初中几何证明经典题
(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;
(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.B
A
ME
DB
(4)观察图
1、图
2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线
段,并满足(1)或(2)的结论,写出相关题设的条件和结论.3.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=在线段BC上(不与B,C重合)运动,其他条件不变时
BC;③当D
2BH
是定值;④当D在线段BC上(不与B,C重合)BD
BCEC
运动,其他条件不变时是定值;
DC
(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;
F
C
F
图 1图2图
32.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD
于点H,试证明CH=EF+EG;
图
1D
DC
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于
点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
F
H
BCD
E
4.在△ABC中,AC=BC,ACB90,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FHFC,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
A
A
F
D F
D
E
C B
C
图
1E
图
2H
5.如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
证明.
8.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE
上,且AQ∥PC.(1)证明:PC=2AQ.
(2)当点F为BC的中点时,试比较△PFC和梯形APCQ面积的大小关系,并对你的结论加以证明.
6.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。
探究:线段FG的长与△ABC三边的关系,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。注意:选取①完成证明得10分;选取②完成证明得7分。①可画出将△ADF沿BD折叠后的图形; ②将CE变为△ABC的内角平分线。(如图2)
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。
9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.CH
G
A图3 图1 图
27.在四边形ABCD中,对角线AC平分∠DAB.
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.
(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予
10.已知△ABC中,AB=AC=3,∠BAC=90°,点D为BC上一点,把一个足够大的直角三角板的直角顶点放
在D处.
(1)如图①,若BD=CD,将三角板绕点D逆时针旋转,两条直角边分别交AB、AC于点E、点F,求出重叠部分AEDF的面积(直接写出结果).
(2)如图②,若BD=CD,将三角板绕点D逆时针旋转,使一条直角边交AB于点E、另一条直角边交AB的延长线于点F,设AE=x,重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.(3)若BD=2CD,将三角板绕点D逆时针旋转,使一条直角边交AC于点F、另一条直角边交射线AB于点E.设CF=x(x>1),重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.
2、如图,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,试探究BE与CF的数量关系。
3、如图,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H。猜想线段EH与AC的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。
4、在△ABC中,O是AC上一点,P、Q分别是AB、BC上一点,∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。试说明OP与OQ是数量关系,选择条件:(1)m=1,(2)m=k=1。
2011年中考几何经典证明题
(二)1、如图,△ABC中,∠BAC=90°,AD⊥BC,E为CB延长线上一点,且∠EAB=∠BAD,设DC=kBD,试探究EC与EA的数量关系。
5、如图,△ABC中,AD是BC边上的中线,∠CAD=∠B,AC=kAB,E在AD延长线上,∠CED=∠ADB,探究AE与AD的关系。
如何针对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法.
一、尊重教材
苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查. 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战. 要抓好这部分证明题的教学,我认为首先就是要尊重教材.
教材是一切教学工 作的根源. 教材中有 很多经典 的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透, 学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题. 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习.这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作.
二、做好细节的规范书写
初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价. 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火. 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心.
有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求. 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义.
如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范. 其次,学高为师,身正为范, 这也是对教师教学工作的一个基本要求. 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求.
三、抓好强化训练
初中几何证明题的教学, 离不开强化训练. 这种强化训练既要训练学生的逻辑思维, 还要训练学生的答题规范性.比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答.
要能准确作出辅助线,并熟练地运用各种定理来证明几何题, 就需要平时进行一定量的强化训练. 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜.比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线, 我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了.
通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率.
总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示.同时也要端正教学心态, 在板书和示范上尽量做细做实,切忌一笔带过, 草草了事. 最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效.
摘要:初中数学几何证明题需要思路明确、步骤清晰、过程精练,才能得到完整的分数.如何在新一轮课程改革的背景下,取得初中几何证明题教学的新突破,是本文着重探讨的一大问题.
关键词:初中;几何;证明题
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2014)01-156-01
大家都知道初一是学生学习几何的关键期。要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。那么,怎样才能使学生过好这一关呢?
一、强心理攻势——闯畏难情绪关
初一、初二学生的年龄,一般都在十三、十四岁,从心理学角度看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。因此我让每名学生明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高对于学生取得的点滴成绩药剂师给予表扬和鼓励,对于出现的问题要及时帮助解决是学生对学习几何产生信心,提高学习成绩。
二、小梯度递进——闯层层技能关
学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。
1、牢记几何语言
几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。
2、规范推理格式
数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。通过反复、不同形式的填写,让学生掌握基本性质的表达格式,体会图形与题目存在的依存关系。同时通过从定义、性质、判定出发,由简到难,逐步深入,让学生提高对几何证明的信心。
3、积累证明思路
“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。
经过学生之间的互学互教进一步掌握方法和解题格式,再通过变式训练达到本课的教学要求。
通过反复操练解题思路,在注重解题格式的要求下,每个学生在每一堂课上积累一个解题思想,学到一点新知识,都有所收获增强对学习几何的信心。
4、培养书写证明过程中的逻辑思维能力
有的学生写出的证明过程,条理清楚,逻辑性强,但有的学生写出的证明过程逻辑混乱,没有条理性,表达不清楚,这种情况,就是在平时的教学中,没有注意培养学生的逻辑思维能力。首先,一开始学习几何,一定要在书写证明过程中逐步培养学生的逻辑思维能力。强调由哪个条件才能得出什么结论,不要根据初三数学对几何证明的要求,忽略中间的条件的描述。在描述中不要漏了条件的大括号,判定依据等,检验在写的过程中是否符合所写的几何命题的格式等注意思维的严密性。 其次,在书写证明过程时,要逐步培养学生书写证明过程中的整体逻辑性,即通过分析,这个证明过程可分几大段来写,每一段之间的逻辑关系是什么?哪些段应先写,哪些段应后写。例如在几何证明过程中,提醒注意段与段之间的逻辑性,在搞清楚了这些之后,然后再分段书写证明过程,前面已证明的结论,在后面的证明过程中直接应用应把条件在写一次,体现其逻辑性。这样写出来的证明过程才条理清楚,逻辑性强。
三、善于总结经验——把好思维总结关
随着几何课程的进展,几何证明题的内容和难度都会不断地增加。因此,学习了一段之后,要回顾一下,看看已学了哪些知识点?自己在审题,推理、思路分析,证明过程等的书写方面掌握了没有,熟练的程度如何?如果在某些方面掌握得还不很好,就要在该方面多作一些练习,多想多问,使自己达到即熟练,又会“巧用”的程度。
众所周知,几何证明是初中数学学习的难点之一,其难就难在如何寻找证明思路,追根问底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方法,具有重要意义,而且切实可行。通过平时的学习、探索和积累,我发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。
新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。
初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。
考题:如图,在Rt△ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。
⑴求证:ED是⊙O的切线。
⑵E为BC的中点,如果⊙O的半径为1.5,ED=2,求AB的长。
这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第问“求AB的长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方法不够灵活,措施不到位造成的直接后果。
怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下4个步骤,进行指导,收到良好的效果。
1.读
读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。
2.记
记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②„„和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线?
3.选
“选”就是选定解题思路,确定解题方法,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方法,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结
OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明△EOC≌△EOD从而也就确定了解题方法。
4.返
就是选定了解题思路、确定了解题方法,并写出解答的过程中,特别是遇到解答的过程受阻时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。可以看出,“读、记、选、返”四个步骤通俗易懂、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到平时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良好习惯,就能很好纠正学生不良的解题思维习惯和学习习惯!
初中数学,广西贺州市从2008年秋季学期启用人教版新课改教材至今,恰好经历了两个周期。五年来,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。
评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方法总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。而教师本身是否也反省过自己,一节课下来我们到底教给了学生什
么?方法、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。
课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方法,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!
当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。开展校本教育科研活动,有利于学校引导教师理性反思教学,唤醒教师的自觉能动性和创造性,促使教师不断追求教育实践的合理性,让教师学会“教”,学生学会“学”。
学校要倡导教师以科学的精神、研究者的姿态,在不断反思中自觉运用先进的教育理论指导实践,探索教育规律。这既是时代对教师的要求,也是促进每一个学生都得到发展的前提条件。
【摘要】平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。
【关键词】几何解题平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。那么,如何提高初中生几何证明题的解题能力呢?针对这一情况,笔者认为应从以下几方面入手,提高学生的几何证明能力:1 夯实基础,灵活应用知识是提高学生几何证明的关键证明的每一步都是具体运用定理、定义进行推理。每一个复杂的证明过程都是由这样一些证明步骤组成的。光会背定义、定理的词句,不明白它的含义,不会用它去推理是不会证明的。有些同学在证明过程中逻辑混乱,证明过程总是欠缺条件或“自创”条件,这些情况是学生对定义、定理没有透彻理解,只知一、二的体现。在教学中,教师应特别注意对学生进行结合图形写出推理的训练,让学生明确在什么样的条件下能得到怎样的结果。这样才能较好的体现逻辑思维过程。认真读题2.1 读题要细心。有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
2.2 要记。这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
2.3 要引申。
期刊文章分类查询,尽在期刊图书馆难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。指导学生解题的方法3.1 分析逆推法。所谓分析逆推法应该就是“由果索因”地对所要证明的结论进行周密分析,逆向逐步找出结论成立需要具备的充分条件。在平面几何证明题中,这一解题思路是用得最多也是最常用的思路的。
3.2 综合顺推法。综合顺推法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“要证明的结果”。这一方法适用于比较简单的证明题目。
3.3 分综结合法。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析。初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路。
3.4 添加辅助元素。在几何学中用来帮助解答疑难几何图形问题是在原图基础之上另外所作的具有极大价值的直线或者线段。我们作辅助线的目的你要明确,就是将我们不常见的图形转化成我们学过的知识来解答和证明。这种方法需要一定的解题经验和掌握牢固的基础知识作支撑。注重证明过程的书写证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合,不能无中生有、胡说八道,要有根有据!证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。
(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG平行AB,交BC于F,交AC于G。求证CD=GA。
延长AE至F,使AE=EF。BE=ED,对顶角。证明ABE全等于DEF。=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。角ADE=BAD+B=ADB+EDF。AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。
题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵AE是三角形ABD的中线,F是AB边上中点。∴EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。∵∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴△AFE∽△CDA∴AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵∠ACB=90°=∠DHB,且BD是角B的平分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴△DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵DH⊥AB,CE⊥AB;∴DH∥CE,得∠HDB=∠COD=∠CDB,△CDO为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边平行且相等,则四边形CDHO为平行四边形,HO∥CD且HO=CD∵GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为平行四边形,HO=FA∴CD=FA得证
有很多题
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于p,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=Fp,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证Fp=2DJ。
又因为FQ=Fp,EM=EN.FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.在△BCI)和△CDE中
∵BC=CD,∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ΔCDE
∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN
∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN
∴ΔBDM≌ΔCNE∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,p,Q分别为BC,CD边上的点。且角pAQ=45°,求证:pQ=pB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQAB=AD∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ∠MAB=∠DAQ
∴∠MAp=∠MAB+∠pAB=45度=∠pAQ
∵∠MAp=∠pAQ
AM=AQAp为公共边
∴三角形AMp≌三角形AQp
∴Mp=pQ
∴MB+pB=pQ
∴pQ=pB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,Bp⊥MC于点p,求证Dp⊥Np
∵直角△BMp∽△CBp
∴pB/pC=MB/BC
∵MB=BN
正方形BC=DC
∴pB/pC=BN/CD
∵∠pBC=∠pCD
∴△pBN∽△pCD
∴∠BpN=∠CpD
∵Bp⊥MC
∴∠BpN+∠NpC=90°
∴∠CpD+∠NpC=90°
要想用好同一法, 就必须先对同一法有较为明确的概念区分, 虽然学界对同一法一直存在争议, 但王学贤老师曾用集合的观点很好地解释过同一法的实质, 大致内容是:每一个数学命题都是由条件和结论两部分构成的, 一般的命题可以描述为如果 (若) 某些对象具有某种性质a, 那么 (则) 它们就具有某种性质b, 在这里, 条件是“某些对象具有性质a”, 结论是“它们具有性质b”, 如果把具有性质a的对象集合记作A, 把具有性质b的对象集合记作B, 把某些对象中任一对象记作x, 则x∈A。若原命题是真命题, 则x∈B。因此, 命题用集合描述就是:A是B的子集, 即A⊆B。同样, 其逆命题就是B⊆A。显然A不一定等于B, 即原命题成立, 逆命题不一定成立, 但当集合A仅含有一个元素m, 集合B也仅含有一个元素n时, A=B, 此时, 原命题成立, 其逆命题也必然成立。因此, 得到下述基本原理:如果一个命题的条件和结论所指的对象都唯一存在时, 则原命题、逆命题等价, 这个基本原理叫做同一原理。例如“等腰三角形顶角的平分线是底边的中垂线”就符合同一原理。当一个命题符合同一原理, 且直接证明比较困难时, 可转而证明它的逆命题, 这种证明方法就是同一法。具体的做法是:欲让某个图形A具有某种性质B时, 先构造一个具有性质B的图形A′, 然后证明图形A′就是图形A, 实质上是用证明逆命题来间接证明原命题的正确。下面通过几个例题更加清楚地来认识同一法。
例1:如图1所示, E是正方形ABCD内部的一点, ∠ECD=∠EDC=15°。求证:△EAB是等边三角形。
分析:因为在正方形ABCD内部使得∠ECD=∠EDC=15°的点唯一存在。同样, 在正方形ABCD内部以AB为边的等边三角形也唯一存在, 因此, 此题符合同一原理, 可以用同一法来证明。
证明:以AB为边, 在正方形ABCD内作等边三角形E′AB, 连接E′C、E′D。
∵E′A=E′B=AB=DA=CB。
∴∠CBE′=90°-60°=30°, ∠BCE′= (180°-30°) ÷2=75°。
∴∠E′CD=90°-75°=15°。
由此可见, E′和E实际上是同一点, 故△EAB是等边三角形。
例2:如果一条直线截三角形的两边所得的线段对应成比例, 那么这条直线平行于三角形的第三边。
证明:过D作DE′∥BC, 交AC于E′。
故E′和E重合, DE′和DE重合。
∵DE′∥BC, ∴DE∥BC。
例3:如图3所示, 梯形ABCD中, AD∥BC, AD+BC=AB, F是CD的中点。求证:∠DAB的平分线过点F。
分析:只要连接AF, 证明AF平分∠DAB, 或作∠DAB的平分线于DC相交于点F, 证明F是DC的中点即可。
证明:连接AF并延长与BC的延长线相交于点E。
∵梯形ABCD, ∴AD∥BC, ∠D=∠ECF。
又∵∠AFD=∠EFC, DF=CF。∴△ADF≌△ECF, ∠E=∠DAF, AD=CE, 即BE=BC+CE=BC+AD。
又∵AD+BC=AB。∴AB=BE, ∠E=∠BAE, ∠DAF=∠BAE, 即AE平分∠BAD。
又∵AE过F点, ∴∠DAB的平分线过点F。
例4:如图4所示, 在三角形ABC中, M为线段AB的中点, D为AB上的另一点, 连接CD, N为CD的中点, P为BC的中点, 连接MN, Q为MN的中点, 试证明直线PQ平分线段AD。
分析:因为过P、Q两点的直线与AD的交点和AD的中点都唯一存在, 所以题目符合同一原理, 若直接证明, 因关系复杂难以证明, 因此可采用同一法证明, 欲证直线PQ平分AD, 可先取AD的中点为E, 然后证明P、Q、E三点共线即可。
证明:取AD的中点为E, 连接NE、PM、NP。
∵AE=ED, DN=NC。
∴EN∥PM且EN=PM, 四边形PNEM为平行四边形。
连结PE, 因为Q是MN的中点, 所以对角线PE必过Q点, 即P、Q、E三点共线。
∴直接PQ必平分AC。
【关键词】图形 平行四边形 向量 对角线
义务教育教科书《数学》八年级下册P69复习题18,拓展探索第15题是一道几何证明题且是一道证明命题的证明题。从这题中引发我许多思考,我首先想到的是该题有多少种解法,在这诸多方法中选择哪种能让学生更易理解,从不同的角度来训练学生的思维,但有些方法需要高中的知识才能解答,所以此题与高中的知识联系非常密切。题目如下:
15.求证:平行四边形两条对角线的平方和等于四条边的平方和。
已知:如图,四边形是平行四边形,对角线与相交于点.
求证:
证法一:如图1,过点作于点,
在平行四边形中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有①,
②,
③,
由①×2=②+③,
化简可得,
即
因此,平行四边形四条边的平方和等于两条对角线的平方和.
证法二:如图2,过点A作AF⊥BC,垂足为F,过点B作BE⊥BD,垂足为E.
∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,易证BE=AF,AE=BF,
∴,
∵
∴
即
因此,平行四边形四条边的平方和等于两条对角线的平方和.
证法三:如图3,过A,D两点做BC边的高,垂足分别为E、F
则易知△ABE≌△DCF,BE=CF,AE=DF
利用勾股定理得
所以
即
因此,平行四边形四条边的平方和等于两条对角线的平方和.
证法四:如图4,以顶点A为坐标原点,以AB所在直线为x轴建立平面直角坐标系,则 A(0,0).设B(a,0),D(b,c),由平行四边形的性质得点 C的坐标为(a+b,c),因此,平行四边形四条边的平方和等于两条对角线的平方和.
解析:余玄定理是高中的知识点,它可以帮助我们解决一些生活中的问题。相同的问题比用初中的知识来解更为简单。
总之,一题多解、一題多变是我们教学的重心,通过题目的各种变换训练学生的思维,从而提高学生思考和分析问题的能力。本题介绍的六种方法从不同的角度来分析和看待问题,体现任何事物都具有多面性,不同的问题用同一种方法或者同一个问题用不同的方法这一辩证的思想,将其贯穿于我们的数学教学中。
作者简介:齐廷廷(1989-)女,黑龙江省大庆市,研究方向:中外政治制度
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。
21.(本小题满分9分)
如图,直线yxm与双曲线y
(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x
(3)直线y2x4m经过点B吗?请说明理由.
(第21题)
28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):
题28(a)图题28(b)图
(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A
出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长。
23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
CE
27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
DF求 FC 的值.
图1 E C
(作者:河南省唐河县刘军义)
几何做题很容易,证明过程写详细。数学原理巧运用,前后贯通有条理!题目信息不放过,必与结果有联系。学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。证理恰切书规范,美观整洁又得体!解释:
1、题目信息:指题目中给的证明条件。
2、结果:指要证明的内容。
3、因为所以单点对:指“∵”和“∴”竖写时情况。
4、尖相抵:指“>”和“<”横写时的情况。
5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。
例:试证两边上的高相等的三角形是等腰三角形。
已知:在€%=ABC中,BD⊥AC,CE⊥AB且BD=CE。
求证:€%=ABC是等腰三角形。
分析:要证三角形是等腰三角形,可证其两内角相等,要证两内角相等,可证含此两角的某两个三角形全等,这是一条思路;因为所给条件是两高相等,所以用面积公式证明更为简捷,这是另一条思路;或者根据条件中的直角三角形,用三角函数或勾股定理来证明,这又是一条思路;如发现四点共圆,则运用等弦对等弧,等弦对等圆周角,也能证明此题;如果注意到所给条件特殊,那么用解析法也易证明。
在中学数学学习中, 除了数学运算之外, 更多的是几何证明。初中生普遍认为平面几何难学, 教师也认为这部分内容难教。教师在教学中对这部分内容的教学如果处理得当, 不仅会激发学生学习数学的兴趣, 还可以培养学生解决和分析问题的能力。相反, 如果处理不当就会使学生丧失学习数学的兴趣和信心。因此, 平面几何中, 证明题的教学就显得尤为关键。在具体教学中本人是这样做的:
一、重视几何语言和几何图形的教学
几何语言是几何知识的载体, 也是几何思维的工具。从一定程度上说, 几何语言能力的高低决定了几何学习水平的高低。因此, 在教学中应重视几何语言和几何图形的教学。
1. 注重学习与模仿。
课本是学生学习的依据, 教学中应培养学生良好的学习与模仿习惯。如:可让学生从书中找出当天学过的概念、定理, 并指导学生划出其中关键和容易出错的字词, 然后引导学生模仿课本中的语言叙述、表达公理、定理、图形等。
2. 重视几何语言的规范。
因为几何语言既具有简洁、抽象、概括、严密等特点, 又具有独特的逻辑性和语法结构。所以, 首先, 教师在讲课时语言要严谨, 板书要有条理, 符号书写要规范, 从而给学生起到良好的示范作用。其次, 对难以理解的几何术语要进行详细的讲解、点拨。再次, 在研究图形时对一些常用语句要与日常生活中的相区分。
3. 重视几何图形的教学。
几何图形是学生正确进行几何推理的依据之一, 学生对图形识别能力的强弱直接影响着他们几何学习的好坏。因此, 教师要加强基本图形的教学, 要在向学生讲清基本图形的构成、基本性质、特征后, 再循序渐进地引入变式图形训练。
二、教给学生证明几何题的方法
大多数学生刚开始接触到几何证明题时都感觉到头疼, 一方面是被几何图形的叉叉角角吓住了, 另一方面就是没有掌握学习方法。俗话说:“授之以鱼, 不如授之以渔”, 所以, 我认为教给学生解答几何证明题的方法是很有必要的。通过几年的教学我总结出了下面的方法:
1. 读题、看图。
也就是说首先要清楚地知道题目给了你什么可用的条件或图中隐含了什么信息, 要证明的是什么。
2. 分析条件。
想一想根据已知的条件进而能得到什么信息。
3. 探寻证明思路。
多数几何命题的证明要通过综合法与分析法来完成。综合法就是从题设出发逐步推理, 直到得出要证明的结论。分析法是从结论出发, 寻找其成立的条件, 再就这些条件分别研究, 看它的成立又需要什么条件, 继续逐步追溯, 直到推出已知条件为止。二者的思路正好相反, 综合法是由因导果, 而分析法是执果索因。分析法利于思索, 综合法便于叙述。下面通过一道例题加以说明 (这道例题是在三角形全等这一章出现的) 。
例:如图, 在△ABC中, AB=AC, 延长BC到E, 延长CB到D, 使BD=CE。求证:AD=AE。
分析:采用综合法即从已知条件向结果推:从已知条件看, AB和BD是△ABD的两条边, 这两条边的夹角是∠ABD;AC和CE是△ACE的两条边, 这两条边的夹角是∠ACE。已知条件有AB=AC, 所以∠ABC=∠ACB, 那么显然∠ABD=∠ACE, 所以△ABD≌△ACE, 因而AD=AE。从而推出了结论。
采用分析法这样来思考:要证AD=AE, 就要证明这两边所在的△ADB与△AEC全等。要证两个三角形全等, 就看这两个三角形符合全等的条件有哪些。已知条件告诉我们有两边对应相等:AB=AC, BD=CE, 那么, 就再看这两边的夹角是否相等。因为由AB=AC可得∠ABC=∠ACB, 所以对应的夹角∠ABD=∠ACE。显然, 这样就推出来了。为了便于书写解题过程, 分析的同时可在草稿上将分析过程写出来。
【初中几何证明经典题】推荐阅读:
如何提高初中生几何证明题的解题能力03-11
中考数学经典几何证明题03-06
初二下几何证明题06-09
苏教版初二几何证明题02-21
分析立体几何证明题思路的方法12-11
初二几何证明01-06
初二数学几何证明05-24
几何证明专题训练09-09
几何证明与计算10-25
几何综合题三10-31