线面垂直的判定练习题

2025-03-05 版权声明 我要投稿

线面垂直的判定练习题(共9篇)

线面垂直的判定练习题 篇1

一、线线垂直与线面垂直:

1、条件的正确填写:

(1)由线线垂直证明线面垂直的训练:

①如左图:由5个条件:可证:AB⊥平面PDC

②如左图:由5个条件:可证:AP⊥平面PBC

③如左图:由5个条件:可证:BC⊥平面PAC

(2)由线线垂直证明线面垂直的训练:2个条件

①如左图:∵PA⊥平面ABC,∴PA⊥BC

②如左图:∵,PC平面PAC ∴BC⊥PC

③如左图:∵PE⊥平面,∴PE⊥AF

④如左图:∵⊥平面PAB,∴EF⊥AB

⑤如左图:∵⊥平面,∴AF⊥BC2、简单的证明题:

(1)已知:如图,PA⊥AB,PA⊥AC,(2)已知:如图,PA⊥AB,BC⊥平面PAC,求证:PA⊥BC。求证:PA⊥平面ABC。、中等的证明题:

(1)如图,在三棱锥VABC中,VAVC,ABBC,求证:(2方体中,)正O为底面ABCD中心,.VBAC求证:BD平面AEGC

(3)AB是圆O的直径,PA⊥AC, PA⊥AB,(4)AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°

线面垂直的判定练习题 篇2

例1如果一条直线垂直于一个平面内的:(1)三角形的两条边;(2)梯形的两条边;(3)圆的两条直径,试问这条直线是否与平面垂直?并对判断说明理由.

分析:本题可结合线面垂直的判定定理来说明.

解:(1)直线垂直于三角形所在的平面,因为三角形的两条边所在直线必相交;(2)不一定垂直于梯形所在的平面,因为有可能与两条平行的底所在直线垂直;(3)垂直于圆所在的平面,因为两条直径所在直线必定相交.

点评:本题中的(2)往往会认为是正确的,虽然梯形中有相交的边,但是梯形的上、下底平行,若已知直线与这两底平行,不满足线面垂直中平面内两条相交直线的条件.

二、直线和平面垂直的判定

例2如图1,四边形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点,求证:MN⊥平面PCD.

分析:利用直线与平面垂直的判定定理证明线面垂直时,关键是要在这个平面内找两条相交直线分别与已知直线垂直.本题中即在平面PCD内找两条相交直线PC、PD,再分别证明MN⊥PD与MN⊥PC.

点评:题目中有等腰三角形,一般取底边的中点,则可以由三线合一的性质得到线先垂直的条件.

三、直线与平面垂直的性质的应用

例3如图2,在正方体ABCD-A1B1C1D1中,E、F分别为A1D和AC上一点,EF与异面直线AC、A1D垂直,求证:EF∥BD1.

分析:利用线线垂直的性质来证明线线平行,其关键是找(构建)出平面,使所给的直线都与该平面垂直.本题中BD1为正方体的对角线,连接AB1、B1C后可证得到BD1⊥平面AB1C,只需要证EF⊥平面AB1C即可.

证明:连接AB1、B1C、BD、B1D1,

因为DD1⊥平面ABCD,AC平面ABCD,

所以DD1⊥AC,又AC⊥BD,则AC⊥平面BDD1B1,所以AC⊥BD1,同理可证BD1⊥B1C,所以BD1⊥平面AB1C.又因为EF与异面直线AC、A1D垂直,即EF⊥AC,EF⊥A1D.

又因为A1D∥B1C,所以EF⊥B1C,

则EF⊥平面AB1C.所以EF∥BD1.

点评:正方体、直棱柱、正棱锥、正四面体等特殊的几何体都有明显的几何特征,在解题时要充分挖掘这些几何体的线面关系,如直棱柱的侧棱垂直于底面,正方体的体对角线垂直于相应的对角面等.

摘要:直线垂直于平面.需要注意判定定理的条件中,“平面内的两条相交直线”是关键性词语,若两条直线不相交(平行),则直线与平面不一定垂直.要判定一条直线与一个平面垂直,只需要在该平面内找出两条相交直线与已知直线垂直.判定定理是由线线垂直,即证明直线与平面内的两条相交直线都垂直.

关键词:理解,说明,垂直,相交

参考文献

线面垂直的判定练习题 篇3

类型一:直线与平面平行的证明

【例1】 在三棱柱ABCA1B1C1中,A点在底面A1B1C1上的射影是正△A1B1C1的中心.E为侧面BB1C1C对角线BC1上一点,且BE=2EC1,

证明:OE∥平面AA1C1C.

分析 (1) 从“量”上分析:①从BE=2EC1知E是一个三等分点(离C1较近);②从正△A1B1C1,O是△A1B1C1的中心,知O是△A1B1C1的重心,隐含O是B1C1边上中线的一个三等分点,与E点有遥相呼应之感;

(2) 从“形”上分析:由相似三角形的原理知延长CE与B1C1的交点必是B1C1的中点H,从而根据重心知识知A1、O、H共线,这样可形成△A1HC;同时可联想B1C1的中点是建立联系的纽带;

(3) 从方法上分析:应用线面平行的判定定理证明,设法在平面内找到平面外的直线OE的平行线,俗称“找线法”。

证明 连接CE并延长,交B1C1于点H,因为BC∥B1C1,BE=2EC1,所以△BCE∽△C1HE,且BC=2C1H,所以H点为B1C1的中点.

又因为点A在底面正△A1B1C1内的射影点O是△A1B1C1的中心,所以O是△A1B1C1的重心,显然A1、O、H共线.且A1O=2OH.

在△HCA1中,CE=2EH,A1O=2OH,所以△HEO∽△HCA1,所以EO∥CA1.又EO平面AA1C1C,CA1平面AA1C1C,所以OE∥平面AA1C1C.

点拨

(1) 从图形上可联想有一个三角形,过OE且与平面AA1C1C有一条交线,故联想到B1C1的中点;

(2) 在添加辅助线时,易出现错误.如:连CE交B1C1于H点,连A1、O、H等形式的错误;

(3) 除用判定定理证明外,也可以构造平面与平面AA1C1C平行,利用面面平行的性质来证明。

总结:证明线面平行的方法有:定义法、线面平行的判定定理、面面平行的性质定理等方法,常用的是线面平行的判定定理。

类型二:直线与平面垂直的证明

【例2】 已知四棱锥PABCD的底面ABCD是等腰梯形,AD∥BC且BC=2AB=2AD=2,侧面PAD是等边三角形,PB=PC=2,求证:PC⊥平面PAB.

分析 (1) 从“量”上分析:底面的等腰梯形中,可得出其他的基本关系,作AH⊥BC垂足为H,知BH=12,故易知∠ABC=60°,在△ABC中由余弦定理易知AC=3,在△PAC,PA=1,PC=2,AC=3,易知PC⊥PA;在△PBC中,PB=2,PC=2,BC=2,易知PC⊥PB;

(2) 从“形”上分析:应联想到PC应垂直平面PAB中两条相交的直线

PB,PA,AB中的其中两条即可,可联想连接AC,用勾股定理证明;

(3) 从方法上分析:应利用线面垂直的判定定理,

设法在平面PAB内找到与PC垂直的两条相交直线。

证明 由条件易知在△PBC中,PB=2,PC=2,BC=2,故PB2+PC2=BC2,即∠BPC=90°,故PC⊥PB.在等腰梯形ABCD中,

由BC=2AB=2AD=2,得BC=2,AB=AD=DC=1,

作AH⊥BC于点H,得BH=12,所以在Rt△ABH中,∠ABH=60°;

又在△ABC中使用余弦定理知:AC2=AB2+BC2-2AB•BC•cos∠ABC=3,

所以在△APC中,PA=1,AC=3,PC=2,满足勾股定理,即∠APC=90°,即PC⊥PA,

由上可知PC⊥PA,PC⊥PB,PA∩PB=P,所以PC⊥平面PAB.

点拨

(1) 本题从找线出发,联想到要证PC⊥PA与PC⊥PB,而PC⊥PA是本题的一个难点;

(2) 本题最终在△APC中利用勾股定理证得PC⊥PA,亦可以通过AB⊥平面PAC,证得PC⊥AB得到。

总结:证明线面垂直的方法有:定义法、线面垂直的判定定理法、面面垂直的性质定理等方法,常用的是线面垂直的判定定理。

恃国家之大,矜民人之众,欲见威于敌者,谓之骄兵。——魏相

类型三:利用线面平行、垂直的性质的探索性问题

【例3】 已知三棱锥PABC中,△ABC是边长为2的正三角形,PC⊥平面ABC,PA=22,E为PB的中点,F为AC的中点,试在线段PC上找一点Q,使得AE∥平面BFQ.

分析

(1) 从“量”上分析:△ABC为正三角形,PA=22,易得PC=2;从而知PB=22;

(2) 从“形”上分析:AE平面PAB,且AE∥平面BFQ;△PBC

为等腰直角三角形;同时可以联想在平面BFQ内有一条与AE平行的线;

(3)从方法上分析:利用线面平行的性质,通过线面平行得出线线

平行,从而确定Q点的位置。

解 因为△ABC是边长为2的正三角形,所以AC=2;

又因为PC⊥平面ABC,AC、BC平面ABC,所以PC⊥AC,PC⊥BC,所以△PAC为直角三角形,所以PC2=PA2-AC2=4,即PC=2,所以△PBC是以C为直角顶点的等腰直角三角形.不妨在PC上取一点Q,假设满足AE∥平面BFQ,则由线面平行的性质定理,连接CE交BQ于点H,连接HF,作出平面AEC.因为AE∥平面BFQ,

AE平面AEC,平面AEC∩平面BFQ=FH,所以AE∥FH;

显然在△AEC中,F为AC的中点,所以H为EC的中点.

过E作EG∥BQ,交PC于点G;

在△CEG中,HQ∥EG,H为EC的中点,所以Q为GC的中点,故GQ=QC;

在△PBQ中,EG∥BQ,E为BP的中点,所以G为PQ的中点,故GQ=PG;

所以PG=GQ=QC,故Q为PC的一个三等分点且靠近C点;因为PC=2,所以QC=23.

点拨 (1) 取Q点形成平面BFQ,利用线面平行的性质定理得AE∥FH,从而知H为EC的中点;

(2) 在△PBC中求Q的位置,除了用本题的方法外,还可以把△PBC平面化,利用解析几何知识建立直角坐标系,求出Q点的坐标,从而确定Q的位置;

(3) 学理科的同学还可以通过建立空间直角坐标系,通过求Q的坐标,确定Q的位置。

总结:线面平行的探索性问题常用的解题步骤是:(1) 假设点在某处;(2) 利用线面平行的性质得出线线平行;(3) 通过线线平行确定点的位置。

【例4】 已知直三棱柱ABCA1B1C1中,

BC=2AB=2AC=2,CC1=1,D为B1C1的中点,

线面垂直的判定练习题 篇4

课题:垂直关系

教学分析

垂直关系是一种非常重要的位置关系,它不仅应用较多,而且是平行关系的转化手段,可以说垂直关系是立体几何的核心内容之一,也是高考热点内容。

垂直的性质定理在立体几何中有着特殊的地位和作用。在巩固线线垂直和面面垂直的基础上,讨论垂直的性质定理及其应用时,要注意是立体几何最难的定理,往往是一个复杂问题的开端,先由面面垂直转化为线面垂直,否则无法解决问题。

三维目标

1.探究垂直的判定定理,培养学生的空间想象能力。

2.掌握垂直的判定定理的应用,培养学生分析问题、解决问题的能力。

3.探究垂直的性质定理,进一步培养学生的空间想象能力。

4.垂直的性质定理的应用,培养学生的推理能力。

5.通过垂直的性质定理的学习,培养学生的转化思想。

重点难点

教学重点:(1)垂直关系的判定定理及其应用(2)垂直的性质定理

教学难点:(1)应用判定定理解决问题(2)性质定理的应用

课时安排:1课时.教学手段:多媒体.教学过程:

一、知识回顾

1、线面垂直的判定方法

(1)定义——如果一条直线和一个平面内的任意一条直线都垂直,则直线与平面垂直。

(2)判定定理——如果一条直线和一个平面内的两条相交直线都垂直,则直线与平面垂直。

lbalbabAla

2线面垂直的性质

(1)如果一条直线和一个平面垂直则这条直线垂直于平面内的任意一条直线。

(2)性质定理——如果两条直线同垂直于一个平面,则这两条直线平行。

3、面面垂直的判定方法

(1)定义-----如果两个平面所成的二面角是直二面角,则这两个平面垂直。

(2)判定定理-----如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直α⊥β,α∩β=l⇒m⊥β.用符号表示为mα,m⊥l

4面面垂直的性质

如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面

二、课堂演练

1.在三棱锥V-ABC中,VA=VC,AB=BC,则下列结论一定成立的是()

A.VA⊥BCB.AB⊥VC

C.VB⊥ACD.VA⊥VB

2.设l、m、n均为直线,其中m、n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

3.关于直线m、n与平面α、β,有以下四个命题:

①若m∥α,n⊥β且α⊥β,则m∥n.②若m⊥α,n⊥β且α⊥β,则m⊥n;

③若m⊥α,n∥β且α∥β,则m⊥n;

④若m∥α,n∥β且α⊥β,则m∥n;

其中真命题的序号是()

A.①②

C.①④B.③④ D.②③第4题图

4.△ABC,∠ABC=90°,PA⊥平面 ABC,则图中直角三角形的个数是________.

三、典例精析

例1如图,AB是圆O的直径,C是异于A,B的圆周上的任意一点,PA垂直于圆O所在的平面。求证:(1)BC⊥面PAC(2)若AH⊥PC,则AH⊥面PBC

C B 例2如图,已知PA┴ 矩形ABCD所在平面,M、N分别是AB、PC的中点 求证:(1)MN┴CD(2)若PDA

P 45,求证:MN面PCD

四、小结:三种垂直关系的转化

M D C

五、作业:课时作业

线面垂直的判定练习题 篇5

一、定理填空:

1.直线和平面垂直

如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理 线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条于一个平面,那么判定定理2:一条直线垂直于两个平行平面中的一个平面,那么.性质定理3:如果两条直线同垂直于一个平面,那么这两条直线.二、精选习题:

1.设M表示平面,a、b表示直线,给出下列四个命题:

①a//baMaMa//Mb∥M④bM②a//b③b⊥M.abaMbMab

其中正确的命题是()

A.①②B.①②③C.②③④D.①②④

2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有()

第3题图

A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

3.设a、b是异面直线,下列命题正确的是()

A.过不在a、b上的一点P一定可以作一条直线和a、b都相交

B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直

C.过a一定可以作一个平面与b垂直

D.过a一定可以作一个平面与b平行

4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有()

A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

5.有三个命题:

①垂直于同一个平面的两条直线平行;

②过平面α的一条斜线l有且仅有一个平面与α垂直;

③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直

其中正确命题的个数为()A.0B.1C.2D.36.设l、m为直线,α为平面,且l⊥α,给出下列命题

① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题的序号是()...A.①②③B.①②④C.②③④D.①③④

7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;

8.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.

10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.面面垂直专题练习

一、定理填空

面面垂直的判定定理:

二、精选习题

1、正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角等于

2、三棱锥PABC的三条侧棱相等,则点P在平面ABC上的射影是△ABC的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________

4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________

5、已知l是直二面角,A,B,A、Bl,设直线AB与成30角,AB=2,B

到A在l上的射影N,则AB与所成角为______________.6、在直二面角AB棱AB上取一点P,过P分别在,平面内作与棱成 45°角的斜线PC、PD,则∠CPD的大小是_____________

7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.二、解答题:

8.如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D

DA

1D

B1

C1

C

A

B10、如图,三棱锥PABC中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC.

BAC11、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.

BA

C

二面角练习1210

1.正方体ABCD-A1B1C1D1中,二面角A-BD1-C的大小是()A.52B.C.D.632

32.边长为a的正三角形中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=

a,这时二

2面角B-AD-C的大小为()A.30°B.45°C.60°D.90°

3.以等腰直角三角形ABC的斜边BC上的高为折痕,将△ABC折起,若折起后的三角形ABC为等边三角形,则二面角C-AD-B的大小为()

A.30°B.60°C.90°D.120°

4在空间四边形ABCD中,AB=CB,AD=CD,E、F、G分别 是AC、AD、CA的中点。求证:平面BEF

^平面BEG。

性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

5.在正方体ABCD—A1B1C1D1中,求A1B和平面A1B1CD所成的角.。

二面角的基本求法

(1)定义法:在棱上取点,直。

9.SA^平面ABC,AB^BC,SA=AB=BC,(1)求证:SB^BC;(2)求二面角S-BC-A和C-SA-B的大小;

(3)求异面直线SC与AB所成角的余弦值。

10.在正方体ABCD—A1B1C1D1中,求(1)二面角A-B1C-A1的大小;(2)平面A1DC1与平面ADD1A1所成角的正切值。

11.正方体ABCD—A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小。

(2).三垂线法

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。三垂线逆定理:在平面内的一条直线,如果和这个平垂直。

12.平面ABCD^平面ABEF,ABCD是 矩形且AF=

AD=a,G是EF2

A

平面AGC^平面BGC;(2)求GBB

角的正弦值;

(3)求二面角B-AC-G的大小。

13.点P在平面ABC外,ABC是等腰直角三角形,?ABC

(1)求证:平面PAB^平面APA^BC。PAB是正三角形,(2)求二面角P-AC-B的大小。

(3).垂面法

14.将一副三角板如图拼接,并沿BC折起成直二面角,设AB=AC=a, ∠BAC=∠DCB=90°,∠DBC=30°,求二面角B-AD-C的大小 及二面角C-AB-D的正切值。

线面垂直的判定练习题 篇6

(二)1.选择题

(1)直线l与平面内的两条直线都垂直,则直线l与平面的位置关系是()

(A)平行(B)垂直(C)在平面内(D)无法确定

(2)下面各命题中正确的是()

(A)直线a,b异面,a,b,则∥;

(B)直线a∥b,a,b,则∥;

(C)直线a⊥b,a⊥,b⊥,则a⊥;

(D)直线a,b,∥,则a,b异面.(3)对于已知直线a,如果直线b同时满足下列三个条件:

①与a是异面直线;②与a所成的角为定值θ;③与a距离为定值d.那么这样的直线b有()

(A)1条(B)2条(C)3条(D)无数条

2.求证:两条异面直线不能同时和一个平面垂直.3.地面上有两根相距a米的直立旗杆,它们的长分别是b米,c米(b>c),求它们上端间的距离.4.平行四边形ABCD所在平面外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.5.矩形ABCD所在平面外一点P,且PA⊥平面AC,连PB、PC、PD,E、F分别是AB、PC的中点

(1)求证:CD⊥PD;

(2)求证:EF∥平面PAD

线面平行判定教学设计 篇7

各位老师各位同学,今天我说课的内容是《直线与平面平行的判定》

接下来我将从这几方面来完成我的说课内容:

一、前期分析

教学内容:

本节内容选自人教版A版必修2第二章第二节直线、平面平行的判定及其性质》的第一课时,是学习了点、线、面的位置关系以后,进一步研究直线与平面的位置关系。平行关系是本章的重要内容,线面平行是平行关系的初步,也是面面平行判定的基础,而且还映射着线面垂直的有关内容,具有承上启下的作用。

因此本节内容具有承前启后的作用,地位至关重要.

教学对象:

学生通过对点、线、面位置关系的学习,初步理解了空间中点、线、面及位置关系,但学生的空间想象能力还有待提高。

由此我确定了本节课的教学重、难点如下:

重点难点:

重点:直线和平面平行关系判定的形成过程;

(通过直观类比、探究发现来突出重点)

难点:直线与平面平行判定定理的理解和应用。

(通过分组讨论、设计练习等教学手段来突破难点)

这样确定重点,既能夯实“双基”,又凸现了掌握知识的三个层次:识记、理解和运用.而公式推导用到了多种重要的数学思想方法,所以既是重点又是难点.

根据以上内容、学生的认知水平和新课程标准,我制定了以下三维目标:

二、三维目标

1、知识与技能:掌握并能较灵活运用判定定理解决有关问题。

2、过程与方法:经历线面平行探索过程,掌握线面平行的判定定理的研究方法。

3、情感、态度与价值观:在新课程理念的指导下,以探究问题为中心,感受线面平行的必要性和实际意义,形成学习数学的积极态度。

四、教学过程

(一)复习引入

直线与平面有三种位置关系:在平面内,相交、平行 m,l,问题:怎样判定直线与平面平行呢?

根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?

(二)研探新知

1、观察

①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?

问题本质:门扇两边平行;书的封面的对边平行 从情境抽象出图形语言

探究问题:

平面外的直线a平行平面内的直线b ③直线a,b共面吗? ④直线a与平面相交吗?

课本P55探究

学生思考后,小组共同探讨,得出以下结论

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。已知:已知:m,l,m//l 求证:l∥ α

证明:假设l不平行αl,∵∴l与α相交,设l ∩α=P,则点P 于是l和m异面,这和l∥m矛盾,∴ l∥ α。

a

b

直线与平面平行判定定理:

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。符号表示:

∥α a∥b

问题:怎么判定直线与平面平行:

1、定义法

2、判定定理

2、典例

例1 课本p55求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。分析:先把文字语言转化为图形语言、符号语言,要求已知、求证、证明三步骤,要证线面平行转化为线线平行EF//BD

已知:如图,空间四边形ABCD中,E,F分别是AB,AD的中点.求证:.EF//平面BCD。证明:连接BD,因为AEEB,AFFB,所以EF//BD(三角形中位线定理)

因为EF平面BCD,BD平面BCD,由直线与平面平行的判定定理得EF//平面BCD

点评:该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。变式训练 :如图,在空间四面体ABCD中,E,F,M,N分别为各棱的中点,变式一(学生口头表达)

B

C

①四边形EFMN是什么四边形?(平行四边形)②若ACBD,四边形EFMN是什么四边形?(菱形)③若ACBD,四边形EFMN是什么四边形?(矩形)变式二

①直线AC与平面EFMN的位置关系是什么?为什么?(平行)②在这图中,你能找出哪些线面平行关系? 点评 :再次强调判定定理条件的寻求

2、如图,已知P为平行四边形ABCD所在平面外一点,M为PB的中点,求证:PD//平面MAC.

证明:连接AC ∴PD//MO.

∵PD平面.

点评:本题利用了初中几何中证明平行的常用方法中位线

C D变式训练:1.如图,长方体A BA  B  C  D  中,(1)与AB平行的平面是 ABCDCCDD;

(2)与A A 平行的平面是平面平面C CDD;(3)与AD平行的平面是BBCC

2.已知E、F分别为正方体ABCD-A1B1C1D1棱BC、C1D1的中点,求证:EF ∥平面BB1DD

1【作业布置】

1、教材第62页习题2.2 A组第3题;

如何证明线面垂直 篇8

如何证明线面垂直

∵PA⊥平面α,直线L∈平面α

∴PA⊥L========================①

∵PB⊥平面β,直线L∈平面β

∴PB⊥L========================②

综合①②得:

直线L⊥平面PAB(垂直于平面两条相交直线的直线垂直于这个平面)

∴L⊥AB(垂直于平面的直线垂直于平面内的任一直线)

线面垂直的判定定理证明,我一直觉得证明过程太过复杂。前年曾经这样证明,今天写在这里。m和n为平面中两条相交直线,通过平移或者说原本就在,使得l经过m、n的交点O,我们只需证明l垂直与平面中的任意一条直线g 即可!在m、n上分别以O点为中点截取AC、BD,则得到平行四边形ABCD。此时不难由三角形全等的知识得到l⊥g。

答案补充

证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF, 分别过E、F作ED、FB交L2于D、B (令OD=OB)则SOED ≌S OFB (SAS) 延长DE、BF分别交L1于A、C 则SOEA≌SOFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。 所以OA=OC,所以SOAD≌SOBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以SMAD≌SMCD(SSS)所以 角MAE= 角MCF 所以SMAE≌SMCF(SAS) 所以ME=MF,所以SMOE≌SMOF(SSS),所以角MOE=角MOF 又因为 角MOE与 角MOF互补,所以角MOE=角MOF=90度,即L⊥L3

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的.圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法 两条直线的方向向量数量积为0

2斜率 两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法 两条直线的方向向量数量积为0

2斜率 两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

线面垂直的判定练习题 篇9

1.如图,四面体ABCD中,AD平面BCD,E、F分别为AD、AC的中点,BCCD. 求证:(1)EF//平面BCD(2)BC平面ACD.

2.如图,P为ABC所在平面外一点,PA平面ABC,ABC90,AEPB于E,AFPC于F PF求证:(1)BC平面PAB;

(2)AE平面PBC;

(3)PC平面AEF.

BAEC3、如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD1⊥平面ACB1(3)求三棱锥B-ACB1体积.

D

1A

D

C

B

C1

A1

B14、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D

1DABBC1

面AB1D1.(2)AC1

C

5.如图,在三棱锥PABC中,ACBC2,ACB90,APBPAB,PCAC.求证:PCAB;

P

A B

C

6.如图,在三棱锥S-ABC中,SABSACACB90,证明SC⊥BC

7.如图9-29,PA⊥平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点. 求证:MN⊥AB.

8.如图:在斜边为AB的Rt△ABC中,过点A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F,(1)求证:BC⊥平面PAC;(2)求证:PB⊥平面AEF.PE

F

A

B

C2

9.如图:PA⊥平面PBC,AB=AC,M是BC的中点,求证:BC⊥PM.P

A

上一篇:实习队总结材料下一篇:妙语连珠100句