抽屉原理基础题(精选10篇)
1.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少多少学生中一定有两人所借的图书属于同一种。
答:从三种图书中任意借两本有6种借法。6+1=7,由抽屉原理可知,至少7个学生种有两人所借图书种类完全相同。
2.礼堂里有253人开会,这253人中至少有多少人的属相相同? 答:22人
3.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。(A)46
(B)24
(C)23
(D)1 答:选A。
由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。
4.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
(A)3
(B)4
(C)5
(D)6 答:选C。
要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。
5.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
(A)4
(B)5
(C)6
(D)7 答:选C。
考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。
提高班
1.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。答:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。
2.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。(A)46
(B)24
(C)23
(D)1
答:选A。
由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。
3.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
(A)3
(B)4
(C)5
(D)6 答:选C。
要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。
4.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
(A)4
(B)5
(C)6
(D)7 答:选C。
考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。
5.在边长为2厘米的正方形中至少放入几个点,可以保证其中必定有三个点,使得以它们为顶点的三角形的面积不大于0.5平方厘米。答:将大正方形分成四个以1厘米为边长的小正方形。要使得存在一个三角形的面积不超过0.5平方厘米,只要保证存在三个点在小正方形的内部或小正方形的边上,因此,根据抽屉原理,至少需要 2419个点。
精英班
1.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。答:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100 2.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。
(A)46
(B)24
(C)23
(D)1 答:选A。
由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。
3.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
(A)3
(B)4
(C)5
(D)6
答:选C。
要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。
4.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
(A)4
(B)5
(C)6
(D)7 答:选C。
考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。
5.在边长为2厘米的正方形中至少放入几个点,可以保证其中必定有三个点,使得以它们为顶点的三角形的面积不大于0.5平方厘米。答:将大正方形分成四个以1厘米为边长的小正方形。要使得存在一个三角形的面积不超过0.5平方厘米,只要保证存在三个点在小正方形的内部或小正方形的边上,因此,根据抽屉原理,至少需要2419个点。
6.证明:在任意的n个人中,至少有2个人,他们在这n个人中认识的人数相等。
胡家营学区 霍卫国
【教学内容】
《人教版教科书·数学》六年级下册第70、71页。
【教学目标】
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】
课件、水杯、吸管、作业纸。【教学过程】
一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)
师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。师:开始。
师:都坐下了吗? 生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗? 生:对!
师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?
二、通过操作,探究新知 教学例1 出示题目:有3支吸管,2个盒子,把3支吸管放进2个盒子里,有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)
师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支吸管放进2个盒子里呢?
生:不管怎么放,总有一个盒子里至少有2支吸管?
是:是这样吗?谁还有这样的发现,再说一说。同桌互相说一说。
师:那么,把4支吸管放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)
师:谁来展示一下你摆放的情况?根据学生摆的情况,师板书各种情况。(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗? 生:没有了。
师:你能发现什么?
生:不管怎么放,总有一个盒子里至少有2支吸管。
师:“总有”是什么意思? 生:一定有 师:“至少”有2支什么意思?
生:不少于两只,可能是2支,也可能是多于2支? 师:就是不少于2支。(通过操作让学生充分体验感受)
师:把3支吸管放进2个盒子里,和把4支吸管放进3个盒子里,不管怎么放,总有一个盒子里至少有2支吸管。这是我们通过一一列举发现了这个结论。我们能不能找到一种更为直接的方法,也能得到这个结论呢? 学生思考——组内交流——汇报
师:哪一组同学能把你们的想法汇报一下?
组1生:我们发现如果每个盒子里放1枝铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支吸管。
师:你能结合操作给大家演示一遍吗?(学生操作演示)师:这种分法,实际就是先怎么分的? 生众:平均分
师:为什么要先平均分?(组织学生讨论)
生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 师:同意吗?
师:哪位同学能把你的想法算式表达出来?
生: 4÷ 3=1……1 不管怎么放,总有一个盒子里至少有2枝铅笔。师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把7枝笔放进6个盒子里呢? 把8枝笔放进7个盒子里呢?
把100枝笔放进99个盒子里呢?„„
生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:这么大是数同学们很快就能得出结论。如果铅笔数比盒子数不是多一,会出现什么情况呢?
出示题目:把5支铅笔放进3个杯子呢?
(留给学生思考的空间,师巡视了解各种情况)学生汇报。
总结:只要铅笔数是杯子数的一倍多不超过两倍,无论怎么放总有一个杯子里的铅笔至少有2支。师:再多呢?
把5支铅笔放进2个杯子里呢?(小组讨论 指明同学演示并汇报)教师总结,也是用平均分的思想。把7支铅笔放进3个杯子里呢?
把15支铅笔放进4个杯子里呢?
学生小组探究并汇报。教师点评,引导学生总结规律。
商+1
这节课我们学习的就是课本中70和71页的内容。打开书结合我们今天研究的内容把书好好的看一下。(教师巡视)
师:我们今天用小棒和杯子研究的这一类的问题呢,最早把一些物品放进抽屉里来研究的所以称为“抽屉原理”,用它可以解决许多有趣的问题,下面我们应用这一原理解决问题。
课堂练习70、71页“做一做”。(独立完成,交流反馈)
三、拓展提升(教师点拨,课下思考)
一副扑克牌,去掉了两张王牌,还剩52张,任意抽出5张,同种花色的至少有几张?为什么?
【教学目标】
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教学准备】
1、教学ppt课件
2、铅笔120支(小棒代替),笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。
【教学流程】
一、问题引入。
师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5位同学上来。1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。
2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗?
(游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。)
3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
4、明确学习目标与任务:
师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法)课件出示学习目标与要求
1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2)通过实验操作、自主探究、小组合作发现抽屉原理。3)感受数学文化的魅力,提高对数学的兴趣。
二、探究新知
(一)教学例1
为了研究这个原理,我们做一组实验。
1、观察猜测
课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放进 ____支铅笔。
猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。师:你会用实验证明你的猜想吗?
2、小组合作:
课件出示:把4支铅笔放进3个文具中盒中,可以怎样放? 有几种不同的放法? 提出实验要求:我们以小组为单位实际放放看,一人负责操作,其他人用笔将不同的放法记录下来。(师巡视,了解情况,个别指导)
3、交流汇报
师:你们摆好了吗?共有几种摆法?(学生说)
学生汇报:小组代表汇报,老师利用电脑进行了模拟实验演示,课件出示各种摆法:(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗? 生:没有了。
4、说结论:
师:观察这四种分法,在每一种放法中,有几支铅笔放进了同一个文具盒?
生:答:第一种摆法有4支铅笔放进同一个文具盒中;第二种摆法有3支铅笔放进同一个文具盒中;第三种摆法有2支铅笔放进同一个文具盒中;第四种摆法有2支铅笔放进同一个文具盒中;
师:: 我们综合这4种摆法,你们能发现什么规律?(学生说)师:谁能再说一遍?谁还想说?
引导学生说:不管怎么放,总有一个盒子里至少有2枝铅笔。(课件出示)教师板书:老师把同学们的发现记录下来,(板书): 铅笔 文具盒 总有一个文具盒至少放进 4 3 2 5、教师重点强调:“总有、至少”
师:老师为什么要强调“总有、至少”呢?“总有”是什么意思? 生:一定有,总会有(强调存在性)师:“至少”有2枝什么意思?
生:不少于两只,可能是2枝,也可能是多于2枝?
师:就是不能少于2枝。(通过4种摆法让学生充分体验感受)
师小结:看来,不管怎么放,总有一个文具盒至少放进2枝铅笔。这是我们通过实际操作,采用一一列举的方法得到的结论。
6、教学平均分方法
A、老师提出质疑:假如是6支铅笔放进5个文具盒,或者是10支铅笔放进9个文具盒,甚至是100支铅笔放进99个文具盒,结果会怎么样?你还会用一一列举的方法去证明吗?(学生思考)那有没有一种既简单又快捷的方法呢?
B 引导观察:师:请同学们观察这4种分法,哪种摆法最能体现“至少有2支铅笔放进同一个文具盒”这个结论呢?(摆法4)
师:它是怎样分的呢?我们再看一遍摆的过程。C 课件演示平均分的过程并引导学生思考:
1、它是怎样分的?(平均分)
为什么只用平均分一种方法就能证明“总有1个文具盒至少放入2支铅笔”?
2、你能用平均分的方法解释刚才的结论吗? 学生思考——组内交流-----汇报.引导学生说:如果每个文具盒放进1支,最多放进3支.剩下的1支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支笔)师:谁能再说一遍?谁还想说?(课件出示)
D 谁会用算术表示刚才平均分的过程?教师板书:4÷3=1„„1
7、引导发现原理1:
刚才我们学习了一一列举的方法,而且还学习了用平均分的方法证明了“把4支铅笔放进3个文具盒中,总有一个文具盒至少放进2支铅笔”这个结论。下面我们看到一组练习。①尝试练习(课件)如果把6支铅笔放到5个文具盒中,总有一个文具盒至少放进()支笔? 如果把10支铅笔放到9个文具盒中,总有一个文具盒至少放进()支笔? 如果把100支铅笔放到99个文具盒中,总有一个文具盒至少放进()支笔? 你会用算术解释吗?教师板书 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 ②课堂小结:通过刚才的学习你发现什么规律?(多指几名学生回答)
引导学生归纳出:只要放的铅笔数比文具盒的盒数多1,总有一个文具盒里至少放进2支铅笔。
师:你同意他的说法吗?谁还想说?
③师:如果把文具盒看做抽屉,铅笔看做被分配的物体,那刚才的规律还可以另外一种表达(课件出示):如果物体数比抽屉数大1,不管怎么放,总有一个抽屉至少放入2个物体。(学生读一遍)
8、师:你能用抽屉原理解释刚才的抢凳子游戏吗?什么是被分物体?什么是抽屉?
(二)教学例2
如果物体数比抽屉数多
2、多
3、多4„„又会出现什么结果呢?
1、出示例题(PPT):把5支铅笔放进3个文具盒,不管怎么放总有1个文具盒里至少放多少支铅笔?为什么?
2、学生猜想结论:
3、师:你们猜想的对吗?我们看看电脑模拟实验的过程,(电脑演示平均分的过程)师:你能解释为什么吗?
4、汇报(演示)并解释发现的结论。
A解释并汇报:如果每个文具盒放进1支,最多放进3支.剩下的2支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支铅笔)
B教师板书:老师把同学们的发现记录下来,板书:5 3 2
5、算术怎样列?5÷3=1———2
6、尝试练习
1、如果7支铅笔放进4个文具盒中,至少有()支铅笔放进同一个文具盒中?
2、如果9支铅笔放进4个文具盒中,会有什么结果? 3、15支呢?
4、你能用算术表示吗?
7、学生做题汇报,教师板书 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4
8、总结规律,发现原理2 师:我们研究到这了,看看有什么规律? 学生汇报:
学情预设①:“商+余数”和“商+1”两种情况:师:验证一下,看看到底是商+1还是+余数?
学情预设②:意见统一为“商+1”:师:为什么不管余几都是商+1呢?)
总结:课件出示:如果物体数比抽屉数 大一些,不管怎么放,总有一个抽屉至少放入(商+1)个物体。
(如果有学生提出没有余数的情况,可以让学生举例子验证,说明这个结论的前提是“有余数”)
三、巩固运用解决问题
应用原理能不能解决一些实际问题?下面准备了一组闯关练习,如果闯关成功,那同学们就会得到一个神秘礼物哦!想不想试试?有信心吗?
1、闯关1:7只鸽子飞回5 个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?
2、神秘礼物:机器猫小叮当
3、闯关2:8只鸽子飞回3个鸽舍里,至少有()只鸽子要飞进同一个鸽舍里?为什么?
4神秘礼物:扑克牌游戏
一幅扑克,拿走大、小王后还有52张牌,请你任意抽出其中的5张牌,那么你可以发现什么?为什么? ①师与生配合做
教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。②学生试着解释。5闯关3:智慧城堡
在我们班的任意13人中,总有至少()人的属相相同,想一想,为什么?
1.学生猜想 2.学生试着说理
3.式子表示:13÷12 = 1„„1 1+1 = 2(名)
6、神秘礼物:名言警句“聪明出于勤奋,天才在于积累”。
——华罗庚
7、闯关4:智慧城堡
1.会昌小学在“感恩教师,送祝福”活动中,为每位过生日教师订了一份生日蛋糕。请问154名教师中至少有()名教师的生日是在同一个月份? 2.学生猜想 3.学生试着说理
4.式子表示154÷12=12„„10 12+1=13(人)
8、神秘礼物:喜羊羊与灰太狼
9、闯关5思维拓展
如果要保证至少有2名教师生日是在同一天,那至少要有()名教师?
10、介绍数学知识:(课件出示“你知道吗“)
四、课堂小结:通过今天的学习你有什么收获?
五、作业训练
要求学生完成练习册练习。
六、板书设计: 抽屉原理
(物体数)(抽屉数)至少数 铅笔 文具盒 总有一个文具盒至少放进(商+1)÷ 3 = 1„„ 1 2 6 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 5 ÷ 3 = 1„„2 2 7 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4
+余数)(商 用式子表示为:
物体数÷抽屉数=商„ „余数
至少数=商+1(注意:不是商+余数)
七、设计思路
数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题。
1、经历“数学化”的过程。
“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。
2、用具体的操作,将抽象变为直观。
“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。
3、注重建模思想的渗透。
本节课的教学,有意识地培养学生的“模型”思想,让学生理解“抽屉问题”的“一般化模型”。在学生自主探索的基础上,教师引导学生对两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题;在学生解决了“4枝铅笔放进3个文具盒”的问题后,继续思考,类推,得出一般性的结论。这样设计,提升了学生的思维,发展了学生的能力。
4、注重调动学生的积极性。
兴趣是最好的老师,是调动学生积极探究知识的动力,学生感兴趣就会很积极地参与到学习中来,反之他们则会不予理睬。对于“抽屉原理”的学习,学生以前并没有接触过,学生以前理解数学问题全都是由数量和数量关系组成,解决问题时基本上是用算术和几何知识,极少用到推理的知识。所以,教学中激发学生学习的兴趣犹为重要。本节课中,教师从学生已有的知识经验出发,从简单的物体入手,鼓励学生大胆思考,积极交流、讨论等,给学生创设了一个和谐的学习环境,使学生在轻松愉快中学习数学,并在数学学习中享受着快乐。
5、体现“学生为主体,教师为主导”的新教学理念。
教师不是学生学习的指挥者,而是学生学习活动的伙伴。教学中学生是学习的主体,教师只是与学生共同探索、共同研究,与学生一起解决问题、构建模型,让学生在问题中 “学”和“悟”。
6、精选学生身边感兴趣的素材。
例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解 从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。
原则2 如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则1相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原则1可看作原则2的物例(m=1)
例2 正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色。例3 把1到10的自然数摆成一个圆圈,证明一定存在在个相邻的数,它们的和数大于17.证明 如图12-1,设a1,a2,a3,„,a9,a10分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是(a1,a2,a3),(a2,a3,a4),(a3,a4,a5),„,(a9,a10,a1),(a10,a1,a2)共十组.现把它们看作十个抽屉,每个抽屉的物体数是
a1+a2+a3,a2+a3+a4,a3+a4+a5,„a9+a10+a1,a10+a1+a2, 由于(a1+a2+a3)+(a2+a3+a4)+„+(a9+a10+a1)+(a10+a1+a2)=3(a1+a2+„+a9+a10)=3×(1+2+„+9+10)
――根据原则2,至少有一个括号内的三数和不少于17,即至少有三个相邻的数的和不小于17.原则
1、原则2可归结到更一般形式:
原则3 把m1+m2+„+mn+k(k≥1)个物体放入n个抽屉里,那么或在第一个抽屉里至少放入m1+1个物体,或在第二个抽屉里至少放入m2+1个物体,„„,或在第n个抽屉里至少放入mn+1个物体。
证明
假定第一个抽屉放入物体的数不超过m1个,第二个抽屉放入物体的数不超过m2个,„„,第n个抽屉放入物体的个数不超过mn,那么放入所有抽屉的物体总数不超过m1+m2+„+mn个,与题设矛盾。
例4 有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双。
证明 除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双。
上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少。2.制造抽屉是运用原则的一大关键
首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.例5 在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形).证明
如图12-2把正方形分成四个相同的小正方形。因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的。
事实上,由于解决问题的核心在于将正方形分割成四个面积相等的部分,所以还可以把正方形按图12-3(此处无图)所示的形式分割.合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.例6 在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么?
解 如图12-4(设挂牌的三棵树依次为a、b、c.ab=a,bc=b,若a、b中有一为偶数,命题得证.否则a、b均为奇数,则ac=a+b为偶数,命题得证.换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,由于树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法。
例7 从自然数1,2,3,„99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.分析设法制造抽屉:(1)不超过50个;(2)每个抽屉的里的数(除仅有的一个外),其中一个数是另一个数的倍数,一个自然数的想法是从数的质因数表示形式入手.解 设第一个抽屉里放进数:1,1×2,1×22,1×23,1×24,1×25,1×26;第二个抽屉时放进数:3,3×2,3×22,3×23,3×24,3×25;第三个抽屉里放进数:5,5×2,5×22,5×23,5×24;„„„„„„第二十五个抽屉里放进数:49,49×2;第二十六个抽屉里放进数:51.„„„„„„第五十个抽屉里放进数:99.那么随意取出51个数中,必有两个数同属一个抽屉,其中一个数是另一个数的倍数.制造抽屉并非总是一帆风顺的,有时要边制造边调整、改进.例8 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析 注意到这些数队以10的余数即个位数字,以0,1,„,9为标准制造10个抽屉,标以[0],[1],„,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.3.较复杂的问题须反复地运用抽屉原则,将复杂问题转化为简单问题.例9 以(x,y,z)表示三元有序整数组,其中x、y、z为整数,试证:在任意七个三元整数组中,至少有两个三元数组,它们的x、y、z元中有两对都是奇数或都是偶数.分析 设七个三元素组为a1(x1,y1,z1)、a2(x2,y2,z2)、„、a7(x7,y7,z7).现在逐步探索,从x元开始,由抽屉原则,x1,x2,„,x7这七个数中,必定有四个数具有相同的奇偶性,不妨设这四个数是x1,x2,x3,x4且为偶数,接着集中考虑a1、a2、a3、a4这四组数的y元,若比如y1,y2,y3,y4中有两个是偶数,则问题已证,否则至多有一个是偶数,比如y4是偶数,这时我们再来集中考虑a1、a2、a3的z元.在z1,z2,z3中,由抽屉原则必有两个数具有相同的奇偶性,如z1、z2,这时无论它们是奇数,还是偶数,问题都已得到证明.下面介绍一个著名问题.例10 任选6人,试证其中必有3人,他们互相认识或都不认识.分析 用a、b、c、d、e、f表示这6个人,首先以a为中心考虑,他与另外五个人b、c、d、e、f只有两种可能的关系:认识或不认识,那么由抽屉原则,他必定与其中某三人认识或不认识,现不妨设a认识b、c、d三人,当b、c、d三人都互不认识时,问题得证;当b、c、d三人中有两人认识,如b、c认识时,则a、b、c互相认识,问题也得证.本例和上例都采用了舍去保留、化繁为简、逐步缩小考虑范围的方法.例11 a,b,c,d为四个任意给定的整数,求证:以下六个差数b-a,c-a,d-a,c-b,d-b,d-c的乘积一定可以被12整除.证明 把这6个差数的乘积记为p,我们必须且只须证明:3与4都可以整除p,以下分两步进行.第一步,把a,b,c,d按以3为除数的余数来分类,这样的类只有三个,故知a,b,c,d中至少有2个除以3的余数相同,例如,不妨设为a,b,这时3可整除b-a,从而3可整除p.第二步,再把a,b,c,d按以4为除数的余数来分类,这种类至多只有四个,如果a,b,c,d中有二数除以4的余数相同,那么与第一步类似,我们立即可作出4可整除p的结论.设a,b,c,d四数除以4的余数不同,由此推知,a,b,c,d之中必有二个奇数(不妨设为a,b),也必有二个偶数(设为c,d),这时b-a为偶数,d-c也是偶数,故4可整除(b-a)(d-c),自然也可得出4可整除p.如果能进一步灵活运用原则,不仅制造抽屉,还根据问题的特征,制造出放进抽屉的物体,则更可收到意想不到的效果.例12 求证:从任意n个自然数a1,a2,„,an中可以找到若干个数,使它们的和是n的倍数.分析:以0,1,„,n-1即被n除的余数分类制造抽屉的合理的,但把什么样的数作为抽屉里的物体呢?扣住“和”,构造下列和数:
s1=a1, s2=a1+a2, s=a1+a2+a3, „„„„ sn=a1+a2+„+an,其中任意两个和数之差仍为和数,若他们之中有一是n的倍数,问题得证;
2、某校六年级有学生367人,请问有没有两个学生的生日是同一天?
3、某校有370名1992年出生的学生,其中至少有2名学生的生日是同一天?为什么?
4、从1、2、3、4……1994、1995个自然数中,至少应选出多少个数才能保证其中必有两个数的差是1000?
5、从八个连续自然数中任意选出五个。证明其中必有两个数的差等于4.6、从2、4、6…..30这15个偶数中任取9个数,证明:其中一定有两个数之和是34.7、一只口袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有2个同色的?
8、某班学生去买语文书、数学书、英语书。买书的情况是:有买一本的、二本的、三本的或四本的。问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?
9、某班学生去买数学书、语文书、美术书、自然书。买书的情形是:有买一本的、二本的、三本的或四本的。问至少去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?
10、布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?
11、一个容器里放着10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛从容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取多少块木块?
12、一副扑克牌共54张,其中1至13点各有4张,还有2张王的扑克牌。至少取出几张牌,才能保证其中必有4张牌的点数相同?
13、某区有小学生13170人,其中一定有几人是同年同月同日生的(小学生年龄为7至13岁)?
14、某班共有46个学生,他们都参加了兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?
六年级数学下册70页、71页例1、例2.
教学目标:
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
教学重点:
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”的一般规律。
教学准备:
相应数量的杯子、铅笔、课件。
教学过程:
一、情景引入
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
二、探究新知
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1
(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
(学生通过操作观察、比较不难发现有与上个问题同样结论。)
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思? “至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)
4、总结规律
师:刚才我们研究的都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?
(1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?
a、先同桌摆一摆,再说一说。
b、你怎么分的?
学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。
三、解决问题
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
师:最后,我们再来玩个游戏,你们都玩过扑克牌吗?一共有几张牌(54),抽出大王和小王还剩几张(52)有几种花色(四种),下面老师请一位同学任愿的抽出5张,不用看,老师就知道,不管怎么抽,至少有2张是同花色的。老师说的对吗?为什么?
反思我的教学过程,有几下几点可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
课前引入部分,我设计有关抽屉原理在生活中运用的问题,使生活问题数学化、数学课堂生活化,让学生在数学课堂中的到发展。在教学中,我采取活动化的数学课堂,使学生在生动、活拨的数学活动中主动参与、主动实践,主动思考,主动探索、主动创造;使学生在数学知识、数学能力、数学思想、数学情感中得到充分的发展,从而让学生从学习中获得自主学习的培养,解题思维的拓展,解题能力的提升。在教学例3时,我采取用课件模拟实验的方式让学生感受实验的过程,把抽象的数学知识运用课件演示出来,从而化难为易,化抽象为具体。并让学生发挥自己的想象空间,组织讨论得出最终的结论。
在本堂课的教学中,我着重培养的学生思考解决问题的过程和思路。要让学生知道发现问题,就要会找办法解决问题。
【教学内容】
义务教育课程标准实验教科书数学六年级下册第70、71页,例
1、例2。
【教学目标】
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过动手操作、画图、推理等活动,使学生会运用多种方法去解决问题。
3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】
每组都有相应数量的笔筒、铅笔。【课前游戏】
师:同学们喜欢做游戏吗?学习新课之前我们先来做个游戏.从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有两张是同花色的。
你们相信吗?
一、导入:
老师为什么能做出准确的判断呢?因为啊,在这个游戏中蕴含着一个有趣的数学原理。
二、动手操作,获取新知:
(一)初步感知
1、教师引导:你们想不想自己通过动手实践来发现它?
每个小组拿出4枝铅笔,把它们放进3个笔筒中,怎么放?有几种方法?你有什么发现吗?(提出要求:在动手操作之前分好工,有操作的,有负责记录的)
2、全班交流:
哪个小组愿意到前边给大家展示一下?
学生展示
观察这四种方法,你有什么发现?
(明确:无论怎么放,总有一个笔筒至少有2枝铅笔)
问:总有是什么意思?至少有两支呢?
全班明确:把4枝铅笔放进3个笔筒中,不管怎么放,总有一个笔筒中至少有2枝铅笔,3、这是列举出所有方法之后得出的结论。我们把这种方法称为“枚举法”(板书)这是数学中常见的一种方法。
4、还有其他方法吗?(假设法)
5、说说你的想法?生说想法
6、师:能用算式表示吗?生说,师板书。质疑:这两个1表示的一样吗?
7、师:如果把5枝铅笔放入4个笔筒里,会出现什么情况? 学生汇报交流
(也存在着总有一个笔筒里至少有2枝铅笔的情况)
师;你们是怎样得出这个结论的?
类推:6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把8枝铅笔放进7个笔筒呢?把9枝铅笔放进8个笔筒呢?
把100枝铅笔放进99个笔筒呢?
把1000枝铅笔放进999个笔筒呢?„„
观察这些算式,你有什么发现?
(铅笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。)
师:还有想说的吗?加深记忆。
8、师:如果铅笔的数量不是比笔筒的数量多1呢?
把5枝铅笔放进3个笔筒,学生可以动手操作,也可以动脑想
汇报交流。学生可能有两种意见:总有一个盒子里至少有2枝;总有一个盒子里至少有3枝。让学生分别说想法。
只有把剩余的2枝分别放进不同的笔筒里,才能保证至少有几枝。
9、师:观察这些算式,你发现了什么?(明确:这些算式中,都是铅笔的数量比笔筒的数量多,商都是1,并且都有余数,说明不论余几,总有一个笔筒中至少有商+1枝铅笔)
(二)深入研究,学习例2
1、师:如果商不是1,还会有这种结论吗?
出示题目:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
学生汇报,展示学生的结论。
2、思考:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把15本书放进4个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、师:同学们发现的这一规律,其实就是一个非常著名的数学原理,也是我们今天研究的“抽屉原理”(板书课题)一起看大屏幕(介绍抽屉原理的相关知识)
4、师:抽屉原理虽然简单,却能解决许多有趣的问题。现在,你能利用这一原理解释课一开始时的扑克牌问题了吗?学生回答
三、应用原理
抽屉原理不仅在数学中应用,在现实生活中也随处可见。你能举出生活中的例子吗?
1、学生举例说明。
2、其实,早在2000多年以前,我国先人就应用过这一原理解决问题,听说过“二桃杀三士”的故事吗?课件播放“二桃杀三士”的故事。
只要你善于观察思考、善于总结概括,相信不久的的将来你也能成为伟大的科学家。
四、畅谈感受,教学结束
通过这节课的活动,你有什么收获和感受?
板书设计:
抽屉原理
4÷3=1……1
5÷2=2……1
7÷2=3……1
15÷4=3……3 物体数÷抽屉数=商……余数
至少数=商+1
抽屉原理
(二)教学目标
1、理解“抽屉原理”的一般形式;采用枚举法及假设法解决抽屉问题,通过分析、推理,理解解决这一类“抽屉问题”的一般规律。
2、经历“抽屉原理”的推理过程,体会比较的学习方法。
3、感受数学与生活的密切联系,激发学习兴趣,培养学生的探究精神。
自主学习
自学内容:课本第71页的例2,练习十二第2、4题。自学要求:边学边记,认真完成“合作探究”。
一、创设情境,引出问题
师:上节课我们学习了抽屉原理例1,我们利用什么方法得出了什么结论?谁能来举例子说明?
生:6个鸽子飞进5个鸽笼,总有一个鸽笼至少飞进2只鸽子为什么? 生:假设先每个鸽笼放一只,还剩下一只不管放进那个笼子里,总有一只鸽笼会飞进2只。6÷5=1(只)…1(只)师:我们得出了什么样的结论呢?
生:只要物体数比抽屉数多1,总有一个抽屉至少放2个物体。
师:同学们说的真好,看来我们的思维已经被激活,可以进入新课的学习了,今天我们继续学习抽屉原理的例2 出示第72页例2的主题图,你获得了哪些信息?
二、引导建构,探究新课
出示合作探究题。
1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
2、3、把7本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
3、把9本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
4、你能用算式表示以上过程吗?你有什么发现?
1、学生思考、讨论、交流;做好汇报的准备;
2、学生汇报;其他学生倾听、补充、质疑、评价等;教师适时补充、点拨、板书等。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本 2个 2本…… 余1本(总有一个抽屉里至有3本书)
7本 2个 3本…… 余1本(总有一个抽屉里至有4本书)9本 2个 4本……
余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?
生1:“总有一个抽屉里的至少有2本”只要用 “商+ 1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们同意吧?
如果有125本书放在2个抽屉里,总有一个抽屉至少有几本书?还能用枚举法吗?
生:用假设法最好
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 观察发现。
师:请同学们看黑板上,2本、3本、4本是怎么得到的呢?
师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
3、归纳整理:
把多于kn个物体任意放进n个空抽屉里,(k 是非0自然数),那么一定有一个抽屉中至少放进
()个物体。
解决“抽屉原理”的步骤是:找出“抽屉数”和“分放的物体数”;物体数÷抽屉数=商……余数;至少数=商+1。
这一原理在解决实际问题中有着广泛的应用。抽屉原理关键的必须知道什么是抽屉,什么是待分的物体。下面我们应用这一原理解决问题。练习反馈,评价反思
目标达成
独立完成后,说出思考过程。1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么?
2、张叔叔参加射击比赛,5次的成绩是41环,那么张叔叔至少一次的成绩不低于9环,为什么?
3、师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
生:2张/因为5÷4=1…1 师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2…1
巩固提升 1、17枝铅笔放进4个文具盒里,至少有一个文具盒放几枝?
2、六年级152人到常青农庄春游,安排捉鱼、攀爬、赶猪入笼三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?
3、幼儿园有80个小朋友,各种玩具有330件。把这些玩具分给小朋友,是否有人会得到5件或5件以上的玩具?
四、全课小结
本节课你学到了什么?
板书: 抽屉原理
不管怎么放,总有一个文具盒至少有2枝铅笔
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
4÷3=1……1
1+1=2
【抽屉原理基础题】推荐阅读:
抽屉原理答案06-09
抽屉原理行测10-11
2024最新小学奥数抽屉原理11-11
小学六年级奥数 抽屉原理(含答案)09-11
《抽屉原理》教学设计与说明(人教新课标六年级下册)09-14
狐狸的抽屉优秀作文07-14
审计学原理判断题06-20
管理学原理论述题10-17
会计学原理基础实验09-18
电大政治学原理填空题06-17