证明直线平行

2024-07-13 版权声明 我要投稿

证明直线平行(推荐11篇)

证明直线平行 篇1

一、知识梳理



1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。

2、直线与平面平行的条件 已知两个不共线向量v1、v2与平面a共面(图(2)),一条直线l的一个方向向量为v1,则由共面向量定理,可得l∥a或l在平面a内存在两个实数x、y,使

v1=xv1+yv2。

3、平面与平面平行的条件 已知两个不共线的向量v1、v2与平面a共面,则由两个平面平行的判定定理与性质得 a∥或a与重合v1∥且v2∥

4、点M在平面ABC内的充要条件

由共面向量定理,我们还可得到:如果A、B、C三点不共线,则点M在平面ABC内的充分

必要条件是,存在一对实数x、y,使向量表达式AMxAByAC成立。

对于空间任意一点O,由上式可得OM(1xy)OAxOByOC,这也是点M位于平

面ABC面内的充要条件。

知识点睛用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意:

(1)若l1、l2的方向向量平行,则包括l1与l2平行和l1与l2重合两种情况。

(2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。

例1:如图3-28,已知正方体ABCD-A′B′C′D′,点M,N

分别是面对角线A′B与面对角线A′C′的中点。

求证:MN∥侧面AD′;MN∥AD′,并且MN=12AD′。

已知正方体ABCD-A′B′C′D′中,点M,N分别是棱BB′与对角线CA′的中点。求证:MN∥BD,MN=

[例2] 在长方体OAEB-O1A1E1B1中,|OA|=3,|OB|=4,|OO1|=2,点P在棱AA1上,且|AP|=2|PA1|,点S在棱BB1上,且|SB1|=2|BS|,点Q、R分别是O1B1、AE的中点,求证:PQ∥RS 12BD。

在正方体AC1中,O,M分别为BD1,D1C1的中点.证明:OM∥BC1.例3] 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.变式应用

3如图所示,已知正方形ABCD和正方形ABEF相交于AB,点M,N分别在AE,BD上,且AM=DN.求证:MN∥平面BCE.堂巩固训练

→=AB→,则点B应为1.设M(5,-1,2),A(4,2,-1),若OM

()

A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)

→2→,则C的坐标是2.已知A(3,-2,4),B(0,5,-1),若OC3

1410A.(2,-,331410B.(-2,-)33

14101410C.(2,-,-)D.(-2,-)3333

3.已知A、B、C三点的坐标分别为A(4,1,3)B(2,-5,1),C(3,7,λ),→⊥AC→,则λ等于()若AB

A.λ=28B.λ=-28

C.λ=14D.λ=-14

证明直线平行 篇2

关键词:高中,数学,平行,等价

在新课标人教B版2.2.3两条直线的位置关系中,学习了两条直线的相交、 平行、重合及垂直这几种位置关系,其中直线方程用一般式表示时平行条件的记忆和理解较为困难,也容易出现错误。在此对于这一点,笔者有几点感悟与大家共同交流。

一、定理的内容

已知两条直线方程为

则l1与l2平行圳A1B2-A2B1=0,而B1C2-B2C1≠0或A1C2-A2C1≠0.

在此等价条件可以改写为:

二、定理的证明

两条直线平行等价于方程组

无解.

下面解方程组:

得:

当A1B2-A2B1=0,B1C2-B2C1≠0时,

则方程组无解;

1×A2-2×A1得:

当A1B2-A2B1=0,A2C1-A1C2≠0时,

则方程组亦无解.

所以方程组无解等价于

探索直线平行的条件 篇3

[问题与情境]

星期天,乐乐和明明来到郊外的一条河边,他们想测量一下他们所处位置的河岸是否平行. 他们各拿来了一个测角仪和两根标杆.请问:就现有的条件,乐乐和明明能否判断河岸是否平行?说说你的方案.

聪明的乐乐想出一个好办法.他是这样做的:通过目测使4个标杆在一条直线上(如图1),4根标杆分别立在A、B、C、D所在的位置. 再用测角仪分别测出∠ABE和∠DCM的大小.若∠ABE + ∠DCM = 180°,则EF∥MN;若∠ABE + ∠DCM ≠ 180°,则EF、MN 不平行.

这里其实用到了直线平行的条件:由∠ABE + ∠DCM = 180°,可得∠EBC + ∠MCB = 180°,从而由“同旁内角互补,两直线平行”判断出河的两岸互相平行.

[开眼界]

1. 同位角、内错角、同旁内角的概念

(1) 同位角:在两条直线a、b的同方向,在第三条直线c的同侧,像这样位置相同的一对角叫做同位角.如图2中,同位角有∠1和∠5、∠2和∠6、∠3和∠7、∠4和∠8.

(2)内错角:在两条直线a、b的内侧,在第三条直线c的两旁,这样的一对角叫做内错角. 如图2中,∠3和∠5、∠4和∠6都是内错角.

(3)同旁内角:在两条直线a、b的内侧,在第三条直线c的同旁,这样的一对角叫做同旁内角. 如图2中,∠4和∠5、∠3和∠6都是同旁内角.

温馨提示: 对于较复杂的图形,一般可采用如下方法区分角的关系.①把相关的一对角的边用其他色笔或粗线条描出,这有助于分辨这对角的关系. ②在图形中构成同位角的基本图形形如字母“F”,如图3(1);构成内错角的基本图形形如字母“Z”或“N”,如图3(2);构成同旁内角的基本图形形如字母“U”,或叫“开口形”,如图3(3).

2. 直线平行的三个基本条件

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,即“同位角相等,两直线平行”. 如图4,若∠1 = ∠5(或∠2 = ∠6或∠3 = ∠7或∠4 = ∠8),则a∥b.

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,即“内错角相等,两直线平行”.如图4,若∠2 = ∠8(或∠3 = ∠5),则a∥b.

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,即“同旁内角互补,两直线平行”. 如图4,若∠2 + ∠5 = 180°(或∠3 + ∠8 = 180°),则a ∥ b.

3. 直线平行的其他条件

(1)平行于同一条直线的两条直线平行.

(2)垂直于同一条直线的两条直线平行.如图5,a⊥c,b⊥c,则a∥b.

[经典例析]

例1如图6,已知直线l1、l2被直线l3所截,若∠1 + ∠4 = 180°,试说明l1∥l2.

点拨:不妨从同位角、内错角、同旁内角三个不同的角度出发进行探索.

解法(1): ∵ ∠1 + ∠4 = 180°,(已知)

∠4 + ∠5 = 180°,(平角定义)

∴ ∠1 = ∠5,(等量代换)

∴ l1∥ l2.(同位角相等,两直线平行)

解法(2): ∵ ∠1 + ∠4 = 180°,(已知)

∠1 + ∠2 = 180°,(平角定义)

∴ ∠2 = ∠4.(等角的补角相等)

∴ l1∥l2.(内错角相等,两直线平行)

解法(3): ∵ ∠1 + ∠4 = 180°,(已知)

∠1 = ∠3,(对顶角相等)

∴ ∠3 + ∠4 = 180°.(等量代换)

∴ l1 ∥ l2.(同旁内角互补,两直线平行)

本例通过从不同的角度证明同位角相等、内错角相等及同旁内角互补来说明两条直线平行,方法灵活,对我们开阔思路、提高解题能力大有裨益.

例2 如图7,已知∠BED = ∠B + ∠D,试说明AB与CD的位置关系.

点拨:由已知条件无法判断AB与CD的位置关系,需构造应用平行线判定方法的条件. 因此,过E作∠BEF = ∠B,则AB∥EF.由已知可得∠FED=∠D,则CD∥EF.由平行公理可得AB∥CD.

解:AB∥CD.理由如下:

过E作∠BEF = ∠B,则AB∥EF.(内错角相等,两直线平行)

∵ ∠BED = ∠BEF + ∠FED = ∠B + ∠D,

∴ ∠FED = ∠D.

∴ CD∥EF. (内错角相等,两直线平行)

∴ AB∥CD.(平行于同一条直线的两直线平行)

当题目现有的条件不能解决问题时,可考虑作辅助线,辅助线常用虚线表示.

[即学即练]

1. 如图8,∠1和[ ]是同位角,∠1和[ ]是内错角,∠1和[ ]是同旁内角.

2. 如图9,如果∠1=[ ],那么DE∥AC;如果∠1=[ ],那么EF∥BC;如果∠FED + [ ] = 180°,那么AC∥ED;如果∠2+[ ]=180°,那么AB∥DF.

3. 如图10,由[ ](填上一个合适的条件),可得BC∥DE.

4. 如图11,A、B两地之间有一座山,一条铁路要通过A、B两地,在A地测得∠MAB = 75°.如果A、B两地同时开工,那么B地按∠NBA的度数为[ ]施工可使铁路在山腹中准确接通.

5. 如图12,下列推断错误的是().

A. 因为∠1 = ∠2,所以 l3∥l4B. 因为∠3 = ∠4,所以l3∥l4

C. 因为∠1 = ∠3,所以l3∥l4D. 因为∠2 = ∠3,所以l1∥l2

6. 如图13,一条公路修到湖边时,需拐弯绕道而过. 如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C等于().

A. 120° B. 130° C. 140° D. 150°

7. 如图14,在屋架上要加一根横梁DE,若∠ABC = 35°,那么∠ADE应该为多少度才能使DE∥BC?为什么?

8. 如图15,已知∠1 = 40°,∠2 = 55°,∠3 = 85°,那么直线l1与l2是否平行?为什么?

9. 如图16,已知∠ABC = ∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF有什么位置关系?试说明你的理由.

10.如图17,已知CB⊥AB,点E在AB上,且CE平分∠BCD,DE平分∠ADC,∠EDC + ∠DCE = 90°. 试说明:DA⊥AB.

[中考风向标]

1. (2006年·天门市)如图18,直线a、b被直线c所截,现给出下列4个条件:①∠1 = ∠5;②∠1 = ∠7;③∠2 +∠3 = 180°;④∠4 = ∠7.其中能说明a∥b的条件为().

A. ①②B. ②

C. ①④ D. ①②④

因为∠1与∠5是同位角,故有∠1=∠5时a∥b,①符合条件;因为∠1=∠7,又∠7=∠5,所以∠1=∠5,所以a∥b,②符合条件;条件③中,∠2与∠3是邻补角,不能判定两直线平行;条件④中,因为∠5 = ∠7,只有当∠4 +∠5 = ∠4 + ∠7 = 180°时,才能判定两条直线平行,所以④不符合条件. 故选A.

2. (2007年·淮安市)如图19,能判定EB∥AC的条件是().

A.∠C = ∠ABEB.∠A = ∠EBD

C.∠C = ∠ABC D.∠A = ∠ABE

选D,利用内错角相等,两直线平行.

本节内容在中考中主要以考查基础知识为主. 主要考查利用同位角、内错角、同旁内角来判定两条直线平行,以填空题和选择题的形式为主.

《两条直线平行》教学设计 篇4

授课人:龚宗文 2017.12.19

一、教学目标 1.知识与技能:(1)能根据直线斜率判定两条直线平行;(2)能根据直线平行的条件求字母参数的值.2.过程与方法:

体验、经历用斜率研究两条直线位置关系的过程与方法,初步体会数形结合思想的应用。3.情感态度与价值观:培养学生缜密思考、自主探索、勤于动手、合作交流的学习习惯以及分类讨论的核心素养.二、教学重难点

教学重点:根据直线的方程特征判定两条直线平行 教学难点:根据直线平行的条件求字母参数的值.三、教法:诱思探究法

学法:动手实践、研讨式

四、教学过程

(一)回顾旧知,引入新课

1.平面内两直线的位置关系有哪些?

2.在初中学过两直线平行的判定和性质定理有哪些?

(二)探究新知

探究一:

已知直线l1:yx1,l2:yx1,在平面直角坐标系中作出l1,l2.(1)分别求出两直线的倾斜角1,2,斜率k1,k2,纵截距b1,b2。并比较他们的关系。

(2)l1,l2的位置关系是什么?(3)你发现了什么结论? 探究二:

如图,当两直线的斜率存在时,设两条直线l1与l2的斜率分别为

k1与k2,在y轴上的截距分别为b1,b2,当l1∥l2时,k1与k2,b1与

b2分别满足怎样的关系?反之如何?

给学生时间思考、整理,请学生表述推导过程。

归纳结论:设直线l1:y=k1x+b1和l2:y=k2x+b2,则l1∥l2k1=k2且b1≠b2.探究三:

当l1的斜率不存在时,l2满足什么条件时,l1∥l2?

归纳结论:设直线l1:x=a1,l2:x=a2,则l1∥l2a1≠a2

(三)应用举例

例1.判断下列各对直线是否平行,并说明理由:(1)l1:y=3x+2,l2:y=3x+5;(2)l1:y=2x+1,l2:y=3x;(3)l1:x=5,l2:x=8.例2.求过点A(1,2),且平行于直线2x-3y+5=0的直线方程.例3.若直线l1:x+a2y+6=0与l2:(a-2)x+3ay+2a=0平行,求实数a的值.(四)练习: 1.课本P70.2.(1)

2.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,求m的值.(五)课堂小结:

1.怎样利用直线方程判断两直线平行? 2.在本节课的学习中运用了哪些数学思想?

(六)作业布置:P77.5.(1)(4)

五、板书设计

探究新知

两条直线平行

如果两条直线平行教案设计 篇5

●教学目标

(一)教学知识点

1.平行线的性质定理的证明.2.证明的一般步骤.(二)能力训练要求

1.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.2.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.(三)情感与价值观要求

通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.●教学重点:

证明的步骤和格式.●教学难点:

理解命题、分清条件和结论.正确对照命题画出图形.写出已知、求证.●教学方法

尝试指导、引导发现与讨论相结合.●教具准备:幻灯片.●教学过程:

一、巧设现实情境,引入新课

[师]上节课我们通过推理证明了平行线的判定定理(复习近平行线的判定定理),如果我们把平行线的判定定理的条件和结论互换,得到的命题是真命题吗? 这节课我们就来研究“如果两条直线平行”.二、讲授新课

[师]我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

两直线平行,同位角相等.下面大家来分组讨论(出示投影片6.4 A)

议一议:利用这个公理,你能证明哪些熟悉的结论?

[生甲]利用“两条直线平行,同位角相等”可以证明:两条直线平行,内错角相等.[生乙]还可以证明:两条直线平行,同旁内角互补.[师]很好.下面大家来想一想:(出示投影片6.4 B)

(1)根据“两条平行线被第三条直线所截,内错角相等”.你能作出相关的图形吗?(2)你能根据所作的图形写出已知、求证吗?(3)你能说说证明的思路吗?

图6-23 [生甲]根据上述命题的文字叙述,可以作出相关的图形.如图6-23.[生乙]因为“两条平行线被第三条直线所截,内错角相等”这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图6-23,把这个文字命题改写为符号语言.即:

已知,如图6-23,直线a∥b,∠1和∠2是直线a、b被直线c截出的内错角.求证:∠1=∠2.[师]乙同学叙述得很好.(出示投影片6.4 C)

(投影片为上面的符号语言)你能说说证明的思路吗?

[生丙]要证明内错角∠1=∠2,从图中知道∠1与∠3是对顶角.所以∠1=∠3,由此可知:只需证明∠2=∠3即可.而∠2与∠3是同位角.这样可根据平行线的性质公理得证.[师]丙同学的思路清楚.我们来根据他的思路书写证明过程.(学生举手,请一位同学来说明根据)

[生丁]证明:∵a∥b(已知)

∴∠3=∠2(两直线平行,同位角相等)∵∠1=∠3(对顶角相等)∴∠1=∠2(等量代换)

接下来我们来做一做由判定公理可以证明的另一命题(出示投影片6.4 D)两条平行线被第三条直线所截,同旁内角互补.[师]来请一位同学上黑板来给大家板演,其他同学写在练习本上.[生甲]已知,如图6-24,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.求证:∠1+∠2=180°.图6-24 证明: 方法一: ∵a∥b(已知)

∴∠3=∠2(两直线平行,同位角相等)∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)

[师]谁还有其他的证明方法?他应用了两直线平行的性质公理,还 可以用两直线平行的性质定理.(证明如下)

图6-25 证明: 方法二:如图6-25 ∵a∥b(已知)

∴∠3=∠2(两直线平行,内错角相等)

∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)

三、课时小结:

[师]同学们证得很好,都能学以致用.通过推理的过程得证这个命题“两条平行线被第三条直线所截,同旁内角互补”是真命题.我们把它称为定理,即直线平行的性质定理,以后可以直接应用它来证明其他的结论.到现在为止,我们通过推理得证了两个判定定理和两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.证明的一般步骤:

第一步:根据题意,画出图形.第二步:根据条件、结论,结合图形,写出已知、求证.第三步,经过分析,找出由已知推出求证的途径,写出证明过程.四、课堂练习:根据下列命题,画出图形,并结合图形写出已知、求证(不写证明过程):(1)垂直于同一直线的两直线平行;

(2)一个角的平分线上的点到这个角的两边的距离相等;(3)两条平行线的一对内错角的平分线互相平行.(二)补充练习(出示投影片6.4 F)

图6-26 1.证明邻补角的平分线互相垂直.已知:如图6-26,∠AOB、∠BOC互为邻补角,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.证明:∵OE平分∠AOB.OF平分∠BOC(已知)∴∠EOB= ∠AOB ∠BOF= ∠BOC(角平分线定义)

∵∠AOB+∠BOC=180°(1平角=180°)

∴∠EOB+∠BOF=(∠AOB+∠BOC)=90°(等式的性质)即∠EOF=90°

∴OE⊥OF(垂直的定义)

(二)强化练习:证明邻补角的平分线互相垂直.已知:如图6-27,∠AOB、∠BOC互为邻补角,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.图6-27

五、课堂小结:

这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤.1.平行线的性质:

公理:两直线平行,同位角相等 定理:两直线平行,内错角相等 定理:两直线平行,同旁内角互补 2.证明的一般步骤

(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.课后作业: 课本P194习题6.5 1、2、3 根据学生的接受情况来做活动与探究

六、活动与探究

图6-27 1.已知,如图6-27,AB∥CD,∠B=∠D,求证:AD∥BC.[过程]让学生在证明这个题时,可从多方面考虑,从而拓展了他们的思维,要证:AD∥BC,可根据平行线的三种判定方法,结合图形,可证同旁内角互补,内错角相等,同位角相等.[结果]证法一:∵AB∥DC(已知)

∴∠B+∠C=180°(两直线平行,同旁内角互补)∵∠B=∠D(已知)

∴∠D+∠C=180°(等量代换)

∴AD∥BC(同旁内角互补,两直线平行)

图6-28 家庭作业:用两种方法让同学生证明。

证法二:如图6-28,延长BA(构造一组同位角)∵AB∥CD(已知)

∴∠1=∠D(两直线平行,内错角相等)∵∠B=∠D(已知)∴∠1=∠B(等量代换)

∴AD∥BC(同位角相等,两直线平行)

图6-29 证法三:如图6-29,连接BD(构造一组内错角)∵AB∥CD(已知)

∴∠1=∠4(两直线平行,内错角相等)∵∠B=∠D(已知)

∴∠B-∠1=∠D-∠4(等式的性质)∴∠2=∠3 ∴AD∥BC(内错角相等,两直线平行)板书设计:

6.4 如果两条直线平行

一、直线平行的性质公理: 两直线平行,同位角相等

图6-30

二、议一议

1.定理:两直线平行,内错角相等.已知,如图6-30,直线a∥b,∠1和∠2是直线a、b被直线c截出的内错角.求证:∠1=∠2 证明:∵a∥b()∴∠3=∠2()∵∠1=∠3()∴∠1=∠2()

图6-31 2.定理:两直线平行,同旁内角互补.已知,如图6-31,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.求证:∠1+∠2=180°

三、议一议 证明的一般步骤 1.2.3.四、课堂练习

五、课时小结

证明直线平行 篇6

1 中点用于平行问题的证明

在立体几何的平行证明问题中若出现了中点的已知条件,这时我们应特别留意这一条件,因为它往往是解决本题的关键.在立体几何中若能利用好中点,平行问题的证明将会变得更具特征性,其遵循的原理即为若知一中点,即想办法找出另一个中点,那常常应注意能否应用三角形中位线、梯形中线等来证明线线平行,使之能利用中位线性质,从而得到两直线平行或平行四边形,进而可以证明线面平行的问题,从而达到证明线面的平行关系.

例1如图1,已知S是△ABC所在平面外一点,O是边AC的中点,点P是SA的中点,求证:SC∥平面BOP.

分析要证SC∥平面BOP,根据线面平行的判定定理,应证线线平行,即要证SC平行平面BOP内的一条直线.

证明因为P为AS中点,O为AS中点,所以PO为△ASC的中位线,所以PO∥SC,即SC∥PO.又SC平面BOP,PO平面BOP,所以SC∥平面BOP.

例2如图2,PA⊥平面AC,四边形ABCD是矩形,E,F分别是AB,PD的中点,求证:AF∥平面PCE.

分析要证明AF∥平面PCE,根据线面平行的判定定理,应证线线平行,即在平面PCE内找一条直线与AF平行.

证明取PC中点K,连结EK,FK.因为F为PD中点,在△PCD中,KF是△PCD的中位线,所以KF∥CD,KF=CD.

又E为AB中点,四边形ABCD是矩形,所以AE∥CD,AE=CD,所以KF瓛AE,四边形AEKF为平行四边形,AF∥EK.

又AF平面PCE,EK⊂平面PCE,所以AF∥平面PCE.

本例条件中已经告知E,F分别为AB,PD中点这一重要信息,这一重要信息如何用上呢?由于AB,PD为两条异面直线,不能直接将现有中点连接构成三角形中位线,所以需另觅中点,当再添加PC的中点K,就会使所求证的问题出现了例1中的应用三角形中位线的情况.在△PCD中即可应用中位线定理得到KF∥CD且KF=CD这一重要桥梁信息,进而可证得四边形AEKF为平行四边形,由平行四边形的性质可得到线线平行的结论.

例3如图3,在底面是菱形的四棱锥P-ABCE中,点E是PD的中点,求证:PB∥平面EAC.

分析要证明线面平行,很自然就会想着证明线线平行,而题中已知条件有点E是PD中点,若能出现第二个中点,即可以转化为前例中三角形中位线的问题,所证问题即可迎刃而解.

证明如图3,连结BD交AC于点O,连结EO.因为四边形ABCD为菱形,所以O为PD中点.又E是PD的中点,在△DPB中,EO是△DPB的中位线,所以EO∥PB.

又EO平面EAC,PB平面EAC,所以PB∥平面EAC.

本例通过连结BD交AC于点O,巧妙地构造出第二个中点,结合条件中的E是PD的中点,这就出现了三角形中两边中点问题,利用三角形中位线定理就可轻松地把问题解决.

2 中点用于垂直问题的证明

在立体几何的有关垂直问题的证明中,常见的是以证明线线垂直,线面垂直和面面垂直的题型为主,究其规律,该类垂直问题常由线线垂直证得线面垂直,由线面垂直进而证得面面垂直,这证明思路源于证明垂直问题的判定定理和垂直的定义.当题目中给出中点或在一个三角形中有两边相等时,利用好中点往往是解题的关键.

例4如图4,P是边长为1的正六边形ABCDEF所在平面外的一点,P在平面ABC内的射影为BF的中点O,求证:PA⊥BF.

分析PA,BF为两条异面直线,要证明线线垂直,不能直接证得,唯有通过线面垂直证得线线垂直.即证明PA垂直BF所在的平面或证明BF垂直PA所在的平面来实现.

证明连结AO.因为AF=AB,O为BF的中点,所以AO⊥BF即BF⊥AO.

又O为P在平面ABC内的射影,所以PO⊥BF,即BF⊥PO.

又AO∩PO=O, AO, PO⊂平面PAO, 所以BF⊥平面PAO.

又PA⊂平面PAO,所以BF⊥PA,即PA⊥BF.

上例通过证明BF⊥平面PAO,进而证明了PA⊥BF,而这一证明过程中用了O为BF的中点,且AF与AB相等这一重要条件,而当连结AO时,由等腰三角形底边上的中线也为底边上的高这一结论可知有BF⊥AO,即得到了线线垂直.从而得到了证明本题的关键.

例5如图5,在三棱锥P-ABC中,AB=AC, PB=PC, 求证:PA⊥BC.

分析要证明PA⊥BC,即证明线线垂直,可证明PA垂直BC所在的平面或证明BC垂直PA所在的平面,本题有AB=AC,PB=PC两个等腰三角形,若能用好等腰三角形三线合一的性质便可使求证的问题得到解决.

证明取BC中点O,连结AO,PO.

因为AB=AC,PB=PC,O为BC中点,所以BC⊥AO,BC⊥PO.

又AO∩PO=O, AO, PO平面PAO, 所以BC⊥平面PAO.而PA平面PAO, 所以BC⊥PA, 即PA⊥BC.

本例关键是取BC的中点,由等腰三角形底边上的中点引出线线垂直,进而证得了线面垂直.

例6如图6,三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC,求证:AB⊥BC.

分析本题要证明的AB⊥BC是同一个平面内的两条直线,结合题中所给出的条件,想通过证明线面垂直来证明,这显然是走不通的,但它有条件PA=PB=PC,即它的突破点依旧是中点问题,这缘于有等腰三角形的出现.

证明如图6,取AC中点O,连结PO,BO.因为PA=PC,所以PO⊥AC.

又侧面PAC⊥底面ABC,PO⊥底面ABC,所以OB为PB在底面ABC的射影.

又PA=PB=PC,所以OA=OB=OC,即OB=AC.所以AC为直角三角形ABC的斜边,所以AB⊥BC.

要证明线线垂直,当两直线为共面直线,又无法用线面垂直进行证明时,应积极寻求其他的垂直证明依据,而出现有等腰三角形时,关注这个三角形底边上的中点常会使求证问题得到突破.

例7如图7,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点,求证:EF⊥平面PAB.

分析欲证线面垂直,应证线线垂直,即证EF⊥平面PAB内的两条相交线.

证明如图7,取PA中点O,连结DO,FO.因为AD=PD,所以OD⊥PA.

又底面ABCD为矩形,所以AB⊥AD.

又PD⊥底面ABCD,所以PD⊥AB,即AB⊥PD.

又PD∩AD=D,PD,AD平面PAD,所以AB⊥平面PAD.

又OD⊂平面PAD,所以AB⊥OD,即OD⊥AB.

又AB∩PA=A,AB,PA⊂平面PAB,所以OD⊥平面PAB.

又E,F分别为CD,PB的中点,所以ED

所以四边形EFOD为平行四边形,所以EF∥OD,所以EF⊥平面PAB.

本题是一道比较抽象的线面垂直证明题,从题中已知条件是无法直接证明EF⊥平面PAB,证明的突破口出现在等腰三角形PDA与已知条件中的E,F分别为CD,PB的中点的这两个条件上,总之还是由中点问题进行求证的突破,从而使求证得以证明.由此可见中点问题在立体几何证明问题应用中的重要性.

由于知识的不断深化,立体几何的证明问题将会有越来越多的变式题,但不论其如何变化,我们都可以通过对已知条件进行整理,最后回归到我们所常见的、基本的题型进行寻求解答.

参考文献

[1]王申怀.高中数学必修2 (A版) [M].北京:人民教育出版社, 2008.

[2]王林全.中学数学思想方法概论[M].广州:暨南大学出版社, 2003.

[3]陈德崇.中学数学教学论[M].广州:广东高等教育出版社, 1995.

[4]王金贵.怎样解题[M].北京:北京教育出版社, 2005.

[5]李玉琪.简明数学方法论[M].北京:科学技术文献出版社, 1994.

“三法”证明线面平行 篇7

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

(责任编辑钟伟芳)endprint

平行关系是几何中一种常见的位置关系,其包括线线平行、线面平行及面面平行三种类型.其中线面平行是三种平行关系中最为常见的一种,是高中数学的必修内容,它既与线线平行相关,又与面面平行有一定的联系,是三种平行关系中极为重要的一种.在2013年的高考中,有一半的试卷涉及线面平行的证明,下面以题为例研究线面平行的证明方法,寻找此类题的解题规律.

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

(责任编辑钟伟芳)endprint

平行关系是几何中一种常见的位置关系,其包括线线平行、线面平行及面面平行三种类型.其中线面平行是三种平行关系中最为常见的一种,是高中数学的必修内容,它既与线线平行相关,又与面面平行有一定的联系,是三种平行关系中极为重要的一种.在2013年的高考中,有一半的试卷涉及线面平行的证明,下面以题为例研究线面平行的证明方法,寻找此类题的解题规律.

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

6.4如果两直线平行导学案 篇8

1、会说出平行线的判定定理与性质定理在条件和结论上的区别。

2、会用“两直线平行,同位角相等”证明“两直线平行,内错角相等”和 “两直线平行,同旁内角互补”。

重点难点:学习目标1、2学法指导:自主学习,合作探究

知识链接:命题的条件和结论、平行线的判定公理和定理

学习过程:

一、温故

1、证明一道文字命题的一般步骤是:

(1)根据题意。

(2)根据命题的题设和结论,并结合图形,写出、。

(3)写出。

2、平行线的判定:

公理:,两直线平行。

定理1:,两直线平行。

定理2:,两直线平行。

上述三个命题的条件和结论分别是什么?

3、如果两直线平行,你会得到哪些结论呢?(这就是本节要探讨的问题)

二、知新

1、思考:如果两直线平行,会得到哪些结论呢?

如果两直线平行,同位角会有什么关系?内错角呢?同旁内角呢?

板书:两直线平行,同位角相等。(平行线的性质公理)

两直线平行,内错角相等。(性质定理1)

两直线平行,同旁内角互补。(性质定理2)

上述三个命题的条件和结论分别是什么?对比平行线的判定公理和判定定理,它们在条件和结论上有什么区别?(同桌讨论,代表回答)

板书:平行线的判定定理和性质定理是互逆的定理。

2、证明性质定理1:两直线平行,内错角相等。

(首先弄清楚这个命题的条件是什么,结论是什么?)

请按照证明文字命题的一般步骤,画出图形,写出已知、求证和证明过程,注意要写清楚每一步的依据。

3、证明性质定理2:两直线平行,同旁内角互补。

(首先弄清楚这个命题的条件是什么,结论是什么?)

请按照证明文字命题的一般步骤,画出图形,写出已知、求证和证明过程,注意要写清楚每一步的依据。

三、课堂小结:

1、文字命题的证明步骤:

2、平行线的判定:

3、平行线的性质:

4、平行线的判定定理与性质定理在条件和结论上有何区别?

四、课堂检测:

1、根据下列命题,画出图形,并结合图形写出已知、求证(不写证明过程):

1)垂直于同一直线的两直线平行;

2)一个角的平分线上的点到这个角的两边的距离相等;

3)两条平行线的一对内错角的平分线互相平行.提示:首先要弄清楚命题的条件是什么,结论是什么。

2、求证:线段的中垂线上的点到线段两端点的距离相等。

3、求证:等腰三角形的底边上的高也是底边上的中线。

五、作业设计:

1、求证等腰三角形顶角的角平分线也是底边上的高。

2、求证:两直线平行,同旁内角互补。

证明直线平行 篇9

本节教材在高中立体几何中占有很重要的地位,因为它与前面所学习的平面几何中的两条直线的位置关系以及立体几何中的线线关系等知识都有密切的联系,而且其本身就是判定直线与平面平行的一个重要的方法;同时又是后面将要学习的平面与平面的位置关系的基础,因此学好本节内容知识,不仅可对以前所学的相关知识进行加深理解和巩固,而且也为判断直线与平面平行增添了一种新的方法,同时又为后面将要学习的知识作了很好的铺垫作用。

教学目标

知识与技能

理解并掌握直线与平面平行的判定定理,进一步培养学生观察、发现的能力和空间想象能力。

过程与方法

学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。

情感态度与价值观

学生在发现中学习,增强学习的积极性,同时让学生了解空间与平面互相转换的数学思想。

教学重点

通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用

教学难点

直线和平面平行的`判定定理的探索过程及其应用。

教学流程

问题引入—实例探究—抽象概括—定理讲解—例题讲解—反馈练习—归纳总结—布置作业

课 型 新授课

教学过程

1、复习引入:

问题1:根据公共点的情况,空间中直线a和平面 有哪几种位置关系?

①直线a在平面内,记作a

证明直线平行 篇10

这里以人教版一年级下册“找规律”为例, 见下图:

这里的一个“应”字, 就是不妥当的。它意味着找的规律只有一种 (两个一组间隔出现) , 第一排的第10面旗只能是黄色, 即“红、黄、红、黄、红、黄、红、黄、红, 黄”。

小学数学界一向认为, 此题的答案非“黄”不可, 必须让学生无条件地接受“两两间隔”这一规律。这妥当吗?

事实上, 我们可以找到许多其他的规律, 使得第10面旗是“红”。

例1: (9个一组, 周期重复) 于是第9、第10;第18、第19, 连续两面都是红旗, 即:

红、黄、红、黄、红、黄、红、黄, 红;红、黄、红、黄、红、黄、红、黄, 红;红、黄、红、黄、红、黄、红、黄, 红;红, ……

例2: (10个一组, 最后两面都是红旗) 第9、10、11连续地出现三面红旗, 即:

红、黄、红、黄、红、黄、红、黄, 红, 红;红、黄、红、黄、红、黄、红、黄、红、红;红、黄、红、黄、红、黄、红、黄, 红, 红;红……

你能说这不是规律吗?

实际上, 找规律问题是一个开放性问题。任何一个有限序列, 都可以生成无限的多种的规律。认为只有一个规律, 推断出“必须是什么”和“应该是什么”, 把开放题封闭成一个唯一答案的题目, 在数学上是不对的。

有人说, 小学生只能找最简单的一种, 多种规律是以后的事情。这可以理解。但问题在于, 小学数学的大量课件、教师用书都没有指出这是一个开放性问题。有些文章在讨论, 重复几次才算“规律”, 更是误导。

怎么办?只要改一个字:把“后面一个应是什么”改成“后面一个会是什么”就可以了。“应”和“会”一字之差, 意义完全不同。苏步青先生在指导中小学教材编写时, 提出“混而不错”的原则。用在找规律的时候是, 如果问“会是什么”, 其答案可以有许多种, 其意义比“应是什么”宽泛许多。至于将来在几年级将它当做一个开放性问题来处理, 可以讨论, 但是必须有这样一步才好。

让我们回到“三角形内角和为180度”的问题上。马建平和戎松魁两位老师的争论点, 在于矩形可否定义为“四个角都是直角的四边形”。马老师认为可以, 于是就认为由此可以证明三角形内角和定理, 而无需平行公理。戎老师认为不可以, 必须用平行四边形定义矩形, 由此说明三角形内角和定理不能绕开平行公理。

笔者认为, 两位老师都有对的部分, 也有不对的部分。马老师觉得矩形可以定义为“有四个直角的四边形”, 这是对的。但是, 以为由此定义出发, 可以避开平行公理来证明三角形内角和为180度, 则是错的。戎老师坚持三角形内角和定理, 必须使用平行公理, 这是对的。但是, 说矩形不能定义为“有四个直角的四边形”, 则是不对的。

实际上, 将矩形定义为“四个角都是直角的四边形”, 完全可以。属和种差式的逻辑定义方法, 并没有规定所从属的“属”必须是其外延最相近的。打个比方, 要定义“杭州人”, 可以说成“居住在杭州的中国人”, 没有错。也就是说, 并非一定要把“杭州人”定义为“居住在杭州的浙江人”, 因为二者是等价的。对于矩形的“四直角”定义, 一旦服从平行公理, 就和“有一个角是直角的平行四边形”定义等价 (如果没有平行公理, 那么两者是不等价的) 。

然而, 如同马建平老师和许多其他文章所说的那样, 可以从“四个角都是直角的四边形”出发, 绕开平行公理就能够直接推出“三角形内角和为180度”, 则是不可能的。理由如下。

依照四个角都是直角的矩形定义, 自然得出矩形的内角和是360度, 这毫无问题。矩形的对角线把矩形分为两个一样的直角三角形, 只要运用平移旋转的刚体运动也可以做到。小学生也知道一点平移、旋转、对称的知识, 可以直观地接受, 严密地逻辑证明需要引用合同公理得出两个三角形三边相等则全等的结论, 逻辑上引用就是了。于是, 得到了如下的结论:“矩形对角线分成的两个直角三角形, 每一个的内角和都是180度。”逻辑的正确性到此为止。问题在于, “任意的直角三角形, 是不是都能成为某一个矩形用对角线分成的直角三角形?”这需要证明, 不能想当然。马老师及许许多多作者都振振有词地把两者混为一谈, 犯了逻辑上的错误。

换句话说, 马老师等作者的所谓证明, 必须从任意的“直角三角形”出发, 作出一个矩形, 使其成为该矩形的一半。但是没有平行公理, 这是作不出来的。那个貌似正确的三角形内角和证明, 这一关过不去, 整个证明的逻辑链条就断裂了。

马建平老师可能会说, 从已知的直角三角形出发, 作一个和自身一样的直角三角形, 两者拼起来就是一个矩形。这是一厢情愿。这样拼起来的四边形只有两个直角;无法证明它有四个直角, 除非引进平行公理。

这就是说, 想从“矩形有四个直角”作为矩形的定义出发, 避开平行公理来证明三角形内角和为180度的企图, 是决然不可能实现的。

证明直线平行 篇11

一、教学内容:

人教版新教材

高二数学

第二册

第二章

第二节

第3课

二、教材分析:

直线与平面问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。

三、教学目标:

1、知识与技能

(1)掌握直线与平面平行的性质定理、明确由线面平行可以推出线线平行。

(2)应用定理证明一些简单问题,培养学生的逻辑思维能力。

2、情感态度与价值观

(1)让学生亲身经历数学研究过程,体验创造激情,享受成功喜悦,感受数学魅力。

(2)培养学生良好的思维习惯,渗透事物互相转化和理论联系实际的辩证唯物主义观点。

四、教学重、难点:

1.重点:直线和平面平行的性质定理的探索过程及应用。

2.难点:直线和平面平行的性质定理的探究发现及其应用。

五、教学理念:

学生是学习和发展的主体,教师是教学活动的组织者和引导者。

为了把发现创造的机会还给学生,把成功的体验让给学生,采用引导发现法,可激发学生学习的积极性和创造性,分享探索知识的乐趣,使数学教学变成再发现、再创造的过程。通过学生自主的学习过程,激发学生学习数学的自信心和积极性,培养学生分析问题解决问题的能力,不断发现和探索新知的精神。

六、设计思路:

本节直线与平面平行的性质与学生学习的生活联系紧密,学习时,一方面引导学生从实际生活出发,把知识与周围的事物联系起来;另一方面,教师要引导学生经理从现实的生活空间中抽象出空间图形的过程,注重引导学生通过观察、操作、有条理的思考和推理等活动,引导学生借助图形直观,通过归纳、类比等合情推理来探索直线、平面平行的性质及其证明。

七、教学过程:

(一)创设情景

1.如果一条直线与平面平行,那么这条直线是否与这个平面内所有的直线都平行呢?

2.教室日光灯管所在直线与地面平行,如何在地面做一条直线与灯管所在直线平行?

(二)温故知新

1.线面平行的判定方法有几种?

(1)定义法:

若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.

(3)判定定理:证明面外直线与面内直线平行.

2.直线与平面平行的判定定理是什么?用符号语言怎样表示?

平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行.(“线线平行,线面平行”)

3.要注意,利用判定定理判定直线与平面平行时,三个条件缺一不可,今天我们来学习直线与平面平行的性质定理。

(三)探求新知

1、探究:

如图所示,在长方体

ABCD-中直线,那么

(1)

A1C1是否和平面AC上所有直线都平行?和这些直线有哪几种位置关系?

(2)在平面ABCD内怎样找和直线A1C1平行的直线?这样的直线有几条?

(3)把直线A1C1换成AD1,即AD1∥平面BCC1B1,AD1是否和平面BCC1B1所有直线均平行?在此平面内怎样找和AD1都平行的直线?

(4)把直线A1C1换成A1C可否在平面ABCD内找到直线与A1C平行?

2、猜想:

师:可否把探究中的长方体载体变为一般情况,即:如果一条直线和一个平面平行,那么这条直线和平面内的怎样的直线平行?

生:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.师:这就是直线与平面平行的性质定理,用符号怎样表示?

生:

师:下面我们来证明这一结论。

3、求证:

如图,,求证:。

证明:因为,所以。

又因为,所以a与b无公共点。又因为,所以。

4、巩固:

我们把这个定理简记为“线面平行,则线线平行”,后面的线线,一条是平行与平面的直线,另一条是经过平面外的直线的平面与已知平面的交线。这三个条件同样是缺一不可。

如果,那么经过a且与相交的平面有无数个,这无数个平面与有无数条交线,这无数条交线互相平行。

5、解决问题

直线与平面平行的性质定理揭示了直线与平面平行中蕴含着直线与直线平行,通过直线与平面平行可得到直线与直线平行,这给出一种作平行线的一种重要方法。对于本节开始提出的问题,我们只需由灯管两端向地面引两条平行线,过两条平行线与地面的交点的连线就是与灯管平行的直线。

(四)拓展应用

例1、如图所示的一块木料中,棱BC平行于面A'B'C'D',(1)要经过面A'B'C'D'内的一点P和棱BC将木料锯开,应该怎样画线?

(2)所画的线和平面ABCD是什么位置关系?

解:(1)在平面A'C'内,过点P作直线EF,使EF

B'C',并分别交棱A'B',C'D'于点E,F。连BE,CF,则EF,BE,CF就是应画的线。

(2)因为棱BC平行于平面A'C',平面BC'与平面A'C'交于B'C',所以,BC

B'C'。由1知,EF

B'C',所以EF

BC,因此EF

BC,EF不在平面AC,BC在平面AC上,从而EF

∥平面AC。BE,CF显然都与面AC相交。

师:解题时应用直线与平面平行的性质定理,要注意把线面平行转化为线线平行,直线与平面平行的性质定理是由直线与平面平行得到线线平行。在例题的图中,如果,那么AD和面、面BF、面都有怎样的位置关系,为什么?

生:因为,面,AD面,所以AD//面。

同理AD//面BF.又因为,过BC的面EC与交于EF.所以EF//BC,又BC//AD,所以AD//EF.因为EF

面,AD面,得AD//面.师:直线与平面平行的性质定理是由直线与直线平行得到直线与平面平行,直线与平面平行的性质定理是由直线与平面平行得到的直线与直线平行。这种直线与平面的位置关系同直线与直线的位置关系的互相转化是立体几何的一种重要思想方法。

例2、已知平面外两条平行直线中的一条平行于这个平面,求证:另一个平面也平行于这个平面。

已知,,求证:.(五)自主学习

练习:

1、直线a∥平面α,平面内α有n条互相平行的直线,那么这n条直线和直线

a

()

(A)全平行

(B)全异面(C)全平行或全异面

(D)不全平也不全异面

2、直线a∥平面α,平面内α有无数条直线交于一点,那么这无数条直线中与直线a平行的()(A)至少有一条

(B)至多有一条(C)有且只有一条

(D)不可能有

(六)归纳整理

这节课学习了直线平行平面的性质定理,这个定理也是两直线平行的判定定理,这个定理主要用来判定线线平行或用作创造应用线面平行判定定理的条件。

首先通过“思考”提出了两个问题,从而引出直线和平面平行的性质问题。接着以长方体为载体,对这两个问题进行探究,通过操作确认,先得出直线与平面平行的性质的猜想,然后通过逻辑论证,证明猜想的正确性,从而得到性质定理,并利用性质定理解决实际问题。

(七)布置作业

教材

P68

习题2.2

上一篇:初一周记500字春天的到来下一篇:幼儿园园长学年工作计划