面面垂直的性质的习题(精选11篇)
31空间中的垂直关系
1.判断线线垂直的方法:所成的角是,两直线垂直;
垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直
PO,O推理模式: PAAaAO。
a,aAP
2.线面垂直
定义:如果一条直线l和一个平面α相交,并且和平面α内的任意一条直线都,我们就说直线l和平面αl叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面α垂直记作:。
直线与平面垂直的判定定理:如果,那么这条直线垂直于这个平面。
推理模式:
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线。
3.面面垂直
两个平面垂直的定义:相交成的两个平面叫做互相垂直的平面。两平面垂直的判定定理:(线面垂直面面垂直)
如果,那么这两个平面互相垂直。
推理模式:
两平面垂直的性质定理:(面面垂直线面垂直)
若两个平面互相垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。
课后练习
1、(2008上海,13)给定空间中的直线l及平面,条件“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的()条件
A.充要B.充分非必要C.必要非充分D.既非充分又非必要
2、已知正方体ABCD-A1B1C1D1中,直线l是异面直线AB1 和A1D的公垂线,则直线l与直线BD1的关系为()
A.l⊥BD1B.l∥BD1C.l与BD1 相交D.不确定
1、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE.2、如图,棱柱ABCA1B1C1BCC1B1的侧面是菱形,B1CA1B
证明:平面AB1C平面A1BC13、如图,四棱锥PABCD中,底面ABCD为平行四边形。DAB60,AB2AD,PD 底面ABCD,证
明:PABD4、如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M
面面垂直的性质
1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.S
A C2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD
V D
C B3、如图,平行四边形ABCD中,DAB60,AB2,AD4将
沿BD折起到EBD的位置,使平面EDB平面ABD 求证:ABDE4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;
(2)平面BEF⊥平面PAD
(第4题
图)
CBD
例1如果一条直线垂直于一个平面内的:(1)三角形的两条边;(2)梯形的两条边;(3)圆的两条直径,试问这条直线是否与平面垂直?并对判断说明理由.
分析:本题可结合线面垂直的判定定理来说明.
解:(1)直线垂直于三角形所在的平面,因为三角形的两条边所在直线必相交;(2)不一定垂直于梯形所在的平面,因为有可能与两条平行的底所在直线垂直;(3)垂直于圆所在的平面,因为两条直径所在直线必定相交.
点评:本题中的(2)往往会认为是正确的,虽然梯形中有相交的边,但是梯形的上、下底平行,若已知直线与这两底平行,不满足线面垂直中平面内两条相交直线的条件.
二、直线和平面垂直的判定
例2如图1,四边形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点,求证:MN⊥平面PCD.
分析:利用直线与平面垂直的判定定理证明线面垂直时,关键是要在这个平面内找两条相交直线分别与已知直线垂直.本题中即在平面PCD内找两条相交直线PC、PD,再分别证明MN⊥PD与MN⊥PC.
点评:题目中有等腰三角形,一般取底边的中点,则可以由三线合一的性质得到线先垂直的条件.
三、直线与平面垂直的性质的应用
例3如图2,在正方体ABCD-A1B1C1D1中,E、F分别为A1D和AC上一点,EF与异面直线AC、A1D垂直,求证:EF∥BD1.
分析:利用线线垂直的性质来证明线线平行,其关键是找(构建)出平面,使所给的直线都与该平面垂直.本题中BD1为正方体的对角线,连接AB1、B1C后可证得到BD1⊥平面AB1C,只需要证EF⊥平面AB1C即可.
证明:连接AB1、B1C、BD、B1D1,
因为DD1⊥平面ABCD,AC平面ABCD,
所以DD1⊥AC,又AC⊥BD,则AC⊥平面BDD1B1,所以AC⊥BD1,同理可证BD1⊥B1C,所以BD1⊥平面AB1C.又因为EF与异面直线AC、A1D垂直,即EF⊥AC,EF⊥A1D.
又因为A1D∥B1C,所以EF⊥B1C,
则EF⊥平面AB1C.所以EF∥BD1.
点评:正方体、直棱柱、正棱锥、正四面体等特殊的几何体都有明显的几何特征,在解题时要充分挖掘这些几何体的线面关系,如直棱柱的侧棱垂直于底面,正方体的体对角线垂直于相应的对角面等.
摘要:直线垂直于平面.需要注意判定定理的条件中,“平面内的两条相交直线”是关键性词语,若两条直线不相交(平行),则直线与平面不一定垂直.要判定一条直线与一个平面垂直,只需要在该平面内找出两条相交直线与已知直线垂直.判定定理是由线线垂直,即证明直线与平面内的两条相交直线都垂直.
关键词:理解,说明,垂直,相交
参考文献
类型一:面面平行的性质定理
【例1】 如图,棱长为a的正方体ABCDA1B1C1D1中,M、N、H分别是B1C1、C1D1、BC的中点.
(1) 求证:平面CMN∥平面HB1D1;
(2) 若平面HB1D1∩CD=G,求证:G为CD的中点.
分析 (1) 可以利用面面平行的判定定理,由线面平行证明面面平行,而线面平行又由线线平行得到;(2) 第一问中的面面平行这一结果可以作为第二问的条件,利用面面平行性质定理,将空间中的面面平行转化为平面中的线线平行,进而确定点的位置。
证明 (1) ∵M、N分别是B1C1、C1D1的中点,∴MN∥B1D1,
又MN平面HB1D1,B1D1平面HB1D1,
∴MN∥平面HB1D1且在正方形BCC1B1中,
∵M、H分别是B1C1、BC的中点,∴B1M∥CH且B1M=CH,∴四边形B1MCH是平行四边形,∴HB1∥CM,
又CM平面HB1D1,B1H平面HB1D1,∴CM∥平面HB1D1,
由MN平面CMN,CM平面CMN,CM∩MN=M,∴平面CMN∥平面HB1D1.
(2) 由(1)知平面CMN∥平面HB1D1,平面CC1D1D∩平面CMN=CN,平面CC1D1D∩平面HB1D1=D1G,∴D1G∥CN,在正方体中D1N∥CG,∴四边形CGD1N是平行四边形,∴D1N=CG,又D1N=12C1D1,C1D1=CD,∴CG=12CD,即G为CD的中点.
点拨 在(2)的证明过程中此处利用了(1)的结论,本题也可以借由另外一对面面平行来完成,即平面ABCD∥平面A1B1C1D1,用平面HB1D1去截这两个平面,得到的交线是GH,B1D1,则由性质定理可知GH∥B1D1,再根据H是BC的中点去说明G为CD的中点。
【奇思妙想】 已知平面α∥平面β,直线AB和CD是两异面直线,A∈α,C∈α,B∈β,D∈β,E、F分别为AB和CD的中点,求证:EF∥β.
分析 此题要构建面面平行缺少了一条线,即要连接AD(或BC),根据中位线的平行关系可知,应该取AD的中点来构建面面平行,进而推出线面平行。
证明 连接AD,取AD的中点G,连接EG,FG,E,G分别为AB和AD的中点,∴EG∥BD,EGβ,BDβ,∴EG∥β,G,F分别为DA,DC的中点,∴GF∥AC,记平面ABC=γ,γ∩β=l,则由α∥β,α∩γ=AC,β∩γ=l可知AC∥l,∴GF∥l,lβ,GFβ,∴GF∥β,又EG∥β,EG∩GF=G,EG平面EFG,GF平面EFG,∴平面EFG∥β,由EFβ,可得EF∥β.
点拨 (1) 此题在构建面面平行当中,借助了面面平行的性质定理来得到线线平行,进而得到线面平行,充分体现了线线平行——线面平行——面面平行三者关系的相互转化;(2) 此题还可以通过连接另外一条线来处理,即连接CE(或AF),可设CE延长线交β于H,连接BH,DH,由面面平行性质定理得到AC∥BH,再利用相似得到EF∥DH,进而得到EF∥β。
类型二:面面垂直的性质定理
【例2】 如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别是两条棱B1C1,C1D1的中点,求点C到截面BDFE的距离.
分析 要求点到面的距离,要过此点作面的垂线,即求垂线段的长度,关键就是确定垂足的位置,而确定垂足,常用面面垂直的性质定理,用交线的垂线来确定。
解 连接AC,A1C1,记AC∩BD=P,A1C1∩EF=Q,连接PQ,作CM⊥PQ于M,
在正方体ABCDA1B1C1D1中,AA1⊥平面ABCD,BD平面ABCD,∴AA1⊥BD,
又AC⊥BD,∴BD⊥平面ACC1A1,BD平面BDFE,∴平面BDFE⊥平面ACC1A1,
由平面BDFE∩平面ACC1A1=PQ,CM平面ACC1A1,∴CM⊥平面BDFE,∴CM即为所求;在梯形CPQC1中,CP=22,C1Q=24,CC1=1,PQ=324,∴CM×PQ=CP×CC1,CM=23.
点拨 (1) 立体几何中的求距离问题,对作垂线的要求是比较高的,而常用的思想方法就是借助于面面垂直,将其转化为到交线的垂线来处理,将空间距离转化为平面距离,利用面积转换等思想解决问题;(2) 此种求距离的类型也可以借助三棱锥中的体积转换来求,如此题可以利用VCBDF=VFBCD求出点C到截面BDFE的距离。
【奇思妙想】 在正方体ABCDA1B1C1D1中,已知E、F、G分别是棱AB、AD、D1A1的中点.
(1) 求证:BG∥平面A1EF;
(2) 若P为棱CC1上一点,求当CPPC1等于多少时,平面A1EF⊥平面EFP.
不患位之不尊,而患德之不崇;不耻禄之不伙,而耻智之不博。——张衡
分析 (1) 利用平面BGD构建一个面面平行:平面BGD∥平面A1EF来证明线面平行,运用的是面面平行的性质;(2) 从图中可以发现△A1EF是等腰三角形,因此取EF的中点即可找到交线的垂线,进而利用面面垂直性质定理来处理。
证明 (1) 连接GD,BD,在正方体ABCDA1B1C1D1中,F、G是棱AD、D1A1的中点,∴A1G=12A1D1,FD=12AD,由A1D1∥AD且A1D1=AD,∴A1G∥FD且A1G=FD,∴四边形A1GDF是平行四边形,∴A1F∥GD,
又GD平面A1EF,A1F平面A1EF,∴GD∥平面A1EF;
∵E、F分别是棱AB、AD的中点,
∴EF∥BD,由BD平面A1EF,EF平面A1EF,∴BD∥平面A1EF,
又GD平面BGD,BD平面BGD,BD∩GD=D,∴平面BGD∥平面A1EF,BG平面BGD,∴BG∥平面A1EF.
(2) 取EF的中点Q,连接A1Q,PQ,A1P,∵A1E=A1F,∴A1Q⊥EF,若平面A1EF⊥平面EFP,由平面A1EF∩平面EFP=EF,A1Q平面A1EF,可知A1Q⊥平面EFP,又PQ平面EFP,∴A1Q⊥PQ即∠A1QP=90°,
方法一:设正方体棱长为1,CP=x,C1P=1-x.在Rt△A1QP中,
A1Q=1+242=324,
PQ=3242+x2=98+x2,
A1P=A1C21+C1P2=2+(1-x)2,
一、选择题
1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()
A.相等B.互补C.相等或互补D.无法确定
2下列命题正确的是…………………………………………()
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
3.知下列命题:
(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;
(2)平面内与这个平面的一条斜线垂直的直线互相平行;
(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;
(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().
A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)
4.列图形中,满足唯一性的是().
A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面
C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线
5.平面α、β与另一平面所成的角相等,则()
A.α∥βB.α与β相交C.α∥β或α与β相交D.以上都不对
6.个平面,,,之间有,,则与()(B)平行(C)相交(D)以上三种可能都有(A)垂直
7.,是两个平面,直线l,l,设(1)l,(2)l//,(3),若
以其中两个作为条件,另一个作为结论,则正确命题的个数是()(A)0(B)1(C)2(D)
38.一点的三条直线两两垂直,则它们确定的平面互相垂直的对数有(D).A.0B.1C.2D.3
9.线m、n与平面α、β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()
A.0B.1C.2D.310.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论不成立的是……………………………………()
A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC
11.四个命题:①若直线a//平面,则内任何直线都与a平行;
②若直线a平面,则内任何直线都与a垂直;
③若平面//平面,则内任何直线都与平行;
④若平面平面,则内任何直线都与垂直.其中正确的两个命题是()A.①与②B.②与③C.③与④D.②与④
12.如图、—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是…()
A.AC⊥SBB.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
二、解答题
13.已知平面α⊥平面β,交线为BC,P∈α,A∈β,且AC⊥BC,AC=6cm, BC=8cm,PA=PB=7cm.求点P到平面β的距离.14.如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=
a,F、G分别为EB和AB的中点。
(1)求证:FD∥平面ABC;(2)求证:AF⊥BD;
15.如图,(1)求证:(2)求证:(3)若
矩形
平面,求证:
平面
所在平面,分别是
和的中点.17.在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
18.如图,AB是圆O的直径, PA垂直于圆O所在的平面, C是圆周上不同于
A, B的任意一点,(1)求证:平面PAC⊥平面PBC
(2)若A在PB、PC上的射影分别为E、F,求证:EF⊥PB
19.如图,PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点(1)MN//平面PAD(2)PA=AD时,MN⊥平面PCD
AB,PD的中点,又二面角PCDB的大小为45,21.已知△
BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?
22.如图,平行四边形ABCD中,DAB60,AB2,AD4将 沿BD折起到EBD的位置,使平面EDB平面ABD
求证:ABDE
CBD
编写人:吴敏审核人:程琪
【学习目标】
1.理解二面角的有关概念,会作二面角的平面角,能求简单的二面角的大小
2.理解两平面垂直的定义以及判定定理,会用定理进行平面与平面垂直的判定
3.体会数学中的转化思想
重点:对二面角定义和面面判定定理的理解
难点:对二面角定义和面面判定定理的理解
一、复习回顾
二面角及二面角的平面角的定义
二、课前预习
问题1平面几何中两条直线垂直是怎样定义的?能否类比两条直线垂直的定义,如何定义两个平面互相垂直?
问题2 如何画两个相互垂直的平面?平面α与平面β垂直,记作什么?
【探究】两个平面垂直的判定
问题1 判定两个平面互相垂直,除了定义外,能否利用线面垂直进行判定呢?
问题2:教室的门转到任何位置时,门所在的平面是否与地面垂直?门在转动过程中,门轴是否始终与地面垂直?
问题归纳:面面垂直判定定理
如果一个平面经过另一个平面的一条______________,则两个平面互相______________ . D
B E 请用符号语言描述定理:
三、合作、交流
探究
1、如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC。
变式:如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?
小结:证明面面垂直的关键是什么?
___________________________________________________________________________________________________________________________________________________________________________________________________________
四、当堂检测
1.直线l⊥平面α,l⊂平面β,则α与β的位置关系是()
A.平行B.可能重合C.相交且垂直D.相交不垂直
2、如图,在四面体ABCD中,CB=CDAD⊥BD,且E、F分别是AB、BD的中点.求证:(1)EF∥
面ACD;(2)面EFC⊥面BCD.3、如图,已知在ABC中,AB
且CE2ADAC,AD//EC EC平面ABC,D。求证:平面BDE平面BCE。E
C
三、课堂小结:
(1)知识与方法方面______________________________________
(2)数学思想及方法方面:_________________________________
B
课后反思:
本节课你的收获有哪些?还有没有需要老师帮助解决的问题?
一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法 两条直线的方向向量数量积为0 2斜率 两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
第1课时 线段的垂直平分线的性质和判定(教学反思)
随县炎帝学校初中部 周莎
线段垂直平分线在几何作图、证明、计算中有着十分重要的作用.线段的垂直平分线的性质定理是推证线段相等的重要途经,它的逆定理常常用来推证一条直线是一条线段的的垂线或一点是一条线段的中点.在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索.在导入新课这一环节上我先让学生直接测量课本上探究图中的线段长度。引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:P1A=P1B,P2A = P2B,P3A = P3B.然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理.在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论.从而把知识的形成过程转化为学生亲自参与、发现、探索的过程.在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。
在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步 知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合.这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解.在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的。
本堂课中存在的不足有:
1.课堂容量过大,内容没有处理完。并且在处理“过直线外一点作已知直线的垂线”的作图过程中,有点仓促。
2.在让探究线段垂直平分线分判定时的三个证法耗时较多。应该让学生边做边讲。
1. 掌握两个平面垂直的性质定理并能灵活应用;
2. 培养学生的空间想象能力和辨证思维。
教学重点与难点
重点:两个平面垂直的性质定理。
难点:两个平面垂直的性质定理的灵活应用。
教学过程
课前检测:
1、叫做二面角的平面角;
2、叫做直二面角;
3、两平面垂直的判定定理:;用字母符号表示为;实质是由垂直推出垂直;
4、证明面面垂直的方法有①②
一、问题情境、学生活动
长方体ABCDA1B1C1D1中,平面CDD1C1平面ABCD,则平面CDD1C1中所有的直
线都与平面ABCD垂直吗?什么情况下平面CDD1C1里的直线与平面ABCD垂直?
二、数学理论、数学运用 A
AB C1C
1.平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.符号语言:
图形语言:简记为:面面垂直线面垂直
例
1、求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线必在第一个平面内.例
2、S为三角形ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC。
求证:AB⊥BC。
例
3、如图,在斜三棱柱A1B1C1ABC中,底面是等腰三角形,ABAC,侧面BB1C1C底面ABC。(1)若D是BC的中点,求证:ADCC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AMMA1,求证:截面MBC1侧面BB1C1C。
三、回顾反思
1. 面面垂直的性质定理:面面垂直线面垂直 2. 已知面面垂直,如何找一个面的垂线?
3. 解题时要注重线线、线面、面面垂直的相互关系
1.2.4 两平面垂直的性质作业
1、下列命题正确的有
(1)两个平面互相垂直,则其中一个平面内的任一直线必垂直于另一个平面;(2)垂直于同一个平面的两个平面平行;
(3)若平面平面,平面平面,l, 那么l;(4)如果平面平面,那么经过内的一点P垂直于 的直线必在内;
2、下列命题正确的有(1)若,,则;(2)若,,则;(3)若1,1,,则1
13、如图,l,AB,ABl,BC,DE,BCDE,则AC与DE的位置关系是
4、设是直二面角,直线a,b,且a不与垂直,b不与垂直,则()A. a与b可能垂直,但不可能平行B. a与b可能垂直也可能平行
C. a与b不可能垂直,但可能平行D. a与b不可能垂直,也不可能平行
5、如图,正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1及其边界A
1上运动,并且总是保持AP⊥BD1,则动点P的轨迹是()A.线段B1CB.线段BC1
C.BB1中点与CC1中点连成的线段 D.BC中点与B1C1中点连成的线段
6、正方体ABCD—A1B1C1D1中,求二面角C1BDC的正切值。
7、如图,在与的交线l上取线段AB=4cm,AC、BD分别在内和内,ACl,BDl,AC3cm,BD12cm,求线段CD的长。
8、如图,已知直三棱柱ABC-A1B1C1中,B1C1=A1C1,A1BAC1,求证:A1BB1C。A C
A1119、已知,平面DAB平面ABC,平面DAC平面ABC,E点是A在平面DBC内的射影。(1)求证:DA平面ABC;
(2)当E为DBC的垂心时,求证ABC是直角三角形。
通过计算,运用勾股定理寻求线线垂直
M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A平面A1ACC1 ∴DB⊥AO1ACC1,而AO1.1
2设正方体棱长为a,则A1O2AM在Rt△AC中,M111323a,MO2a2. 2492222a.∵AO,∴AOOM. ∵MOAM111
4OM∩DB=O,∴ AO1⊥平面MBD.
评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.
利用面面垂直寻求线面垂直
2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求
证:BC⊥平面PAC.
证明:在平面PAC内作AD⊥PC交PC于D.
因为平面PAC⊥平面PBC,且两平面交于PC,AD平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵BC
平面PBC,∴AD⊥BC.
∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.
∵AD∩PA=A,∴BC⊥平面PAC.
评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一
条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图
形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线
面垂直线线垂直.
判定
性质判定性质线面垂直面一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直
面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.
3如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AESB,AGSD.
证明:∵SA平面ABCD,∴SABC.∵ABBC,∴BC平面SAB.又∵AE平面SAB,∴BCAE.∵SC平面AEFG,∴SCAE.∴AE平面SBC.∴AESB.同理可证AGSD.
评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.
证明:取AB的中点F,连结CF,DF.
∵ACBC,∴CFAB.
∵ADBD,∴DFAB.
又CFDFF,∴AB平面CDF.
∵CD平面CDF,∴CDAB.
又CDBE,BEABB,∴CD平面ABE,CDAH.
∵AHCD,AHBE,CDBEE,∴ AH平面BCD.
评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.
5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.
证明:∵AB是圆O的直径,∴ACBC.
∵PA平面ABC,BC平面ABC,∴PABC.∴BC平面APC.
∵BC平面PBC,∴平面APC⊥平面PBC.
∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.
∵AE平面AEF,∴平面AEF⊥平面PBC.
评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.
10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC于M。求证: ①ANBC;②SC平面ANM 分析:
①要证ANBC, 转证, BC平面SAB。
②要证SC平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SCAM, SCAN。要证SCAN, 转证AN平面SBC, 就可以了。
证明:
①∵SA平面ABC
∴SABC
又∵BCAB, 且ABSA = A
∴BC平面SAB
∵AN平面SAB
∴ANBC
②∵ANBC, ANSB, 且SBBC = B
∴AN平面SBC
∵SCC平面SBC
∴ANSC
又∵AMSC, 且AMAN = A
∴SC平面ANM
[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
图9—40
(1)求证:AB⊥BC;
(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.
[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.
(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD
(1)【解】PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,∴∠PDA=45°
(2)【证明】取PD中点E,连结EN,EA,则
EN AM,∴四边形ENMA是平行四边形,∴EA∥MN.
∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.
【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.
[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.
2CD 图9—
42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.
(1)【证明】∵M、N、E是中点,∴EB1B1NNC1C1M∴ENB1MNC145
∴MNE90即MN⊥EN,又NF⊥平面A1C1,MN平面A1C1∴MN⊥NF,从而MN⊥平面ENF.∵MN 平面MNF,∴平面MNF⊥平面ENF.
(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,2
3∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=2a,NH=3a,MN662,即二面角M—EF—N的平面角的正切值为2. ∴tan∠MHN=NH
4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.
图9—4
5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.
(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则
GF 12CD又
AE 12CD,∴
GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,∴平面PEC⊥平面PCD.
(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC
∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,FHPFPC,设AD=2,∴PF=2,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CD
PC=PDCD423,2
226623∴A到平面PEC的距离为3. ∴FH=2
【拓展练习】
一、备选题
1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.
(1)求证:平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.
(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径
∴BC⊥AC;
又PA⊥平面ABC,BC平面ABC,∴BC⊥PA,从而BC⊥平面PAC.
∵BC 平面PBC,∴平面PAC⊥平面PBC.
(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.
2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=2a,EC=a.
(1)求证:平面ADE⊥平面ACC′A′;
(2)求截面△ADE的面积.
(1)【证明】分别取A′C′、AC的中点M、N,连结MN,则MN∥A′A∥B′B,∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′
∴B′M⊥平面A′ACC′.
设MN交AE于P,a
∵CE=AC,∴PN=NA=2.
又DB=2a,∴PN=BD.
∵PN∥BD,∴PNBD是矩形,于是PD∥BN,BN∥B′M,∴PD∥B′M.
∵B′M⊥平面ACC′A′,∴PD⊥平面ACC′A′,而PD平面ADE,∴平面ADE⊥平面ACC′A′.
(2)【解】∵PD⊥平面ACC′A′,∴PD⊥AE,而PD=B′M=2a,AE=2a.
通过选取武夷山土壤垂直带中的7个代表性剖面(其中一个在黄坑,六个在黄岗山,),初步研究武夷山的土壤理化性质的`垂直变化规律.用发生学的方法对土壤进行分类命名.通过实验测得指标数据表明:武夷山土壤理化性质不同,垂直地带性差异显著.通过与山东丘陵山地土壤对比,分析成土因素对土壤的影响,说明不同的情况下,成土因素对土壤形成过程的主导性不同.
作 者:田珊娜 Tian Shanna 作者单位:福建师范大学地理科学院,福建福州,350108 刊 名:安徽农学通报 英文刊名:ANHUI AGRICULTURAL SCIENCE BULLETIN 年,卷(期):2009 15(14) 分类号:S519.9 关键词:字 垂直分异 理化性质 武夷山土壤 山东山地丘陵土壤★ 地震灾后生态系统重建中的植被恢复初探
★ 上海滩涂植被资源遥感分析
★ 天祝高寒草甸土壤酶活性分析
★ 广东出口蔬菜生产基地土壤中污染物质的分析及评价
★ 汶川地震前青藏块体东缘主要活动断裂的活动特征分析
1、填空
()÷8=3=0.375=9÷()=
=()÷15=27= 6 =0.6 35()=7=5÷()=()÷24=0.125 1÷()=3÷()=1656()÷45==12÷()=258=0.4
=49=14==21÷()=0.875=35÷()32241.6==16=40÷()=()÷75=
15253()÷18=
54==18÷()=()÷24=0.75 6÷()=14=14÷()=
=
5=4÷36
49()÷42=35=10÷()=9=5=()÷30
366()÷16=0.375= =12÷()=
【面面垂直的性质的习题】推荐阅读:
面面垂直习题06-19
面面垂直证明例题10-26
立体几何垂直和平行的证明练习题10-13
函数的基本性质习题课07-15
小数的性质练习题09-16
平行线的性质习题10-14
角平分线的性质练习题10-08
《平行与垂直》的教学反思06-04
直线与平面垂直的判定教学反思06-10
线段的垂直平分线导学案10-21