平行线及其判定与性质练习题(精选11篇)
1、基础知识
(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.
(5)两条直线平行的条件(除平行线定义和平行公理推论外):
①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.
②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)
6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.
(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)
7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.
(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:
证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)
9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4
10、下列说法中,正确的是().(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.
图6
12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。
13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直
(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离
(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离
14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c
平行线的性质 1.基础知识
(1)平行线具有如下性质
①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.
(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.
证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.
14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
(15题)(16题)
16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.
18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个
22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个
(C)4个(D)3个
23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个
24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.
25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)
(25题)
(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1 图2(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.
28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:
26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
1. 在同一平面内,两条互不重合的直线的位置关系有种,它们是.
2. 经过直线外一点,有且只有条直线与已知直线平行.
3. 已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.
4. 如果AB∥CD,CD∥EF,那么∥.
5. 如图1.
∵∠1=∠2(已知),
∴∥().
∵∠2=∠3(已知),
∴∥().
6. 如图2,直线a、b都与直线c相交,则能判定a∥b的条件是.(只填一种情况)
7. 如图3.
∵∠2+∠AFD=180°(已知),
∴∥().
∵∠DFC=(已知),
∴ED∥AC().
8. 如图4,若∠1=∠2,则∥,理由是;若∠1=∠3,则∥,理由是.
9. 平面内有三条直线AB、CD和EF,若AB⊥CD,CD⊥EF,则ABEF;若AB⊥CD,CD∥EF,则ABEF.
10. 如图5,直线EF分别与AB、CD相交.
∵∠1+∠2=180°(已知),
∠3+∠2=180°( ),
∴∠1=.
∴AB∥CD().
二、选择题
11. 已知直线a⊥b,b⊥c,则直线a和直线c的关系为().
A. 相交 B. 平行
C. 垂直 D. 以上都不对
12. 在同一平面内有三条直线,若其中有且只有两条直线平行,则它们交点的个数为( ).
A. 0 B. 1
C. 2 D. 3
13. 下列说法中,正确的是( ).
A. 同位角互补,两直线平行
B. 同旁内角相等,两直线平行
C. 内错角相等,两直线平行
D. 内错角互补,两直线平行
14. 在同一平面内有两个直角,它们的顶点不重合,如果它们有一条边在同一条直线上,那么另一条边().
A. 相互平行
B. 相互垂直
C. 相互平行或相互垂直
D. 相互平行或相互垂直或在同一条直线上
15. 图6给出了过直线外一点作已知直线的平行线的方法,其依据是().
A. 同位角相等,两直线平行
B. 内错角相等,两直线平行
C. 两直线平行,同旁内角互补
D. 两直线平行,同位角相等
16. 如图7,下列条件中不能判断直线a∥b的是().
A. ∠1=∠3B. ∠2=∠3
C. ∠4=∠5D. ∠2+∠4=180°
三、解答题
17. 如图8,BE平分∠ABD,DE平分∠BDC,∠1+∠2=90°,那么直线AB、CD的位置关系如何?
18. 如图9,已知AD平分∠BAC,∠1=∠3.试说明:DE∥AC.
19. 如图10,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
一、概念复习与回顾
1、两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理1: ⑷平行线的性质定理2: ⑸平行线间的距离.
2、判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定方法1: ⑷平行线的判定定理2: ⑸平行线的判定定理3:
二、练习、如图,已知:∠1=∠2,∠D=50°,求∠B的度数.
2、已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?
3、如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.
4、如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.
5、如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?
6、如图,已知∠A=∠F,∠C=∠D.试问BD是否与CE平行?为什么?
7、已知:如图BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD
8、如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,那么AE与DF有什么位置关系?试说明理由.
9、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.
10、完成下列推理说明:
如图,已知AB∥DE,且有∠1=∠2,∠3=∠4,试说明BC∥EF.
11、如图AB∥DE,∠1=∠2,问AE与DC的位置关系,说明理由.
12、如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.
(1)用尺规作图作出光线BC经镜面EF反射后的反射光线CD;(2)试判断AB与CD的位置关系;(3)你是如何思考的.
13、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
14、:已知:如图,EF⊥CD于F,GH⊥CD于H. 求证:∠1=∠3.
15、如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
16、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
17、如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,求证EF也是∠AED的平分线.
18、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D. 试说明:AC∥DF.
19、已知,如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.
姓名_______________ 得分____ 知识点一 同位角相等 两直线平行
1.如图1所示,若∠1=60°,∠2=60°,则AB_______CD.
图1 图2 图3 2.如图2所示,若∠1=∠2,则a∥_____. 知识点二 内错角相等 两直线平行 3.如图2所示,若∠2=∠3,则b______c. 4.如图2所示,b∥c,若∠1=______,则a∥c. 知识点三 同旁内角互补 两直线平行
5.如图3所示,若∠BEF+______=180°,则AB∥CD.
6.(2008,齐齐哈尔市)如图4所示,请你写一个适当的条件_______,•使AD∥BC.
图4 图5 图6 ◆课后测控
1.如图5所示,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,若AB∥____. 2.如图6所示,若∠1=110°,∠2=70°,则a_______b. 3.如图7所示AE∥BD,下列说法不正确的是()
A.∠1=∠2 B.∠A=∠CBD C.∠BDE+∠DEA=180° D.∠3=∠4
图7 图8 图9 4.如图8所示,能说明AB∥DE的有()
①∠1=∠D; ②∠CFB+∠D=180°; ③∠B=∠D; ④∠BFD=∠D. A.1个 B.2个 C.3个 D.4个
5.(易错题)如图9所示,能说明AD∥BC,下列条件成立的是()A.∠2=∠3 B.∠1=∠4 C.∠1+∠2=∠3+∠4 D.∠A+∠C=180°
6.(过程探究题)如图所示,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗? [解答]因为∠1+∠2=180°()
所以AB∥_______()
又因为∠1=∠3()
所以∠2+∠________=180°()
所以EF∥GH(同旁内角互补,两直线平行)7.(经典题)如图所示,完成下列填空.
(1)∵∠1=∠5(已知)
∴a∥______(同位角相等,两直线平行)
(2)∵∠3=_______(已知)
∴a∥b(内错角相等,两直线平行)
(3)∵∠5+_______=180°(已知)
∴______∥_______(同旁内角互补,两直线平行)
8.(原创题)如图所示,写出所有角满足的条件使AB∥EF,并说明理由.
◆拓展创新 9.(应用题)(1)如图(1)所示,AB,CD,EF是三条公路,且AB⊥EF,CD⊥EF.
判断AB与CD的位置关系,并说明理由;(2)如图(2)所示在(1)的条件下,若小路OM平分∠EOB.通往加油站N•的岔道O′N平分∠CO′F,试判断OM与O′N位置关系.
答案: 回顾归纳
1.同位角相等 2.内错角相等 3.同旁内角 课堂测控
1.∥ 2.b 3.∥ 4.∠2或∠3 5.∠EFD
6.∠ABC+∠BAD=180°或∠ADB=∠DBC或∠FAD=∠ABC.(任选一个即可).
解题规律:依照三个判定定理,同位角,内错角,同旁内角关系判定两直线平行. 课后测控
1.CD 2.∥ 3.D 4.C(点拨:①②④正确)
5.A(点拨:∠1=∠4得AB∥CD,∠1+∠2≠∠3+∠4,∠A+∠C≠180°)6.已知,CD,同旁内角互补两直线平行,已知,∠3,等量代换
解题规律:EF∥GH成立→∠2+∠3=180°,又∠1=∠3,∴∠1+∠2=180°(已知)7.(1)b(2)∠5(3)∠4,a,b 思路点拨:由条件与结论关系及括号中定理判断填空内容. 8.①同位角∠A=∠CEF,∠B=∠EFC,②内错角∠ADE=∠DEF,③同旁内角.∠A+∠AEF=180°,∠B+∠BFE=180°,∠BDE+∠DEF=180°
思路点拨:AB,EF被AC所截,AB,EF被BC所截,AB,EF被DE所截,•三个方面的关系中存在同位角,内错角,同旁内角来判定AB∥EF的条件. 9.(1)∵AB⊥EF,CD⊥EF
∴AB∥CD(两条直线都垂直于同一条直线,这两条直线平行)
(2)延长NO′至P,可证∠EOM=∠EO′P=45°,得OM∥O′N.
·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.·如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.理解以下性质定理,并能够证明:
·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.·如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.·垂直于同一个平面的两条直线平行.(2)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.一、直线与平面平行的判定与性质
1.直线与平面平行的判定定理
文字语言
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行⇒线面平行
图形语言
符号语言
a⊄α,b⊂α,且a∥b⇒a∥α
作用
证明直线与平面平行
2.直线与平面平行的性质定理
文字语言
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.简记为:线面平行⇒线线平行
图形语言
符号语言
作用
①作为证明线线平行的依据.
②作为画一条直线与已知直线平行的依据.二、平面与平面平行的判定与性质
1.平面与平面平行的判定定理
文字语言
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.简记为:线面平行⇒面面平行
图形语言
符号语言
a⊂β,b⊂β,a∥α,b∥α⇒α∥β
作用
证明两个平面平行
2.平面与平面平行的性质定理
文字语言
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.简记为:面面平行⇒线线平行
图形语言
符号语言
作用
证明线线平行
3.平行问题的转化关系
三、常用结论(熟记)
1.如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.
2.如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线.
3.夹在两个平行平面间的平行线段长度相等.
4.经过平面外一点有且只有一个平面与已知平面平行.
5.两条直线被三个平行平面所截,截得的对应线段成比例.
6.如果两个平面分别和第三个平面平行,那么这两个平面互相平行.
7.如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.
8.如果两个平面垂直于同一条直线,那么这两个平面平行.
考向一
线面平行的判定与性质
线面平行问题的常见类型及解题策略:
(1)线面平行的基本问题
①判定定理与性质定理中易忽视的条件.
②结合题意构造图形作出判断.
③举反例否定结论或反证法证明.
(2)线面平行的证明问题
判断或证明线面平行的常用方法有:
①利用线面平行的定义(无公共点);
②利用线面平行的判定定理();
③利用面面平行的性质();
④利用面面平行的性质().(3)线面平行的探索性问题
①对命题条件的探索常采用以下三种方法:
a.先猜后证,即先观察与尝试,给出条件再证明;
b.先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;
c.把几何问题转化为代数问题,探索命题成立的条件.
②对命题结论的探索常采用以下方法:
首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾的结果就否定假设.典例1
已知m,n是两条不同直线,α,β,γ是三个不同平面,给出下列命题:
①若m∥α,n∥α,则m∥n;
②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,m∥β,则α∥β;
④若m⊥α,n⊥α,则m∥n.其中正确的有________.(填序号)
【答案】④
1.如图,在正方体中,分别是的中点,则下列命题正确的是
A.
B.
C.平面
D.平面
典例2
如图,四棱锥中,,,分别为线段,的中点,与交于点,是线段上一点.(1)求证:平面;
(2)求证:平面.学#
(2)如图,连接,∵,分别是,的中点,∴,又∵平面,平面,∴平面.又∵是的中点,是的中点,∴,∵平面,平面,∴平面.又∵,∴平面平面,又∵平面,∴平面.2.如图,在四棱锥中,平面是的中点.(1)求证:平面;
(2)求三棱锥的体积.考向二
面面平行的判定与性质
判定面面平行的常见策略:
(1)利用定义:即证两个平面没有公共点(不常用).
(2)利用面面平行的判定定理(主要方法).
(3)利用垂直于同一条直线的两平面平行(客观题可用).
(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).典例3
如图,直角梯形与梯形全等,其中,且平面,点是的中点.
(1)求证:平面平面;
(2)求平面与平面的距离.
易知,由,得,即,∵平面平面,∴平面与平面间的距离为.
3.如图,四棱柱的底面ABCD是正方形,O是底面中心,⊥底面ABCD,.(1)证明:平面∥平面;
(2)求三棱柱的体积.
1.已知直线和平面,满足,则“”是“”的A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.平面α与平面β平行的条件可以是
A.α内的一条直线与β平行
B.α内的两条直线与β平行
C.α内的无数条直线与β平行
D.α内的两条相交直线分别与β平行
3.平面与△ABC的两边AB,AC分别交于点D,E,且AD︰DB=AE︰EC,如图,则BC与的位置关系是
A.异面
B.相交
C.平行或相交
D.平行
4.下列命题中,错误的是
A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行
B.平行于同一个平面的两个平面平行
C.若两个平面平行,则位于这两个平面内的直线也互相平行
D.若两个平面平行,则其中一个平面内的直线平行于另一个平面
5.如图所示,长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于点G,H,则HG与AB的位置关系是
A.平行
B.相交
C.异面
D.平行和异面
6.设是空间中不同的直线,是不同的平面,则下列说法正确的是
A.,则
B.,则
C.,则
D.,则
7.在长方体中,若经过的平面分别交和于点,则四边形的形状是
A.矩形
B.菱形
C.平行四边形
D.正方形
8.如图,正方体中,分别为棱的中点,则在平面内且与平面平行的直线
A.有无数条
B.有2条
C.有1条
D.不存在9.正方体的棱长为3,点E在上,且,平面α∥平面(平面α是图中的阴影平面),若平面平面,则AF的长为
A.1
B.1.5
C.2
D.3
10.在正方体中,分别是棱的中点,是与的交点,平面与平面相交于,平面与平面相交于,则直线的夹角为
A.
B.
C.
D.
11.如图,直三棱柱中,为边长为2的等边三角形,点、、、、分别是边、、、、的中点,动点在四边形的内部运动,并且始终有平面,则动点的轨迹长度为
A.
B.
C.
D.
12.已知点S是正三角形ABC所在平面外一点,点D,E,F分别是SA,SB,SC的中点,则平面DEF与平面ABC的位置关系是________.
13.如图,在长方体中,E,F,G,H分别为CC',C'D',D'D,CD的中点,N是BC的中点,点M在四边形EFGH内运动,则M满足 时,有MN//平面B'BDD'.
14.下列四个正方体图形中,为正方体的两个顶点,分别为其所在的棱的中点,能得出平面的图形的序号是
.
15.如图,已知空间四边形ABCD,E,F,G,H分别是其四边上的点且共面,AC∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,=.16.如图,棱长为2的正方体中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.17.如图,三棱柱的侧棱⊥底面,E是棱的中点,F是AB的中点,.(1)求证:CF∥平面;
(2)求三棱锥的高.
18.如图,四边形与均为平行四边形,分别是的中点.(1)求证:
平面;
(2)求证:平面平面.19.如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当等于何值时,BC1∥平面AB1D1?
(2)若平面BC1D∥平面AB1D1,求的值.20.如图,四边形中,===分别在上,现将四边形沿折起,使.(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;
(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.1.(2016浙江理科)已知互相垂直的平面交于直线l.若直线m,n满足
则
A.m∥l
B.m∥n
C.n⊥l
D.m⊥n
2.(2016新课标全国Ⅱ理科)α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,mα,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有
.(填写所有正确命题的编号)
3.(2018江苏节选)在平行六面体中,.
求证:.
4.(2017新课标全国Ⅱ理科节选)如图,四棱锥P−ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,E是PD的中点.
(1)证明:直线平面PAB.5.(2017北京理科节选)如图,在四棱锥P−ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点.6.(2016山东理科节选)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC.7.(2016新课标全国Ⅲ理科节选)如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB.8.(2016四川理科节选)如图,在四棱锥中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线平面,并说明理由.变式拓展
1.【答案】C
2.【解析】(1)取PB中点M,连接AM,MN.∵MN是△BCP的中位线,∴MN∥BC,且MN=BC.∴三棱锥N−ACD的体积是.#网
3.【解析】(1)由题设知,BB1DD1,∴四边形是平行四边形,∴.又BD⊄平面,⊂平面,∴BD∥平面.∵BC,∴四边形是平行四边形,∴.又⊄平面,⊂平面,【名师点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——割补法、等体积法.
①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.
②等体积法:应用等体积法的前提是几何体的体积通过已知条件可以得到,利用等体积法可以用来求解几何体的高,特别是在求三棱锥的高时,这一方法回避了通过具体作图得到三棱锥的高,而通过直接计算得到高的数值.
考点冲关
1.【答案】A
【解析】若,由线面平行的判定定理可得,若,则与可以是异面直线,所以“”是“”的充分而不必要条件,故选A.2.【答案】D
【解析】若两个平面α,β相交,设交线是l,则有α内的直线m与l平行,得到m与平面β平行,从而可得A是不正确的;而B中两条直线可能是平行于交线l的直线,所以也不能判定α与β平行;C中的无数条直线也可能是一组平行于交线l的直线,因此也不能判定α与β平行.由平面与平面平行的判定定理可得D项是正确的.3.【答案】D
【解析】在中,因为,所以,又平面,平面,所以平面,选D.
4.【答案】C
【解析】如果两个平面平行,则位于这两个平面内的直线可能平行,可能异面.
8.【答案】A
【解析】如图所示,延长D1F交直线DC于点P,连接PE并延长,交DA的延长线于点R,连接RD1,交AA1于Q,则QD1是平面与平面的交线,在平面内,与直线QD1平行的直线有无数条,由直线与平面平行的判定定理可知,这无数条直线与平面都平行,故答案为A.
9.【答案】A
【解析】因为平面α∥平面,平面平面,平面平面,所以.又,所以四边形是平行四边形,所以,所以.10.【答案】D
【解析】如图所示,∵E,F分别是棱的中点,∴EF∥AC,则平面即平面EFCA与平面相交于,即直线m;由CF∥OE,可得CF∥平面OD1E,故平面与平面相交于n时,必有n∥CF,即m//n,则直线的夹角为0.11.【答案】A
【解析】因为AC,所以平面.取中点N,因为,所以平面,从而平面平面,即动点的轨迹为线段HF,因此长度为4,选A.
12.【答案】平行
13.【答案】M在线段FH上移动
【解析】当M在线段FH上移动时,有MH//DD'.而HN//BD,∴平面MNH//平面B'BDD'.又MN⊂平面MNH,∴MN//平面B'BDD'.14.【答案】①④
【解析】对于①,该正方体的对角面平面得出平面;
对于②,直线与平面不平行;
对于③,直线与平面不平行;
对于④,直线与平面内的直线平行.15.【答案】
【解析】∵AC∥平面EFGH,AC⊂平面ABC,平面ABC∩平面EFGH=EF,∴AC∥EF.∴.①
由四边形EFGH是菱形知EH∥FG,EH⊄平面BCD,FG⊂平面BCD,∴EH∥平面BCD.
而EH⊂平面ABD,平面ABD∩平面BCD=BD,∴EH∥BD,∴.②
由①②得.又EF=EH,AC=m,BD=n,所以.学#
16.【答案】
17.【解析】(1)如图,取的中点G,连接EG,FG.
(2)∵三棱柱的侧棱⊥底面ABC,∴⊥平面ABC.
∵AC⊂平面ABC,∴,∵,∴,∵平面平面,∴AC⊥平面,∵平面,∴,18.【解析】(1)连接,则必过与的交点,连接,则为的中位线,所以,#网
又平面平面,所以平面.(2)因为分别为平行四边形的边的中点,所以,又平面平面,所以平面.又为中点,所以为的中位线,所以,又平面平面,所以平面,又与为平面内的两条相交直线,所以平面平面.【名师点睛】在立体几何中,常见的平行关系有线线平行、线面平行和面面平行,这三种平行关系不是孤立的,而是相互联系,并且可以相互转化的.在解决问题的过程中,要灵活运用平行关系的判定定理.(1)应用判定定理证明线面平行的步骤:
上面的第一步“找”是证题的关键,其常用方法有:利用三角形、中位线的性质;利用平行四边形的性质;利用平行线分线段成比例定理.
(2)利用判定定理证明两个平面平行的一般步骤:
第一步:在一个平面内找出两条相交直线;
第二步:证明这两条相交直线分别平行于另一个平面;
第三步:利用平面与平面平行的判定定理得出结论.
19.【解析】(1)如图所示,取D1为线段A1C1的中点,此时=1.(2)由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,得BC1∥D1O,∴.又平面AB1D1∩平面ACC1A1=AD1,平面BDC1∩平面ACC1A1=DC1,∴AD1∥DC1,∴AD=D1C1,DC=A1D1,∴=1.20.【解析】(1)线段上存在一点,使得平面,此时.在中,由余弦定理得===,学@
∴=,==,设点到平面的距离为,由于,即=,∴=,即点到平面的距离为.直通高考
1.【答案】C
【解析】由题意知,.故选C.
【思路点睛】解决这类空间点、线、面的位置关系问题,也可借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.
2.【答案】②③④
【名师点睛】求解本题时应注意在空间中考虑线面位置关系.3.【解析】在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.
因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.
4.【解析】(1)取的中点,连接,.
因为是的中点,所以∥,由得∥,又,所以,即四边形是平行四边形,所以∥.
又平面,平面,故平面.
5.【解析】(1)如图,设交点为,连接.因为平面,平面平面,所以.因为四边形是正方形,所以为的中点,所以为的中点.6.【解析】(1)设的中点为,连接,7.【解析】(1)由已知得.取的中点,连接,由为中点知,.
又,故,四边形为平行四边形,于是.因为平面,平面,所以平面.
1.已知如图,指出下列推理中的错误,并加以改正。
(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC,∴∠1=∠2(两直线平行,内错角相等)(3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)
6.已知如图∠1=∠2,BD平分∠ABC,求证:AB//CD
2.如图,∠1=∠2,∠3=∠4,试向EF是否与GH平行?
3.如图写出能使AB//CD成立的各种题设。
4.已知如图,AB//CD,∠1=∠3,求证:AC//BD。
5.已知如图,AB//CD,AC//BD,求证:∠1=∠3。
7.已知如图,AB//CD,∠1=∠2,求证:BD平分∠ABC。
8.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
9.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7
三、证明角相等的基本方法 第一章、第二章中已学过的关于两个角相等的命(1)同角(或等角)的余角相等;(2)同角(或等角)的补角相等;
(3)对顶角相等;(4)两直线平行,同位角相等;内错角相等;同旁内角互补。10,如图∠1=∠2=∠C,求证∠B=∠C。
11、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。
12、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:∠1=∠2。
四、两条直线位置关系的论证。
两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。学过证明两条直线平行的方法有两大类
(一)利用角;
(1)同位角相等,两条直线平行;(2)内错角相等,两条直线平行;(3)同旁内角互补,两条直线平行。
(二)利用直线间位置关系:
(1)平行于同一条直线的两条直线平行;(2)垂直于同一条直线的两条直线平行。
13、如图,已知BE//CF,∠1=∠2,求证:AB//CD。
14、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。
2、已经学过的证明两直线垂直的方法有如下二个:(1)两直线垂直的定义
(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。
(即证明两条直线的夹角等于90o而得到。)
15、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
五、一题多解。
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理
1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验特殊--一般--特殊的辨证唯物主义观点。教学重点:平行四边形的性质和判定。教学难点:性质、判定定理的运用。教学程序:
一、复习创情导入平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。角:对角相等(定理1);邻角互补。平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
第 1 页
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
注意:证明线面平行的方法可分为三类:①直接法,②找中点(或作中点),③通过连接平行四边形的对角线,找中点(平行四边形的对角线互相平分)。题型一:直接法
1、如图是正方体ABCD-A1B1C1D1,求证:BC1∥平面AB1D
1题型二:找中点(或作中点)
2、如图是四棱锥,已知BC∥AD且BC
AD,E为中点,2求证:CE∥平面PAB
题型三:通过连接平行四边形的对角线,找中点
3、如图,在底面为平行四边形的四棱锥P-ABCD中,F为PC的中点,求证:PA∥平面FBD.D
变式训练:
教学目标 :
知识技能目标:①在具体情境中进一步丰富对两条直线互相平行的认识,并会用符号表示两条直线互相平行;②会用直尺和三角板画已知直线的平
行线,并在操作活动中探索,了解平行线的有关性质。
过程目标:①体验平行线概念的探究过程;②经历画平行线的方法,了解
平行线的性质;③善于发现问题,并能通过讨论交流解决问题。
情感目标:①体会合作讨论交流的力量,感受成功的快乐;②感受实践
出真知,体验动手操作与认知活动相结合的愉悦。
学习重点:
①探究平行线概念;②平行线画法
学习难点:
平行线概念的引入
教学过程:
一.【问题情境】
⒈生活中很多建筑由平行线或垂直线构成的,在下列图案中
(课本P163图案)哪些线互相平行?
⒉俗话说:处处留心皆学问。在日常生活中,有很多直线平行的实例,你能举例说明吗?
二.【合作互动,探究新知】
(一)平行线的定义
1、同学们能否在一张纸上画一条直线,然后把一支笔作为另一条直线,随意移动笔,观察笔与已知直线有几种位置关系?各种位置关系,分别叫 做什么?(完成后一位同学用两根木条在黑板上演示给大家看)
2、若作特别说明,我们只研究不重合的情形,则去掉重合这种情况,在同一平面上两条直线有几种位置关系?(用彩色 粉笔将(3)重合去掉)
3、若两直线不相交,则这两条直线在同一平面 内是什么位置关系? 板书:(留空)不相交的两条直线叫做平行线。
4、出示立方体框架,谁能指出立方体框架中哪些棱既不平行也不相交呢?为什么?
5、在留空之处用彩色粉笔填上在同一平面内。
6、可以这样理解平行线呢?(1)在同一平面内,不相交的两条线段叫平行线。(2)在同一平面内,不相交的两条射线叫平行线。(3)不相交的两条直线做平行线。(4)没有公共点的两条直线互相平行。(5)互相平行的两条直线没有公共点。
7、那么理解平行线时,必须注意什么?(强调三点)
8、你知道两条平行直线如何表示吗?如何用字母表示?
板书:直线a与直线b平行,记作a∥b,读作:直线a平行于直线b。
(二)平行线画法
1、我们已经知道什么叫平行线,那么用直尺和三角板或者一副三角板
如何画两条平行直线?
2、大家发挥想象每一步骤用一个字概括出来。
板书:一放、二靠、三推、四画
三.【把握质疑,巧于思考】
⒈观察课本P164图6-23
思考:(1)图中哪些道路与解放路平行?
(2)经过人民广场,并且与解放路平行的道路有几条?
(3)能否经过人民广场再修一条道路与解放路平行吗?
让学生从实际生活感知(板书)
①经过直线外一点,有且只有一条直线与已知直线平行。
②若两条直线都与同一条直线平行,那么这两条直线也互相平行。
⒉做一做:如图,A、B是直线l外的两点,⑴经过点A画与直线l平行的直线,这样的直线能画几条?
⑵经过点B画与直线l平行的直线,它与⑴中所画的直线平行吗?
⑶通过画图,你发现了什么?
(二)1.选择题
(1)直线l与平面内的两条直线都垂直,则直线l与平面的位置关系是()
(A)平行(B)垂直(C)在平面内(D)无法确定
(2)下面各命题中正确的是()
(A)直线a,b异面,a,b,则∥;
(B)直线a∥b,a,b,则∥;
(C)直线a⊥b,a⊥,b⊥,则a⊥;
(D)直线a,b,∥,则a,b异面.(3)对于已知直线a,如果直线b同时满足下列三个条件:
①与a是异面直线;②与a所成的角为定值θ;③与a距离为定值d.那么这样的直线b有()
(A)1条(B)2条(C)3条(D)无数条
2.求证:两条异面直线不能同时和一个平面垂直.3.地面上有两根相距a米的直立旗杆,它们的长分别是b米,c米(b>c),求它们上端间的距离.4.平行四边形ABCD所在平面外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.5.矩形ABCD所在平面外一点P,且PA⊥平面AC,连PB、PC、PD,E、F分别是AB、PC的中点
(1)求证:CD⊥PD;
(2)求证:EF∥平面PAD
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点・难点・疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的.三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”.
【平行线及其判定与性质练习题】推荐阅读:
直线平面平行判定性质10-10
平行线的性质习题10-14
平面与平面平行的判定的教学反思06-02
平行线的判定知识梳理09-24
2.2.2平面与平面平行的判定导学案05-30
5.2.2 平行线的判定(教案)06-02
平行线的性质教学反思06-28
面面平行判定定理教案01-07
5.3.1平行线的性质06-07
平行线的性质优秀教学反思07-06