土木工程毕业论文中英文翻译(推荐4篇)
班级:xxx 学号:xxx 姓名:xxx
一、外文原文:
Structural Systems to resist lateral loads Commonly Used structural Systems With loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts.Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts.Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved.Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows: 1.Moment-resisting frames.2.Braced frames, including eccentrically braced frames.3.Shear walls, including steel plate shear walls.4.Tube-in-tube structures.5.Core-interactive structures.6.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems.Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.The method of combining these elements is the very essence of the design process for high-rise buildings.These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights.This is not to say that imaginative structural design can create great architecture.To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed
without the genius and the leadership of a talented architect.In any event, the best of both is needed to formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here.The essence of the design process is distributed throughout the discussion.Moment-Resisting Frames Perhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints.Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads.In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces.Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs;analysis by the so-called portal method of the cantilever method has no place in today’s technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis.Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.Braced Frames The braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings.The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints.It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety.Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs.And again, center-to-center dimensions are used commonly in the preliminary analysis.Shear walls The shear wall is yet another step forward along a progression of ever-stiffer structural systems.The system is characterized by relatively thin, generally(but not always)concrete elements that provide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width.Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element.Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high.The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade.The system has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls.Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls.Framed or Braced Tubes The concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings.The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration.Because those columns that resist
lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high.The analysis of tubular structures is done using three-dimensional concepts, or by two-dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes.The concept has limited recent applications of framed tubes to the shear of 60 stories.Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses.This system finds application in buildings perhaps 40stories and higher.However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall;the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems.Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers.Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided.Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location.Tube-in-Tube Structures The tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces.The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube.The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness.The tubes need not be of the same character;that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy.In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders(i.e, the webs of the framed tube)while the flexural component is associated with the axial shortening and lengthening of columns(i.e, the flanges of the framed tube).In a
braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane(i.e, the floor slabs),then axial stresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube.However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring.This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems.This is easiest to under-stand where the inner tube is conceived as a braced(i.e, shear-stiff)tube while the outer tube is conceived as a framed(i.e, shear-flexible)tube.Core Interactive Structures Core interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame.Indeed, the system is used often wherein the shear stiffness of the outer tube is zero.The United States Steel Building, Pittsburgh, illustrates the system very well.Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure.Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations;these columns are perhaps 15% stiffer as they follow the elastic curve of the braced core.Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about
5/8 of the height of the tube.The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero.The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building.The AT&T headquarters is an example of an astonishing array of interactive elements: 1.The structural system is 94 ft(28.6m)wide, 196ft(59.7m)long, and 601ft(183.3m)high.2.Two inner tubes are provided, each 31ft(9.4m)by 40 ft(12.2m), centered 90 ft(27.4m)apart in the long direction of the building.3.The inner tubes are braced in the short direction, but with zero shear stiffness in the long direction.4.A single outer tube is supplied, which encircles the building perimeter.5.The outer tube is a moment-resisting frame, but with zero shear stiffness for the center50ft(15.2m)of each of the long sides.6.A space-truss hat structure is provided at the top of the building.7.A similar space truss is located near the bottom of the building 8.The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outer tube goes to zero at the base of the building.Cellular structures A classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes.While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening.The shortening of a column under load is given by the expression
△=ΣfL/E For buildings of 12 ft(3.66m)floor-to-floor distances and an average compressive stress of 15 ksi(138MPa), the shortening of a column under load is 15(12)(12)/29,000 or 0.074in(1.9mm)per story.At 50 stories, the column will have shortened to 3.7 in.(94mm)less than its unstressed length.Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between.the two systems need to have this differential deflection reconciled.Major structural work has been found to be needed at such locations.In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pre-stress
the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns.二、原文翻译:
抗侧向荷载的结构体系
常用的结构体系
若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。
这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。
如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类:
1. 抗弯矩框架。
2. 支撑框架,包括偏心支撑框架。3. 剪力墙,包括钢板剪力墙。4. 筒中框架。5. 筒中筒结构。6. 核心交互结构。
7. 框格体系或束筒体系。
特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。
将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。
虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。
抗弯矩框架
抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。
我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。
支撑框架
支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。
尤其引人关注的是,在强震区使用偏心支撑框架。
此外,可以利用STRESS,STRUDL,或一系列二维或三维计算机分析程序中的任何一种进行结构分析。另外,初步分析中常用中心距尺寸。
剪力墙
剪力墙在加强结构体系刚性的发展过程中又前进了一步。该体系的特点是具有相当薄的,通常是(而不总是)混凝土的构件,这种构件既可提供结构强度,又可提供建筑物功能上的分隔。
在高层建筑中,剪力墙体系趋向于具有相对大的高宽经,即与宽度相比,其高度偏大。由于基础体系缺少应力,任何一种结构构件抗倾覆弯矩的能力都受到体系的宽度和构件承受的重力荷载的限制。由于剪力墙宽度狭狭窄受限,所以需要以某种方式加以扩大,以便提从所需的抗倾覆能力。在窗户需要量小的建筑物外墙中明显地使用了这种确有所需要宽度的体系。
钢结构剪力墙通常由混凝土覆盖层来加强以抵抗失稳,这在剪切荷载大的地方已得到应用。这种体系实际上比钢支撑经济,对于使剪切荷载由位于地面正上方区域内比较高的楼层向下移特别有效。这种体系还具有高延性之优点,这种特性在强震区特别重要。
由于这些墙内必然出同一些大孔,使得剪力墙体系分析变得错综复杂。可以通过桁架模似法、有限元法,或者通过利用为考虑剪力墙的交互作用或扭转功能设计的专门计处机程序进行初步分析
框架或支撑式筒体结构:
框架或支撑式筒体最先应用于IBM公司在Pittsburgh的一幢办公楼,随后立即被应用于纽约双子座的110层世界贸易中心摩天大楼和其他的建筑中。这种系统有以下几个显著的特征:三维结构、支撑式结构、或由剪力墙形成的一个性质上差不多是圆柱体的闭合曲面,但又有任意的平面构成。由于这些抵抗侧向荷载的柱子差不多都被设置在整个系统的中心,所以整体的惯性得到提高,刚度也是很大的。
在可能的情况下,通过三维概念的应用、二维的类比,我们可以进行筒体结构的分析。不管应用那种方法,都必须考虑剪力滞后的影响。
这种最先在航天器结构中研究的剪力滞后出现后,对筒体结构的刚度是一个很大的限制。这种观念已经影响了筒体结构在60层以上建筑中的应用。设计者已经开发出了很多的技术,用以减小剪力滞后的影响,这其中最有名的是桁架的应用。框架或支撑式筒体在40层或稍高的建筑中找到了自己的用武之地。除了一些美观的考虑外,桁架几乎很少涉及与外
墙联系的每个建筑功能,而悬索一般设置在机械的地板上,这就令机械体系设计师们很不赞成。但是,作为一个性价比较好的结构体系,桁架能充分发挥它的性能,所以它会得到设计师们持续的支持。由于其最佳位置正取决于所提供的桁架的数量,因此很多研究已经试图完善这些构件的位置。实验表明:由于这种结构体系的经济性并不十分受桁架位置的影响,所以这些桁架的位置主要取决于机械系统的完善,审美的要求,筒中筒结构:
筒体结构系统能使外墙中的柱具有灵活性,用以抵抗颠覆和剪切力。“筒中筒”这个名字顾名思义就是在建筑物的核心承重部分又被包围了第二层的一系列柱子,它们被当作是框架和支撑筒来使用。配置第二层柱的目的是增强抗颠覆能力和增大侧移刚度。这些筒体不是同样的功能,也就是说,有些筒体是结构的,而有些筒体是用来支撑的。
在考虑这种筒体时,清楚的认识和区别变形的剪切和弯曲分量是很重要的,这源于对梁的对比分析。在结构筒中,剪切构件的偏角和柱、纵梁(例如:结构筒中的网等)的弯曲有关,同时,弯曲构件的偏角取决于柱子的轴心压缩和延伸(例如:结构筒的边缘等)。在支撑筒中,剪切构件的偏角和对角线的轴心变形有关,而弯曲构件的偏角则与柱子的轴心压缩和延伸有关。
根据梁的对比分析,如果平面保持原形(例如:厚楼板),那么外层筒中柱的轴心压力就会与中心筒柱的轴心压力相差甚远,而且稳定的大于中心筒。但是在筒中筒结构的设计中,当发展到极限时,内部轴心压力会很高的,甚至远远大于外部的柱子。这种反常的现象是由于两种体系中的剪切构件的刚度不同。这很容易去理解,内筒可以看成是一个支撑(或者说是剪切刚性的)筒,而外筒可以看成是一个结构(或者说是剪切弹性的)筒。
核心交互式结构:
核心交互式结构属于两个筒与某些形式的三维空间框架相配合的筒中筒特殊情况。事实上,这种体系常用于那种外筒剪切刚度为零的结构。位于Pittsburgh的美国钢铁大楼证实了这种体系是能很好的工作的。在核心交互式结构中,内筒是一个支撑结构,外筒没有任何剪切刚度,而且两种结构体系能通过一个空间结构或“帽”式结构共同起作用。需要指出的是,如果把外部的柱子看成是一种从“帽”到基础的直线体系,这将是不合适的;根据支撑核心的弹性曲线,这些柱子只发挥了刚度的15%。同样需要指出的是,内柱中与侧向力有关的轴向力沿筒高度由拉力变为压力,同时变化点位于筒高度的约5/8处。当然,外柱也传
递相同的轴向力,这种轴向力低于作用在整个柱子高度的侧向荷载,因为这个体系的剪切刚度接近于零。
把内外筒相连接的空间结构、悬臂梁或桁架经常遵照一些规范来布置。美国电话电报总局就是一个布置交互式构件的生动例子。
1、结构体系长59.7米,宽28.6米,高183.3米。
2、布置了两个筒,每个筒的尺寸是9.4米×12.2米,在长方向上有27.4米的间隔。
3、在短方向上内筒被支撑起来,但是在长方向上没有剪切刚度。
4、环绕着建筑物布置了一个外筒。
5、外筒是一个瞬时抵抗结构,但是在每个长方向的中心15.2米都没有剪切刚度。
6、在建筑的顶部布置了一个空间桁架构成的“帽式”结构。
7、在建筑的底部布置了一个相似的空间桁架结构。
8、由于外筒的剪切刚度在建筑的底部接近零,整个建筑基本上由两个钢板筒来支持。
框格体系或束筒体系结构:
位于美国芝加哥的西尔斯大厦是箱式结构的经典之作,它由九个相互独立的筒组成的一个集中筒。由于西尔斯大厦包括九个几乎垂直的筒,而且筒在平面上无须相似,基本的结构体系在不规则形状的建筑中得到特别的应用。一些单个的筒高于建筑一点或很多是很常见的。事实上,这种体系的重要特征就在于它既有坚固的一面,也有脆弱的一面。
这种体系的脆弱,特别是在结构筒中,与柱子的压缩变形有很大的关系,柱子的压缩变形有下式计算:
△=ΣfL/E 对于那些层高为3.66米左右和平均压力为138MPa的建筑,在荷载作用下每层柱子的压缩变形为15(12)/29000或1.9毫米。在第50层柱子会压缩94毫米,小于它未受压的长度。这些柱子在50层的时候和100层的时候的变形是不一样的,位于这两种体系之间接近于边缘的那些柱需要使这种不均匀的变形得以调解。
事实证明,预应力混凝土结构是在技术上先进、经济上有竞争力、符合审美学的一种先进技术。从使用标准组成的小跨径桥梁到吊梁和跨径将近100英尺的连续箱梁桥,几乎所有的混凝土桥梁,甚至于相对短时间的桥梁都是预应力结构的。采用预制、现场浇筑或两种方法并用。在同一工程中经常同时使用先张法和后张法。
在美国,公路桥一般情况下必须满足荷载、设计和AASHTO规定的建设的要求。对于服务于其它目的步行街和桥梁的设计要求由当地的或地方的代码建立。ACI代码的备注也被纳入参考。
伴随最小交通中断的大约100英尺的跨径的桥梁由提供低的初级预算,最小量维修和养护费用和快速的简易的预制板组成。这种梁一般是用先张法。预制板一块挨一块的放置并且在相邻的预制板间受剪的缝隙填满不收缩的灰泥之后,经常在中间横膈膜的位置后张拉。对于公路,用沥青铺设的表面可以直接用在预制混凝土的上面。在某些情况下,一块放置在正确位置的现浇板提供复合作用。
空心板一般用于深度15英尺到21英尺,宽度3英尺或4英尺。对于一个标准HS20的公路,空心板适合于大约50 英尺的跨径。标准渠化区段在多种宽度,深度从21英尺到35英尺时是有利的,可用于大约20英尺到60英尺的跨径。中空的箱形梁和T形梁用于大约100英尺的长跨径。
对于中等跨径的大约120英尺的公路桥,一般使用AASHTO 标准梁。它们和一种复合现场预制行车道板一起使用。在板被安置之后,这样的梁经常在预浇梁的先张拉 与合成梁的后张拉后结合。试图获得改进经济,一些国家已经采用更精炼的设计,例如华盛顿州标准梁。
经过特别设计预制建筑梁可以用来携带一个单轨铁路系统。完成的沃尔特迪斯尼乐园单轨铁路的一系列的特征, 每个包括六个单独支持的预拉梁,一起形成连续结构。典型的跨距是100到110英尺。被使用的337根梁,大约一半有垂直与水平曲率和易变超级升高的一些结合。所有的梁是中空的,它的特征是通过在曲梁中插入泡沫和在直梁制作中移动形心轴获得。
由于运输问题和构件垂直的大而重的问题,预制梁不能用于跨径超过120英尺的桥梁。另一方面,桥梁有一种向大跨径发展的明显趋势。对于提高的都市高速道路来说,大跨径促进通路而且将对下面的活动妨碍减到最少。对环境的损害问题的关心,导致连续高架桥大跨径的选择。对于跨河桥,因为航行间隙的需求,中间可能不可以搭设桥墩。
在这一个类型的典型建筑中,桥墩(台)采用现场预制, 经常使用滑动的技术。一个箱梁的“ 锤头”浇筑在桥墩的顶端, 并且通过平衡的悬臂方法控制每个方向的建筑进
行。最后,在完成跨中结合处的浇筑之后, 这种结构对于完全连续性的桥梁来说是进一步的受拉的。修剪钥匙可能被用在片段之间垂直面之上, 而且预制建筑与环氧基树脂黏在一起。
想象的工程学藉着许多特别的技术示范已经延长混凝土建筑的范围,就桥梁而言,已经远远超过几年以前可以想象的到的任何事。在美国,双向弯曲的现场浇铸的部分箱梁已经成功地完成 310 英尺 的跨距,跨越了北加州的鳗鱼河。该桥的中间跨度550英尺,侧跨跨度390英尺,初步设计已经完成。
预应力混凝土桥梁很适合于大跨径的另一种形式是悬索箱梁。一个值得注意的例子是阿根廷境内的Chaco-Corrientes桥。桥的主跨径804英尺,由两个A型构架塔支撑,悬索从塔顶到沿着底板伸展。受拉的悬索不仅提供一种垂直反应组成支撑底板,而且对于箱梁产生水平的压缩,增加构件中的张拉力。
许多年以前德国工程师 Ulrich Finsterwalder 提出适合于负担荷载和大跨径的一个结构类型是压带式桥。压带是桥运输跨越莱茵河的一个管道和人行道,跨径446英尺。上部结构的施工顺序是(a)垂直的一对悬索,(b)在每个悬索的下面,安置预制板形成一人行道甲板和 一U型 的平台, 并且(c)在附近现场浇注混凝土。放置在顶部的管道支撑在扶手的顶部,向一边倾斜,大幅地增加结构的主要风速。
讨论桥梁形式应适当的考虑结构的美学。当结构可能根据最小的费用和技术设计的时候,时间消逝了。特别是桥梁结构到处可见。生产视觉上不愉快的结构 , 过去经常发生, 是一种不负专业责任的行为。特别地对于主要的跨距,还有一些比较普通的结构来说,应该在设计过程的概念阶段寻找建筑的建议。出处:
安瑞克.混凝土桥梁结构形式[J].建筑实录(美),2010,33(36):34—36
The Structure of Concrete Bridge Pre-stressed concrete has proved to be technically advantageous, economically competitive, and esthetically superior bridges, from very short span structures using standard components to cable-stayed girders and continuous box girders with clear spans of nearly 100aft.Nearly all concrete bridges, even those of relatively short span, are now pre-stressed.Pre-casting, cast-in-place construction, or a combination of the two methods may be used.Both pre-tensioning and post tensioning are employed, often on the same project.In the United States, highway bridges generally must-meet loading ,design ,and construction requirements of the AASHTO Specification.Design requirements for pedestrian crossings and bridges serving other purposes may be established by local or regional codes and specifications.ACI Code provisions are often incorporated by reference.Bridges spans to about 100ft often consist of pre-cast integral-deck units ,which offer low initial cost ,minimum ,maintenance ,and fast easy construction ,with minimum traffic interruption.Such girders are generally pre-tensioned.The units are placed side by side ,and are often post-tensioned laterally at intermediate diaphragm locations ,after which shear keys between adjacent units are filled with non-shrinking mortar.For highway spans ,an asphalt wearing surface may be applied directly to the top of the pre-cast concrete.In some cases ,a cast-in-place slab is placed to provide composite action.The voided slabs are commonly available in depths from 15 to 21 in.and widths of 3 to 4 ft.For a standard highway HS20 loading, they are suitable for spans to about 50 ft, Standard channel sections are available in depths from 21 to 35 in a variety of widths, and are used for spans between about 20 and 60 ft.The hollow box beams-and single-tee girders are intended for longer spans up to about 100 ft.For medium-span highway bridges ,to about 120 ft ,AASHTO standard I beams are
generally used.They are intended for use with a composite cast-in-place roadway slab.Such girders often combine pre-tensioning of the pre-cast member with post-tensioning of the composite beam after the deck is placed.In an effort to obtain improved economy ,some states have adopted more refined designs ,such as the State of Washington standard girders.The specially designed pre-cast girders may be used to carry a monorail transit system.The finished guide way of Walt Disney World Monorail features a series of segments, each consisting of six simply supported pre-tensioned beams ,together to from a continuous structure.Typical spans are 100 to 110 ft.Approximately half of the 337 beams used have some combination of vertical and horizontal curvatures and variable super elevation.All beams are hollow, a feature achieved by inserting a styro-foam void in the curved beams and by a moving mandrel in straight beam production.Pre-cast girders may not be used for spans much in excess of 120 ft because of the problems of transporting and erecting large, heavy units.On the other hand ,there is a clear trend toward the use of longer spans for bridges.For elevated urban expressways ,long spans facilitate access and minimize obstruction to activities below.Concern for environmental damage has led to the choice of long spans for continuous viaducts.For river crossings, intermediate piers may be impossible because of requirements of navigational clearance.In typical construction of this type, piers are cast-in-place, often using the slip-forming technique.A ―hammerhead‖ section of box girder is often cast at the top of the pier, and construction proceeds in each direction by the balanced cantilever method.Finally, after the closing cast-in-place joint is made at mid-span, the structure is further post-tensioned for full continuity.Shear keys may be used on the vertical faces between segments, and pre-cast are glued with epoxy resin.The imaginative engineering demonstrated by many special techniques has extended the range of concrete construction for bridges far beyond anything that could be conceived just a few years ago.In the United States, twin curved cast-in –place segmental box girders have recently been completed for of span of 310 ft over the Eel River in northern California.Preliminary design has been completed for twin continuous box girders consisting of central 550 ft spans flanked by 390 ft side spans.Another form of pre-stressed concrete bridge well suited to long spans is the cable-stayed box girder.A notable example is the Chaco-Corrientes Bridge in Argentina.The bridges main span of 804 ft is supported by two A-frame towers, with cable stays stretching from tower tops to points along the deck.The deck itself consists of two parallel box girders made of pre-cast sections erected using the cantilever method.The tensioned cables not only
翻译稿必须为流利的中文,需借助专业的字典来翻译,不是简单的通过网上直译,请核对后上交。上交翻译稿中严禁出现网络标记及自己设计的背景颜色。
页面设置上、下页边距2.54厘米,左、右页边距2.5厘米,左边装订线1厘米,文档网络设为小四号宋体,行距18磅,字符间距标准,栏数为1,页码置于页面的底部并居中放置。各部分的具体要求如下:
题目:黑体三号
紧接着下方书写[文章来自:某杂志, 年份;期: 页码.] 紧接着下方书写 某某(你自己的姓名)+空格+译 注:意翻译排版时不分栏。
“摘要”“关键词”几个字体需加粗。
(1)标题层次 全部标题层次应整齐清晰,相同的层次应采用统一的字体表示。第一级为“1”、“2”、“3”等,序号后空一格,以三号宋体左顶格打印,第一级标题上下各空一行(“1 前言”除外)为第二级标题;第二级为“2.1”、“2.2”、“2.3”等,序号后空一格,以四号黑体左起打印,换行后打印论文正文;第三级为 “2.2.1”“2.2.2”“2.2.3”等,以小四号楷体左起打印,换行后打印论文正文;两级之间用下角圆点隔开。
(2)正文采用小四号宋体,行距设为固定值18磅,字符间距标准.(3)图
插图必须整洁美观,插图应有图序和图题(图题翻译为中文,字体为五号楷体,列于图的下面居中),全文插图可以统一编序,不管采用哪种方式,图序必须连续,不得重复或跳缺。表头和图说均要翻译,表头翻译也为五号楷体,列于表格上方。
(4)每个表格应有自己的表题和表序,采用中文五号黑体。表题应写在表格上方正中,表序应写在表题左方,空一格接写表题。全文的表格统一编序,表
1、表2等,不管采用哪种方式,表序必须连续。表格允许下面接写,接写时表题省略,表头应重复书写,并在右上方写“续表××”。表格采用三线表设计。
正文与图、表之间空一行;图题、表题与图、表格之间空一行。表格下面的注解或注释用小五宋体。
图表本身不用翻译,直接复制即可,但是图说和表题要按照要求(3)和(4)中要求来翻译。
致谢部分不用翻译,也不用复制。
英文原文与翻译
英文资料
扯淡大学毕业设计(论文)
英文原文与翻译
扯淡大学毕业设计(论文)
英文原文与翻译
扯淡大学毕业设计(论文)
英文原文与翻译
扯淡大学毕业设计(论文)
英文原文与翻译
英文翻译
对新产品营销组合预测反应
Y.JACKIE LUAN 和 K.SUDHIR*
推出新产品之前,营销人员需要推断需求,制定一个营销计划,来应对营销的不确定性,并设置好各级设置。一个严峻的挑战是,市场的相关反映是从历史数据推断出来,所观察的决定受影响的,所以有关管理人员拥有的私人信息会对销售营销组合变量产生影响。笔者将此称为“斜坡内生性”问题,这种内生性不同于“拦截内生性”的问题,已被广泛承认在文献中。为了确定正确的斜坡内生性偏差,笔者开发一个概念上的简单控制功能的方法,是服从多重内生变量和营销组合结转的影响。该方法适用于广告预测,在美国DVD市场的实验中表明,如果将偏坡内生性问题忽略掉,广告的反应各不相同的DVD标题让估计营销组合弹性变大。这项分析使营销变得更有娱乐性,让研究人员和管理人员都非常有兴趣参与进来。
关键词:广告预算,营销组合模式,新产品引进,内生性,DVD
成功地引进新产品或服务进入市场对于一个公司长期的增长至关重要(科特勒和凯勒2006年)。推出新产品之前,营销人员要制定营销计划,以最大限度地加大成功机会。这通常是一个具有挑战性的管理决定,因为,设置适当的价格水平,并且同时顾及到广告和促销预算,管理人员必须更可靠的估计,面对一个营销组合变量的不同水平,销售额将如何浮动。换句话说,即使有新产品销售预测的大量文献,在没有任何实际销售数据的情况下,他们也必须预测出市场反应的各种营销组合变量。但是已经很少有相关的研究,能够根据前新营销的组合来预测出产品推出的反应。
要获得如何预测市场反应,必须深刻了解营销组合变量。例如,广告人可以识别于以前发生类似属性的产品,然后使用该模型来做一个新产品的预测。有一
扯淡大学毕业设计(论文)
英文原文与翻译
个特别且有挑战的方法,是从广告弹性的历史销售反应的数据来推断,这样可以得到内源性广告的真实水平。也就是说,管理控制多变项可以影响销售和广告的预算(计量经济学)。未观察到的特征可能仍然存在(即使用非公开信息观察和管理人员来设置特定产品的广告水平)。根据从过去产品的销售变化到现在产品的销售变动数据,这种非公开的信息能预测到新产品营销组合的反应。
我们认为,这个问题实际上是内源性比更广泛的工具变量更标准的提供了方法,可以用于调节价格内生性的常用方法(例如,Berry, Levinsohn, 和 Pakes 1995;Nevo 2001;Villas-Boas 和Winer 1999)。例如,在一个简单的线性销售反应函数时,S =α13级 续集 行动 动画 纪录片 戏剧 幻想 恐怖 浪漫 科幻 惊悚片 战争
DVD内容增强(“额外”)制作特辑 述评
DEL键场景 音乐视频
儿童互动游戏机
市场环境变量 DVD的基础
说明
每周的DVD零售价(加权平均在零售商)广告支出的戏院上映电影生产成本 DVD释放延迟 电影生产成本 展览数目屏幕
(平均在第9星期)
口碑
文献综述(从metacritic.com)奥斯卡提名数量 明星评级
R级系数评定(由美国电影协会)PG-13级评级(由美国电影协会)续集 行动流派 动画风格 纪录片风格 戏剧流派 奇幻类型 恐怖片 浪漫风格 科学小说体裁 惊悚片 战争流派
“幕后的”/“制作特辑”的相关文件 制片人评论
删剪片段和/或者替代的结局
音乐视频或单独具有互动功能的文件,如DVD ROM游戏 为儿童唱歌的游戏
DVD硬件安装的户数
扯淡大学毕业设计(论文)
英文原文与翻译
比赛DVD 比赛舞台 其他新的DVD产生的竞争 比赛的戏剧电影
我们的目标是一致的得到广告反应的预测,我们建立对产品具体特点的有关假说,这些可能会影响DVD市场的广告效果,我们将这些总结于表3。其中特别的,我们假定广告弹性下降,DVD市场一周一周开始循环。在消费品行业以前的研究中表明,广告效果在减少产品的生命周期(Shankar, Carpenter, 和 Krishnamurthi 1999年)。这种影响对短生命周期的产品大概会更强。因此,量化时间将改变变广告的成效,这对研究最佳的DVD广告调度具有重要意义。
表3 变量与趋势
变量 趋势 口碑 电影广告 奖金 价格 录像盒 圣诞节 情人节
预测趋势 – +/– – + – – + +
假说
DVD广告反应最高后立即释放,随着时间的推移而
递减。
广告和口碑可能是补充或替代品。戏剧广告和DVD广告可以替代。DVD内容的增强增加广告的反应。广告更有效时,较低的价格相结合。对较大的票房广告弹性降低。
在圣诞节和新年假期,广告的反应变高。情人节对浪漫的DVD广告的反应变高。
【土木工程毕业论文中英文翻译】推荐阅读:
土木工程中科学与技术11-15
土木工程专业毕业论文09-26
土木工程毕业论文选题12-27
土木工程毕业论文免费12-27
土木工程造价论文05-25
土木工程测量论文09-12
土木工程基础论文10-22
土木工程系论文12-26
毕业实习周记 土木工程07-13