函数极限用定义证明

2025-02-02 版权声明 我要投稿

函数极限用定义证明(推荐5篇)

函数极限用定义证明 篇1

用定义证明函数极限方法总结:

用定义来证明函数极限式limf(x)c,方法与用定义证明数列极限式类似,只是细节xa

不同。

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xah(),从而得h()。

方法2:将f(x)c放大成xa,解xa,得xah(),从而得

h()。

部分放大法:当f(x)c不易放大时,限定0xa1,得f(x)cxa,解xa,得:xah(),取min1,h()。

用定义来证明函数极限式limf(x)c,方法: x

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xh(),从而得Ah()。

方法2:将f(x)c放大成xa,解xa,得xh(),从而得

Ah()。

部分放大法:当f(x)c不易放大时,限定xA1,得f(x)cxa,解xa,得:xh(),取AmaxA1,h()。

平行地,可以写出证明其它四种形式的极限的方法。

例1 证明:lim(2x3)7。x2

证明:0,要使:

(2x3)72x2,只要 2x2,即0x2

取2,

2,即可。

x212。例2 证明:lim2x12xx13

x1x212x12分析:因为,放大时,只有限制22xx132x1332x1

0x1,即0x2,才容易放大。

证明:0,限制0x1,即0x2,要使;

x1x1x1x1x212x12

,只要

32x2x132x1332x132x13

即0x3,取min(1,3),即可。

例3

证明:(a1)。

xa

证明:0,限制0xa

1a1a

1,要使:,所以x

22

,只要

1a,,即可。,取min,即0xa

22



x3,x1

例4 设f(x),证明:limf(x)1。

x1

2,x1

证明:当x1时,f(x)1x1x1xx1

限制0x1,则xx112,xx17。0,要使:

f(x)1x1x2x17x1,只要7x,即x1

7,取



min,当0x1时,有:

7

f(x),limf(x)1

x1

说明:这里限制自变量x的变化范围0x1,必须按自变量x的变化趋势来设计,xa时,只能限制x在a点的某邻域内,不能随便限制!

错解:设x1,则xx13,要使:

f(x)1x1x2x13x1,只要0x1

,取min1,,3

当0x1时,有:f(x)1。limf(x)1。

x1

例5 证明:lim

1。

x12x1

2x11

证明:考察,2x12x1112x1 1

2x12x1

限制0x1

111,则2x112x11。0,要使: 422

2x1

4x1,只要4x,即x1,42x12x1

1

44

1,2x1

取min,,当0x时,有:lim

x1

1。

2x1

1,则4

说明:在以上放大f(x)A(即缩小2x1)的过程中,先限制0x1得:2x1

11。其实任取一个小于的正数1,先限制0x11,则22

0x1或0x1,则不2x1x1112m(如果是限制0

例6 证明:lim

能达到以上目的)。

x

2。

x24x7

证明:考察

7x271x,仅在x的邻域内无界,所以,限制2

44x74x74x7

171

0x2(此邻域不包含x点),则4x74x2114x2。

842

0,要使:

7x27x2x

只要14x2,即x2,214x2,144x74x714x2

取min,x1,当时,有:2,0x2

4x7814

x

2。

x24x7

x0

lim

x

例7 用定义证明极限式:lima1,(a1)

证明:0(不妨1),要使:

ax11ax1loga1xloga1(由对数函数

。于是,取minloga1, loga10,f(x)logax是单调增函数)

xx

当0x0时,有:a1。故lima1。证毕

x0

例8 设f(x)0,limf(x)

A,证明:lim

xx0

xx0

n2为正整数。

证明:(用定义证明)因为,f(x)0,由极限保不等式性知,A0;当A0时,0,由limf(x)A,知:0,当0xx0时,有:f(x)A

xx0



f(x)A

n1



n2

n2

n1

f(x)A

n1

n1,故:lim

xx0

im(f)x0当A0时:0,由l

xx,知:

0,当0xx0时,有:

f(x)

 0lim

xx0

函数极限用定义证明 篇2

其实,对于几类黎曼积分的定义,均是以无穷和式的极限方式给出.既然如此,一些相关的无穷和式可以考虑用黎曼积分的定义求解.

1.几何形体上黎曼积分的统一的定义

定义1[6]设Ω为一几何形体(它或者是直线,或者是曲线段,或者是一块平面图形、一块曲面、一块空间区域等),这个几何形体是可以度量的(也就是说它是可以求长的,或者是可以求面积的,可以求体积的,等等),在这个几何形体Ω上定义了一个函数f(M),M∈Ω.将此几何形体Ω分为若干个可以度量的小块△Ω1,△Ω…△Ωn,既然每一小块都可以度量 ,故它们皆有度量大小可言,把它们的度量大小仍记为△Ωi,(i=1,2n).并令n{△Ωi的直径},在每一块△Ωi中任意取一点Mi,作下列和式(也称黎曼和数,或积分和数):,如果这个和式不论对于Ω的怎样分划及Mi在△Ωi上如何取法,只要当d→0时恒有同一极限I,则称此极限为f(M)在几何形体Ω上的黎曼积分,记为,也就是)△Ωi. 这个极限是与分法及Mi取法无关的.

根据黎曼积分的定义, 显然我们可以构造出各类利用黎曼积分的定义求无穷和式的极限的问题. 下面我们将一一作叙述.

2.利用定积分的定义求极限

定义2(6)(定积分 )若函数f(x)在闭区间 [a,b]上有定义且,它被称为函数f(x)在区间[a,b]上的定积分.

利用定积分的定义可以构造出一些无穷和式的极限问题. 在一般的数学分析教材和一些高等数学教材及一些辅导书上,这样的例子很多,它们常常将区间[a,b]等分,ξi取左端点xi-1或者右端点xi,其他类型的习题鲜见 ,这可能会让学生在众多练习中对定积分定义产生误会.下面举例说明.

例1:计算下列极限

解:考察函数在[0,1]上的定积分,将[0,1]分成n等分,第i段区间为.我们取,则所求的极限式恰好是

3.利用二重积分的定义求极限

定义3[6] (二重积分)如果几何形体Ω是一块可求面积的平面图形σ,函数为f(M)=f(x,y),我们把图形σ划分成可求面积的n个小块,设{△σi的直径},在△σi任意取一点Mi(ξi,ηi),作和式)△σi极限式存在,我们称之为f(x,y)在σ上的二重积分,记为

类似于定积分的定义, 构造一个实例说明可利用其定义解一类无穷和式问题.

例2.计算下列极限

解:考察函数在[0,1;0,1]上的二重积分,将[0,1;0,1]分成nm份 ,在矩形区间m→∞n→∞}中.我们取

则所求的极限式恰好是

当然,上式中我们对于二重积分的极限形式可以有多种形式出现.如:任意给出一个

4.利用三重积分的定义求极限

定义4[6](三重积分)如果几何形体Ω是一块可求体积的空间几何体V,密度函数为f(M)=f(x,y,z),把这块体积划分成n块小体积△V1,△V2,…△Vn,并在每一块小体积上任取一点Mi(ξi,ηi,ζi),那么每一个小体积△Vi的质量近视地等于f(ξi,ηi,ζi)△Vi(i=1,2,…,n),三重积分即

利用三重积分定义求无穷和式的数列极限, 同样关键在于根据所给积和式正确确定被函数和积分限(积分区间).

例3.计算下列极限

解:类似于二重积分,我们利用三重积分的定义式可以得到

类似地, 我们可以通过利用多重积分的定义构造一些无穷和式,如:

当然,对于第一类曲线积分和第一类曲面积分而言,其定义也是由极限的方式给出, 因此也可以构造出一些相关的无穷和式的习题,这里不再一一叙述.我们撰写本文的目的仅仅在于唤起广大理工科大学生学习积分的兴趣, 并在学习数学知识时能够融会贯通、举一反三,同时供同行参考.

摘要:利用定积分的定义求极限是现行数学分析教材和高等数学教材上无穷和式的极限的计算的一种重要方法,不少参考文献也着力总结和归纳该方法.但是,几乎没有文献研究除定积分外的其他黎曼积分对应的无穷和式的极限问题.本文着力于从黎曼积分的定义出发,构造相关的无穷和式极限问题.

二元函数极限证明 篇3

此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。

我们必须注意有以下几种情形:’

(1)两个二次极限都不存在而二重极限仍有可能存在(2)两个二次极限存在而不相等

(3)两个二次极限存在且相等,但二重极限仍可能不存在2函数f(x)当x→X0时极限存在,不妨设:limf(x)=a(x→X0)

根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε

而|x-x0|<δ即为x属于x0的某个邻域U(x0;δ)

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-

1再取M=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域U(x0;δ)时,有|f(x)|

证毕

3首先,我的方法不正规,其次,正确不正确有待考察。

1,y以y=x^2-x的路径趋于0Limitedsin(x+y)/x^2=Limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。

2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。

4f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)

显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在而当x->0,y->0时

由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)

而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^

2所以|f|<=|x|+|y|

所以显然当x->0,y->0时,f的极限就为0

这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的正无穷或负无穷或无穷,我想这个就可以了

就我这个我就线了好久了

5(一)时函数的极限:

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

函数极限用定义证明 篇4

作者:酒钢三中 樊等林

不等式的证明历来是高中数学的难点,也是考察学生数学能力的主要方面。不等式的证明方法多种多样,根据所给不等式的特征,巧妙的构造适当的函数,然后利用一元二次函数的判别式、函数的奇偶性、单调性、有界性等来证明不等式,统称为函数法。本文通过一些具体的例子来探讨一下怎样借助构造函数的方法证明不等式。

一、构造函数利用判别式证明不等式 ①构造函数正用判别式证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得: a(b2)ab2b10,此方程恒成立,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2

1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36

632abc

二、构造函数利用函数有界性证明不等式

例5.设a﹤1,b﹤1,c﹤1,求证:abbcac﹥-1.解析:令f(x)(bc)xbc1为一次函数。

由于f(1)(1b)(1c)﹥0,且f(x)(1b)(1c)﹥0,∴f(x)在x(1,1)时恒有f(x)﹥0.又∵a(1,1),∴f(a)﹥0,即:abbcac1﹥0 评注:考虑式中所给三个变量的有界性,可以视其为单元函数,转化为f(a)1。

三、构造函数利用单调性证明不等式

abab例6.设a,bR,求证:﹥ 1a1b1ab解析:设f(x)又x11,当x﹥0时,f(x)是增函数,1x1xabababab2abababf(abab),=﹥=1a1b(1a)(1b)(1a)(1b)1abab而a,bR,∴abab﹥ab,∴f(abab)﹥f(ab)故有: abab﹥ 1a1b1ab例7.求证:当x﹥0时,x ﹥ln(1x)。解析:令f(x)xln(x1),∵x﹥0,∴f/(x)11x ﹥0.x1x1又∵f(x)在x0处连续,∴f(x)在0,上是增函数,从而,当x﹥0时,f(x)xln(1x)﹥f(0)=0,即:x﹥ln(1x)成立。

评注:利用函数单调性证明不等式和比较大小是常见的方法,特别是在引入导数后,单调性的应用将更加普遍。

四、构造函数利用奇偶性证明不等式

xx(x0)。例8.求证:﹤x212xxxxx2xx=解析:设f(x)-(x0),f(x)=xxx221212212xxxxx1(12)x==f(x).212x212x所以f(x)是偶函数,其图象关于y轴对称。

当x﹥0时,12x﹤0,故f(x)﹤0;当x﹤0时,依图象关于y轴对称知f(x)﹤0。

xx(x0)﹤212x评注:这里实质上是根据函数奇偶性来证明的,如何构造恰当的函数充分利用其性质是关健。

利用定积分的定义求极限 篇5

ab

ban

n

n

k1

f(a

ban

k)

ba

f(x)dx

例15求极限

n

(1)lim

n

k1n

nn4k

nn4k

解:lim

n

k1

lim

1n

n

n

k1

114()

n

k

114x

dx

actan2x

|0

actan2

n

(2)lim

n

k1n

nx2kn

解:lim

n

k1nx2kn

lim

n

k

[x2()]nk1n

n

(x2t)dtx1

(3)lim

1n

n

n(n1)(n2)(2n1)

n1

解:因为

1n

k0

ln(1n)

n

k

n(n1)(n2)(2n1)e

由于lim

1n

n

n

k1

ln(1

kn)

ln(1x)dx2ln21ln

4e

故lim

1n

n

n

n(n1)(n2)(2n1)e

ln

4e

上一篇:第一单元:我爱我的祖国.教学计划下一篇:党风廉政建设考核报告