1=b1,a2=b2,可得a1+d=b1q,d=a1(q-1).bn+1-an+1=b1qn-a1-nd=a1qn-a1-na1(q-1)=a1[(qn-1)-n(q-1)],因为1+q+q2+…+qn-1=1-qn1-q,所以qn-1=(q-1)(1+q+q2+…+qn-1).所以bn+1-an+1=a1[(q-1)(1+q+q2+…+qn-1)-n(q-1)]=a1(q-1)(1+q+q2+…+qn-1-n).因为q>1,所以qi>1(i=0,1,2,…,n-1).所以1+q+q2+…+qn-1>1+1+…+1=n.所以bn+1-an+1>0,即bn+1>an+1. 评注 本题是先利用函数的图象判断出an+1和bn+1的关系,得到结论后,给出证明. 一、填空: 1、若x=1,则x+= 。 2、平方等于1/16的数是 ,立方等于-27的数是 ,立方后是本身的数有 。 3、当n为奇数时,1+(-1)n= 当n为偶数时,1+(-1)n= 。 4、若︳a-1 ︳+(b+2)2= 0,那么(a+b)2005+a= 。 5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为 升。 6、由四舍五入得到的近似数0.8080有 个有效数字,分别是 ,它精确到 位。 7、3.16106原数为 ,精确到 位。 8、写出3,-9,27,-81,243,这行数的第n个数 。 二、选择: 1、若规定ab=(a+1)b,则13的值为( ) (A)1(B)3(C)6(D)8 2、(-2)11+(-2)10的值是( ) (A)-2 (B)(-2)21 (C)0 (D)-210 3、下列语句中,正确的.个数是( ) ①任何小于1的有理数都大于它的平方 ②没有平方得-9的数 ③若a﹥b,则a2﹥b2 ④(m+1)2是非负数 ⑤大于0且小于1的有理数的立方一定不大于原数 ⑥大于-1且小于0的有理数的立方一定大于原数 (A)1个(B)2个(C)3个(D)4个 4、据国家统计局公布的我国第五次人口普查数据,我国现有人口12.95亿,那么这个数据(保留三个有效数字)用科学记数法表示为( ) (A)12.95108 (B)12.9109 (C)1.295109 (D)1.30109 5、用四舍五入法保留三个有效数字得到的近似值是2.15104,则原数可能是( ) (A)215600 (B)21480 (C)21420 (D)21570 三、计算: 1、-72+2(-3)2+(-6)(-1/3)2 2、-14-(1-0.5)3[2-(-32)] 3、-1-{(-3)3-[3+0.4(-1.5)](-2)} 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。 定理1 若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1.w.w.w.k.s.5.u.c.o.m 定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=n(a1an)n(n1)na1d;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,22则an+am=ap+aq;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3 等比数列,若对任意的正整数n,都有 an1q,则{an}称为等比数列,q叫做公比。ana1(1qn)定理3 等比数列的性质:1)an=a1q;2)前n项和Sn,当q1时,Sn=;当 1qn-1q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq。 定义4 极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作limanA.n定义5 无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为 a1(由极限的定义可得)。1q定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βxn=(c1n+c2)αn- 1n-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 例2 已知数列{an}满足a1= 例3 设0 2迭代法。 数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+ 11,a1+a2+…+an=n2an, n≥1,求通项an.21,求证:对任意n∈N+,有an>1.an或n-1等,这种办法通常称迭代或递推。 例4 数列{an}满足an+pan-1+qan-2=0, n≥3,q0,求证:存在常数c,使得22nan1pan1·an+qancq0.2例5 已知a1=0, an+1=5an+24an1,求证:an都是整数,n∈N+.3.数列求和法。 数列求和法主要有倒写相加、裂项求和法、错项相消法等。例6 已知an= 例7 求和:Sn 例8 已知数列{an}满足a1=a2=1,an+2=an+1+an, Sn为数列 4.特征方程法。 例9 已知数列{an}满足a1=3, a2=6, an+2=4n+1-4an,求an.1(n=1, 2, …),求S99=a1+a2+…+a99.4n2100111+…+.n(n1)(n2)123234an的前n项和,求证:Sn<2。n2 例10 已知数列{an}满足a1=3, a2=6, an+2=2an+1+3an,求通项an.5.构造等差或等比数列。 例11 正数列a0,a1,…,an,…满足anan2 2xn2例12 已知数列{xn}满足x1=2, xn+1=,n∈N+, 求通项。 2xnan1an2=2an-1(n≥2)且a0=a1=1,求通项。 三、基础训练题 1. 数列{xn}满足x1=2, xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.2.数列{xn}满足x1= 2xn1,xn+1=,则{xn}的通项xn=_________.3xn223.数列{xn}满足x1=1,xn= 1xn1+2n-1(n≥2),则{xn}的通项xn=_________.24.等差数列{an}满足3a8=5a13,且a1>0, Sn为前n项之和,则当Sn最大时,n=_________.5.等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.6.数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,则S100=_________.7.数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.8.若 x3xnx1x2,并且x1+x2+…+ xn=8,则x1=_________.x11x23x35xn2n1Sna2n,则limn=_________.nb3n1Tnn9.等差数列{an},{bn}的前n项和分别为Sn和Tn,若 2007n2n110.若n!=n(n-1)…2·1, 则(1)=_________.n!n1n11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求1的通项。ann12.已知数列{an}是公差不为零的等差数列,数列{ab}是公比为q的等比数列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)数列{bn}的前n项和Sn。 四、高考水平训练题 1x21.已知函数f(x)=2x1x1则a2006=_____________.1x271+ x1,若数列{an}满足a1=,an+1=f(an)(n∈N),32(x1)2.已知数列{an}满足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=1(n1)(n2).3.若an=n2+n, 且{an}是递增数列,则实数的取值范围是__________.4.设正项等比数列{an}的首项a1=an=_____________.1, 前n项和为Sn, 且210S30-(210+1)S20+S10=0,则23n15.已知limn1,则a的取值范围是______________.n3(a1)n36.数列{an}满足an+1=3an+n(n ∈N+),存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。7.已知ann401n402(n ∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________.8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.9.设{an}是由正数组成的数列,对于所有自然数n, an与2的等差中项等于Sn与2的等比中项,则an=____________.10.在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是 11111(n≥2)①恒成立。a1a2a2a3a3a4anan1a1an112.已知数列{an}和{bn}中有an=an-1bn, bn= bn1(n≥2), 当a1=p, b1=q(p>0, q>0)且p+q=1时,21an1an;(3)求数列limbn.nan1(1)求证:an>0, bn>0且an+bn=1(n∈N);(2)求证:an+1=13.是否存在常数a, b, c,使题设等式 1·22+2·32+…+n·(n+1)2= n(n1) 2(an+bn+c)12对于一切自然数n都成立?证明你的结论。 五、联赛一试水平训练题 1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。2.设数列{xn}满足x1=1, xn= 4xn12,则通项xn=__________.2xn17253.设数列{an}满足a1=3, an>0,且3anan1,则通项an=__________.4.已知数列a0, a1, a2, …, an, …满足关系式(3-an+1)·(6+an)=18,且a0=3,则ai0n1i=__________.5.等比数列a+log23, a+log43, a+log83的公比为=__________.6.各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.7.数列{an}满足a1=2, a2=6, 且 an2an=2,则 an11lima1a2ann2n________.8.数列{an} 称为等差比数列,当且仅当此数列满足a0=0, {an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.an9.设h∈N+,数列{an}定义为:a0=1, an+1=2ahn在大于0的整数n,使得an=1? an为偶数an为奇数。问:对于怎样的h,存10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。 11.求证:存在唯一的正整数数列a1,a2,…,使得 a1=1, a2>1, an+1(an+1-1)= anan23anan2111.六、联赛二试水平训练题 1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,….2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1;②|ai-ai+1|≤2, i=1,2,…,n-1。试问f(2007)能否被3整除? 3.设数列{an}和{bn}满足a0=1,b0=0,且 an17an6bn3, bn18an7bn4,n0,1,2,.求证:an(n=0,1,2,…)是完全平方数。 4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1 x1x2xn均成立; 22x0xnx121<4对任一n均成立。(2)寻求这样的一个数列使不等式 x1x2xn5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项? 2(12an2)an116.设a1=a2=,且当n=3,4,5,…时,an=, 222an14an2an1an23(ⅰ)求数列{an}的通项公式;(ⅱ)求证: 12是整数的平方。an7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。 8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥数学数列复习试题 篇9
数学竞赛教案讲义——数列 篇10