钣金成型加工技术(通用8篇)
三、常见加工方法介绍: NCT(数控机床)加工 数控机床加工原理: 数控机床是一种能够适应产品频繁变化的柔性自动化机床,加工过程所需的各种操作和步骤以及刀具与工件之间的相对位移量都用数字化的代号来表示,通过控制介质(如纸带或磁盘)将数字信息送入专用的或通用的计算器,计算器对输入的信息进行处理和运算,发出各种指令来控制机床的伺服系统或其它执行组件,使机床自动加工出所需要的工件或产品.数控机床常见用途: 下料,冲网孔,冲凸包,切边,打凸点,压筋,压线,抽孔 数控机床的加工精度: +/-0.1mm NCT(数控冲床)加工的工艺处理及注意事项: 1.在距边缘的距离小于料厚时,冲方孔会导致边缘被翻起,方孔越大翻边越明显,此时常常考虑LASER二次切割.2.NCT冲压的孔与孔之间,孔与边缘之间的距离不应过小,其允许值如表;材料 冲圆孔 冲方孔 硬钢 0.5t 0.4t 软钢,黄铜 0.35t 0.3t 铝 0.3t 0.28t NCT冲压的最小孔径如表: 材料 冲圆孔 冲方孔 硬钢 1.3T 1.0T 软钢,黄铜 1.0T 0.7T 铝 0.8T 0.6T 注:T表示料厚
3.抽孔:NCT抽孔离边缘最小距离为3T,两个抽孔之间的最小距离为6T,抽孔离折弯边(内)的最小安全距离为3T+R,如偏小则须压线处理.4.经现场测试,NCT冲半剪凸点的高度不超过0.6T,如大于0.6T则极易脱落.镭射加工 镭射加工原理: Laser是由Light Amplification by Stimulated Emission of Radiation的前缀缩写而成.原意为光线受激发放大,一般译为激光(也称激光).激光切割是由电子放电作为供给能源,通过He、N2、CO2等混合气体为激发媒介,利用反射镜组聚焦产生激光光束,从而对材料进行切割.在由程控的伺服电机驱动下,切割头按照预定路线运动,从而切割出各种形状的工件。镭射机常见用途: 下料,割外形,二次切割,割线,割异形孔 镭射机的加工精度:+/-0.1mm LASER加工的工艺处理及注意事项: 1.在割五金件底孔时,必须加大0.05mm.因为在切割起点与终点时会留有微小的接点.例 : 底孔为Φ5.4应割成Φ5.45(注:五金件的底通常用NCT或模具加工,以保证加工精度.)2.割工艺孔时宽度一般大于0.5mm, 越小毛刺越明显.3.在从平面到凸包的斜面作二次切割时,速度必须很慢,实际上与 切割等厚材料类似.4.LASER为热加工,割网孔及薄材受热影响, 容易使工件变形.5.所有工件的锐角如没有特别要求在LASER加工时,必须按R0.5mm倒圆角.折床加工 折床加工原理: 将上、下模分别固定于折床的上、下工作台,利用液压传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形.一般分为上动式和下动式.折弯加工顺序的基本原则:由内到外进行折弯.由小到大进行折弯.先折弯特殊形状,再折弯一般形状.前工序成型后对后继工序不产生影响或干涉.折床常见用途: 成型,抽凸包,压垫脚,压线,压印字,铆钉,铆静电导轨,压接地符,抽孔,铆合,压平,压三角补强等.
折床的加工精度: 一折: +/-0.1mm 二折: +/-0.2mm 二折以上: +/-0.3mm 常见折刀形状: 常见V槽形状: 注意:选用什么样的V槽与材料的厚度和折弯的形状有关系 孔到折弯边的最小距离
板料厚度 0.6~0.8 0.9~1.0 1.1~1.2 1.3~1.4 1.5 1.6~2.0 2.2~2.4 最小距离 2.0 2.5 3.0 3.5 4.0 5.0 5.5 以上尺寸是孔到内折弯边的距离,如果超过这个距离则折弯会引起孔变形,在这种情况下,可以通过其他加工方式来解决变形问题,如先折弯,后用镭射割孔,或者压线割线处理,或者直接开模具生产,担这样会增加加工成本,在条件允许的情况下,设计的时候尽量满足这些最小距离 钳加工
钳加工的常见种类: 1.铆钉机 用途: 铆螺母 铆导向销 铆螺柱
铆防静电手腕座 铆螺钉 所用模具: 铆合模
钳加工的常见种类: 2.攻牙机, 用途: 攻丝(攻牙)所用模具: 丝锥
钳加工的常见种类: 3.抽孔机, 用途: 翻边抽孔 所用模具: 上模 ,冲子, 凹模 钳加工的常见种类: 4.拉丝机, 用途: 表面拉丝 所用模具: 砂带(不同规格)钳加工的常见种类: 4.整平机, 钳加工的常见种类: 5.钻孔机 用途: 钻孔 所用模具: 钻头 模具加工 模具加工的特点: 1.快捷 2.精度高
3.适用于大批量生产 4.成本低 5.尺寸管控好 模具的分类: 1.落料模 2.成型模 3.整平模 4.压铆模 5.连续模
一般模具示意图,一般零件都由好几套模具连续生产而成型.表面处理 1.电镀: 通过化学反应,在材料表面附上一层其他金属,用来增加金属的防腐蚀性能,且能达到一定的美化外观作用,是常用的一种表面处理方式,如:电镀锌,电镀镍等.2.烤漆: 通过喷涂,高温烘烤等方式,在材料表面喷上一层各种颜色的涂料,用来美化外观,且能增加材料的防腐蚀性能.是常用的表面处理方式,一般有液体烤漆和粉体烤漆两种,其中粉体烤漆最常见.如烤华为蓝,华为黑等,烤漆表面是不导电的.有EMC要求的区域不允许烤漆.3.丝印: 在材料表面丝印上各种标识的工艺,一般有平板丝印和移印两种方式,主要原理与照相机菲林成像原理一样,也是一个曝光的过程.平板丝印主要用于一般平面上,但如果遇上有较深的凹坑的地方,就需要用到移印.4.表面拉丝
将材料放在拉丝机的上下绲轮之间,绲轮上附着有砂带,通过电机带动,让材料通过上下砂带,在材料表面拉出一道道痕迹,根据砂带的不同,痕迹粗细也不相同,主要作用是美化外观.一般都是铝材才考虑用拉丝的表面处理方式.5.喷砂: 通过喷砂机的风力将砂粒打到工件表面上,在工件表面形成一层密布的凹坑,主要作用是去除工件表面的脏污,增加工件表面的附着力,为后续表面处理方式做准备,在我们公司不常用.6.氧化: 将工件表面的金属氧化,在工件表面形成一层致密的保护膜,增加工件的防腐蚀性.一般有化学氧化和阳极氧化两种方式,是一种常用的表面处理方式,如散热器表面的阳极氧化发黑.钣金连接方式 常见钣金连接方式: 1.铆钉铆合: 这种铆钉常称为拉钉,将两块板材通过拉钉铆合在一起称之为拉铆,.常见铆合形状如图: 2.点焊: 工件组合后通过电极施加压力利用电流接头的接触面及附近区域产生电阻热进行焊接,点焊的总厚度不得超过8mm.3.抽孔铆合: 其中的一零件为抽孔,另一零件为沉孔,通过铆合模使之成为不可拆卸的连接体.优越性:抽孔与其相配合的沉孔的本身具有定位功能.铆合强度高,通过模具铆合效率也比较高.4.TOX铆合: 定义:通过简单的凸模将被连接件压进凹模.在进一步的压力作用下,使凹模内的材料向外”流动”.结果产生一个既无棱角,又无毛刺的圆连接点,而且不会影响其抗腐蚀性,即使对表面 有镀层或喷漆层的板件也同样能保留原有的防锈防腐特性,因为镀层和漆层也是随之一起变形流动.材料被挤向两边,挤进靠凹模侧的板件中, 从而形成TOX连接圆点.如下页图所示: 小结:
矿用自动化控制设备的箱体外壳多以钣金件为主, 因此, 钣金设计与加工系统的优劣对设备的质量有着直接的影响。三维技术已经被现代企业广泛应用于构建钣金设计加工系统, 目前市场上已经有了TopSplid、Pro/ENGINEER、SolidWorks、UG等多款钣金结构设计软件。通过运用这些软件, 钣金产品的设计加工得以优化和提升。此外, 企业生产和报价等也可通过这些软件获得比较科学和精准的基础数据。但是, 面对这些功能日益扩展、完善且种类繁多的三维技术, 企业要选择一种真正适合自身的技术软件变得比较困难, 对于经常遇到的问题不能找到合适的解决方案。本文根据钣金设计加工的实践经验, 归纳出以下3类典型的常见问题: (1) 钣金设计中的展开问题; (2) 材料和工时定额管理不当, 导致企业生产中产生不公平现象; (3) 钣金设计和生产系统不统一, 影响设计和生产效率的问题。针对该3类问题, 提出了可行的解决方案。
1解决方案
1.1 应用合适的软件解决钣金设计中的展开问题
钣金设计不同于其它产品的设计, 它涉及钣金件展开, 所以单纯的零件造型并不能解决钣金设计问题, 特别是对于一些复杂的钣金件, 如何解决展开的问题是设计开发过程中首要考虑的问题。
钣金件的展开是一个设计人员在设计过程中必须考虑的问题, 如果零件比较复杂, 那么展开问题也就变得很复杂。如果设计完成后发现设计的钣金件无法展开, 那就要重新修改设计。在三维软件中, 一般可以通过修改设计树上的特征来变更设计, 但如果改动较大, 就可能会导致特征重生失败而要重新设计和建模, 这就大大降低了设计工作效率。此外, 因为反复修改, 还会出现一些严重的设计问题。
针对钣金件的展开问题, 笔者推荐一款比较专业的钣金展开软件——AutoPOL。该款软件有如下几个优点, 可以为解决问题提供一个良好的平台: (1) 可以与AutoCAD、SolidWorks等其它软件实现设计的交互; (2) 其它软件可以直接从AutoPOL中提取模型; (3) 为其它三维软件提供了Step、Sat以及Igs文件接口。
设计人员也可以直接在AutoPOL环境下进行零件设计。这样一来, 在设计过程中, 设计人员只需要考虑产品结构的合理性, 可以花更多的精力去提高产品设计的质量, 而不是花大量的时间去不断修正设计中的失误。
1.2 精准管理材料和工时定额
PDM和ERP系统已经在现代企业里被普遍应用, 钣金企业也不例外。企业运用这些系统来管理产品的设计工作流程, 使整个流程可以稳定高效地运作, 这样统一和完整的产品数据就能得以生成。然而, 由于钣金行业工艺流程的特殊性, 一些断层和冗余流程时常会出现在PDM和ERP的具体执行过程中, 这会使系统的潜力得不到完全发挥, 也就达不到企业选择实施PDM和ERP系统的初衷。
一般来说, PDM和ERP软件的执行流程为订单、设计、工艺及生产制造等, 但钣金企业的流程中有其特殊性, 因为其具有BOM表映射和变异的过程, 这个过程始于以客户分类的OBOM (订单清单) , 后变异成以材料分类的BBOM (采购清单) 和MBOM (生产清单) , 并实现材料的归类等。如果由通用PDM或ERP系统执行这个过程, 就会造成流程冗余和材料浪费。此外, 传统企业在计算工时定额时, 往往按经验行事, 不可避免地出现主观性和随意性, 累计起来会导致很大的偏差, 不公平的现象也就会经常出现。
关于BOM表的变异, 一般是从以客户分类的订单清单开始, 应用一些排样软件如AutoNEST或SigmaNEST等, 生成设计清单和工艺清单。随后, 不同的设计清单中材质规格等特性相同的材料系统会对其进行归类合并, 此后就可以根据库存裕量规则购买物料, 然后输出采购清单和工艺清单, 再经过调度安排生成生产计划单, 最后生成生产清单。这样流程就得以优化, 同时也使时间和材料也得以节约。ERP和PDM为企业提供的数据信息平台是比较完备的, 认真处理这些数据信息得出的工时定额是相对准确的。工时定额的确定主要是加工时间的确定。钣金加工对企业数控设备的使用较为广泛, 根据数控加工程序的特点, 可以运用软件对G代码的文本数据进行统计和处理, 核算加工时间, 然后再加上加工前期的准备时间和一些辅助时间等, 这样得出的总加工时间就相对比较准确, 也就能得出比较准确的工时定额, 最大可能地避免不公平现象的出现。
1.3 实现钣金设计和生产系统的统一
随着计算机辅助技术的不断发展, 现在出现了工程设计应用软件, 种类繁多, 适用于各行各业, 大多数企业的设计和生产过程都可以通过实施这些系统得到优化和提升。这些软件内部都存在一定的关联, 这一特点就可以使产品从设计开始到加工制造过程中产生的所有数据信息都关联到了一起, 从而使企业的生产效率得以提高。但是钣金行业不同于其它行业, 它具有特殊的工艺流程。一般在完成设计后, 如果选择模具生产, 则需先加工模具, 然后生成最终产品;如果选择数控切割加工, 则需要经过切割排样、模拟折弯车成型、成型, 最后经由NC加工才能生成最终产品并完成成本核算;如果选择数控冲压加工, 与数控切割加工工序相似, 也是一个相对繁琐的工艺流程。
钣金行业的特殊工艺流程最显著的特点就是后续流程较多, 市场上通用的多数软件一般只能满足其中的1~2项功能。如SolidWorks、UG等主要的功能是对复杂钣金零件建模, AutoPOL是专业的钣金展开软件, AutoNEST则主要应用于钣金加工前的排样, 而JetCAM等软件主要用于实现冲压冲或切割加工, 企业根据自身的需求选择不同的专业软件。但是这些软件系统彼此独立, 它们所生成的数据很少或根本就没有关联, 无法修改, 跨平台操作更是困难, 而且通常从一个软件平台提取数据到另一个软件平台时, 建模时的特征信息就会丢失, 这些问题都使得软件功能不能得到有效发挥, 且使得企业的资源和投入大量浪费, 从而降低了设计和生产效率。
子系统分离的问题要解决, 无非就是要选择一套统一的系统来代替由多种软件平台组合的系统。RADAN和TopSolid是目前比较好的集成系统。RADAN是解决钣金行业整体方案的专业软件平台, 囊括了从钣金的设计到加工再到报价清单的输出整个流程, 几乎提供了流程所需的所有功能。TopSolid是一种高端和全面的集成软件平台, 集成了CAD、CAM、CAE以及PDM系统, 其高集成的特性使得钣金的设计和生产的一体化得以实现。以上2套高端集成软件运用于钣金设计加工系统, 可以有效地解决一些因软件系统分离而导致的一系列问题。
2结语
本文对构建钣金设计和加工系统常遇到的3类典型的问题进行了阐述并提出了解决方案, 结合目前三维技术在企业被广泛使用的背景, 推荐了几款用于构建和优化钣金设计加工系统的专用软件, 介绍了可应用于整个钣金设计加工过程的集成系统软件, 期望能给正在致力于运用三维技术构建和优化设计加工系统的钣金加工企业一些帮助。
摘要:分析了钣金设计加工中存在的3类典型的常见问题并提出了解决方案, 推荐了几款用于构建和优化钣金设计加工系统的专用软件, 介绍了可应用于整个钣金设计加工过程的集成系统软件, 可供相关人员参考。
关键词:矿用设备,外壳设计,钣金加工,三维技术
参考文献
[1]金东连.钣金展开施工手册[M].北京:机械工业出版社, 2005.
[2]张云杰, 张运静.UG NX5.0中文版钣金件设计[M].北京:清华大学出版社, 2008.
[3]田俊国.ERP项目实施全攻略[M].北京:北京大学出版社, 2007.
[关键词]高分子材料;成型加工;技术
近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。
一、高分子材料成型加工技术发展概况
近50年来,高分子合成工业取得了很大的进展。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。
据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现今高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。
目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。
(二)以动态反应加工设备为基础的新材料制备新技术
1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
2.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的熱塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
三、高分子材料成型加工技术的发展趋势
塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。
综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。
参考文献:
[1]江成平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435.
[2]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利9O101034.0,I990;美国专利5217302,1993.
摘 要:塑料制品被广泛用于工业、国防尖端工业以及日常生活等各个领域。随着工业技术的发展和人民生活水平的提高,塑料加工的发展也越来越快,对人们的生活越来越重要,需求量逐渐增大,也促进了材料成型技术的不断发展与创新。现如今的生产方式正向“绿色”转变,低能耗、高效环保型的加工成型技术正成为塑料加工行业的发展趋势。不仅如此,更应该加大对塑料的成型技术的加工,市场需求在不断加大,塑料化的创新方法也在不断地进行变化和发展。文章主要介绍了塑料成型加工技术的种类,以及今后塑料成型加工技术迅速发展的趋势。
关键词:加工技术;成型;塑料;热固性;流动性
塑料是20世纪发展起来的新型材料,应用广泛,以代替部分木材、皮革、金属及硅酸盐等自然材料,成为现代生活和工业中不可缺少的一种人造化学合成材料,并与金属、木材和硅酸盐三种传统材料一起,成为现代工业生产中四种重要的原材料之一。塑料成型是将各种形态的塑料原料(熔体、粒状、粉粒或分散体)加热或熔融塑化达到要求的塑性状态,在一定压力下经过要求形状模具或填充到要求形状模具模腔内,待冷却定型后,获得要求尺寸、形状及其性能塑料制件的生产过程。
1 主要塑料成型加工技术
1.1 压塑
压塑也称压制成型或模压成型,主要用于不饱和聚酯树脂、脲醛树脂、酚醛树脂等热固性塑料的成型。压塑是利用成型模具以及模压机,在模压成型后继续加热通过发生化学反应而交联固化,一般是将粉状、粒状、团粒状、片状,甚至先做成和制品相似形状的料坯,放在加热的模具的型腔中,然后闭模加压,使其成型并固化或硫化,再经脱模得制品,该法特别适用于热固性塑料的成型加工。
1.2 挤塑
挤塑也称挤出成型,是塑料聚合通过口模成型,固化然后定型三个阶段形成。首先进入挤出机,然后在旋转螺杆的作用下,经过熔融、均化、增压,最后熔融物在挤出机的口模挤出形成型坯,冷却定型形成最终的塑料制品。擠塑可以挤出各种形状的制品,有很高的生产效率,可以自动化和连续生产,但是挤塑对热固性塑料不能广泛采用此法加工,容易生产出尺寸有偏差的制品。
1.3 注塑
又称注射模塑成型,它是一种注射兼模塑的成型方法。注塑是指能一次成型外形复杂、尺寸精度或带有金属嵌件的质地密致塑料制品的.技术。注塑成型方法的优点是生产速度快、效率高,操作可实现自动化,花色品种多,形状可以由简到繁,尺寸可以由大到小,而且制品尺寸精确,产品易更新换代,能形成形状复杂的制件,注塑成型适用于大量生产与形状复杂产品等成型加工领域。
1.4 吹塑
吹塑也称中空吹塑,一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品,适用于吹塑的塑料有聚乙烯、聚氯乙烯、聚丙烯、聚酯等。
2 塑料成型加工技术的新发展
从塑料出现到现在,出现了许多新型的塑料成型工艺方法。而且塑料加工成型技术在不断地进步,它的发展趋势是对现有的材料成型加工技术进行挖掘。
2.1 精确成型加工技术
近些年来出现了许多新型的精确加工技术,在汽车工业上最为显著。出现了用消失模铸造和压力铸造的汽车薄壁、高质量的铝合金缸体铸件、半固态成形及三维挤压法、用精确锻造成型技术生产凸轮轴、液压胀形技术、摩擦压力焊等技术,挤压铸造和半固态铸造这样的精确成型技术由于熔体在压力下充型、凝固使零件表面具有好的内部质量和好的表面。
2.2 快速及自由成型加工技术
快速成型技术是以离散或堆积原理为基础和特征,将零件的电子模型按一定方式离散成为可加工的离散点、线、面,之后采用多种手段将这些离散的点、线、面制成零件的整体形状。这种成型技术的发展为快速模具制造缩短了开发周期,解决了小批量零件制造和单个零件制造的问题。
2.3 激光成型加工技术
这种技术有多种多样、运用灵活。可以运用在汽车、飞机和船舶的制造中,电子原件的精密微焊接中,它能运用在模型的焊接、坯料制造时的切割、雕刻和成型中。其中激光加工自由成型制造技术也是目前重要的发展动向。
2.4 振动成型加工技术
将振动技术引用到塑料成型加工技术中最初只是用于实验研究,但是随着实验研究者的一点点研究,从简单到难,从部分到整体,最后一点点的成熟起来。运用在了挤出成型工艺上和注塑成型工艺上。振动技术引入到成型加工技术中可以提高塑料制品的质量,宏观上表现为熔体的粘度减小,流动性增加,挤出压力和注射压力降低,流率增大,功率降低。振动改善了塑料成型加工过程,使成型制品的性能也得到一定程度的提高。
2.5 反应性加工技术
反应性加工是成型加工中确保不相容的共同混合在一起的物品之间放生适当的化学反应,在混合过程中就地产生增溶剂,并控制分散相形态,制取各种高性能的塑料材料。近年来,由于这种技术的发展和应用在挤出成型中,在成型过程中可以连续的反应成型提供了优良的特性,对反应挤出成型的发展起到了很大的促进作用。
3 结语
在与传统技术的先进性上互相比较来说,塑料加工成型技术有了不断的推进与创新。根据目前的趋势来看塑料成型技术会向更深层次地精密化、自动化、节能化、无人化方向发展。然而在这一领域里仍有广阔的空间让科研人员去探索,以更精湛的技术实现以塑代木,以塑代钢,减少资源的浪费与消耗,实现社会经济的可持续发展。
参考文献
[1] 涂家祎.高分子材料成型工艺技术发展的概述[J].四川水泥,(07).
[2] 吴启宝.塑料成型加工中的振动技术[J].(10).
本作业指导书用于指导金加工钣金组的生产作业过程。确保该过程受控,安全、准确、有效。
2.范围:
金加工钣金加工区 3.职责:
此作业指导书由金加工主管负责编写,钣金组及相关人员共同执行。4.定义: 4.1.首件:
各工序(对于折弯工序为工步)在同一生产条件下,进行批量生产的第一件。4.2.生产工作单:
生产工作单为指导零件加工过程的主要依据,主要包气括:零件图号、需求数量、工程号及工程名称、零件材料、加工工序、生产完成数量、报废数量、生产操作者签名、检验员签名(如果是自检则和操作者一样)生产日期等内容。4.3.材料型号:
材料型号由以下内容组成 SM**-AABBBCCC SM:----材料代号固定的前两位代码。 **:----材料类型 AS: 铝板 CS: 铜板 AZ: 敷铝锌板 HG: 热镀锌板 MS: A3钢板 SS: 不锈钢板
AA:---板材厚度,为实际厚度乘以10,如2MM为“20”1.5MM为“15” BBB:--板材宽度,为实际宽度数值的前三位。如1500MM为“150”如1250MM为“125”。
CCC:--板材长度,为实际长度数值的前三位。如2250MM为“225”如2440MM为“244”。
典型的材料代号如:SMAZ-20125225,表示厚度为2MM,长度为2250MM宽度为1250MM的敷铝锌 板
5.钣金加工流程: 5.1.零件编程:
钣金组接到生产任务,由金加工计划员(目前由主管或金加工班长代替)将工作单交给编程员,编程员在接到任务后,根据工作单及图纸等技术文件,编写零件的冲切加工程序,并打印出模具清单,附在工作单上,交钣金组生产。3.编程人员在编程时应该把零件号编入零件的加工程序中去具体编法如下: 例:图号8K2.151.010 零件编号:8K2151010 5.2.冲压作业:
5.2.1 操作者每天开机后生产前,应根据《设备点检润滑标准书》,进行点检及安全检查,若发现问题则
记录在工作交接单上并及时处理其问题,若无法解决,则报告领班或维修人员。5.2.2操作者接到生产任务时,应确认程序,模具清单及工作单是否齐全发现不当之处应立即向班长反馈,或者上报有关人员处理。5.2.2.1.操作者根据所接受的生产工作单上的材料领取相应的材料进行冲切,若发现材料有以下现象之
一,应不使用并报告班长或者主管处理:
1生产工作单上的材料型号与图纸或模具 清单标识的材料不一致(三者必须保持统一),2敷铝锌板有锈斑,变色 3.A3钢板有较为严重的生锈时
4.板材的变形量(平面度),不超过4mm/m2为准
5.2.2.2 操作者按编程人员提供的模具清单,检查,更换,设定好模具,设定模具时,应注意正确选用上下间隙,冲抗拉强度40KG/CM2以下的材料时,选用10%-20%板厚的间隙,冲抗拉强度大于40KG/CM2 例如,不锈钢时,应选用20%-30%板厚的间隙。如冲3mm厚的不锈钢板时,间隙应选用0.6-0.9mm。换下的模具应放回工具柜原位。
操作人员根据板材的厚度调节好设备参数却保零件号的清晰,如发现漏编或错编,应及时反馈给编程人员更改,以确保图号的准确性若发现工件出现较为严重的毛刺时,应及时刃磨刀具或调整设备参数。磨后应调整其装刀高度,如磨后高度不够时应上报给班长。
5.2.2.3如果是采用激光切割所选的参数需Production Order上的参数表一致。
5.2.2.4 只有持有公司颁发的操作证的员工才能独立操作机床,若无操作证只能作为辅助操作人员,在操作机床进行首件生产时,应有班长或持有操作证的人员在场。每位操作者完成首件后应自检,只有首检合格后才能进行批量生产,首检不合格时,应做好不合格品的记录,并找出原因或报班长处理,若属编程问题,则立即反馈给编程员,以便更改程序,操作者不得随便更改程序,不合格品应放置到不合格品区进行隔离并标识。
首件合格后按生产工作单 上的生产数量进行批量生产,完成后的零件整齐的放置在栈板上,注意不能叠放太高,大件的应更少,如冲出的零件毛刺较高或者由于步冲而产生的尖刺,操作者应打磨合格后才能把工件转入下道工序,对于无法冲出图号的零件,则冲完零件后,都应用标记笔在适当的地方标上图号,以便识别。完成批量生产后,在工作单上的填写完成数量,操作者签名及完成日期,与生产无关的东西不得乱写。操作者每次下班前应清理好边角料,及工作场所的卫生,并按照《设备点检润滑标准书》进行日常保养,并做好记录,有倒班时应做好交接班工作。冲完后剩下的边角料应尽量分类放置,以便再次利用来冲小零件。5.3.折弯作业
5.3.1 操作者每天开机后生产前,应根据《设备点检润滑标准书》进行点检及安全检查,若发现问题则记录在工作交接单上并及时处理其问题,若无法解决,则报告领班或维修人员。
5.3.2操作者接到班长或者领班安排的任务后应确认工作单及图纸是否与工件相符,并确认工作要求及图纸要求,数量等,发现不妥应立即反馈给班长或者领班。
5.3.3只有持有公司颁发的操作证的员工才能独立操作机床,若无操作证只能作为辅助操作人员,在操作机床进行首件生产时,应有班长或持有操作证的人员在场。工作时,操作者按图纸进行模具设定和编程,复杂的零件折弯程序应存入计算机内,方便调用参考,也可以直接在图纸上进行适当的工艺标注,但必须是持有操作证的员工才能做,有工艺卡的零件,应按工艺卡进行编程与操作。无操作证的操作者禁止编程作业,若属于培训阶段的应有 班长和持有操作证者在场才能允许编程,并在完成后要求班长或者持证者检查
5.3.4折弯编程作业参考折弯和编程手册和安全操作规程。
5.3.5 首件折弯和参数调整,操作者编好程序后,应检查一下所编程序的显示图形是否与图纸一致,安装的模具是否与程序要求的一致,并应注意折弯顺序与折弯方向。首件折弯时,每折弯一次都应该进行尺寸,角度测量,根据测量的结果与图纸尺寸相比,不符合的,相应的调整参数或进行补偿,直至符合要求后,将程序储存好,检验的依据为《冲压件角度公差》与《冲压件尺寸公差》。只有首件验证合格后,才可将上道工序完成的半成品进行批量折弯在批量生产中还应抽检所生产的工件的尺寸,角度等情况,发现问题还应抽检前面所完成的工件的准确性,若出现不合格的应立即上报给班长,不合格品应放置于不合格品区,并贴上黄色的不合格标签。
5.3.6 批量生产完成后,应在工作单上填写完成数量,操作者签名,及完成日期,要求每个项目都要填写清楚,完成数量一定要填写实际折弯完成的数量,与要求关的东西不得乱填写。批量生产时叠放工件应注意其安全性,不得叠放太高,不宜超过1.5M 5.3.7对于大的工件,平放时对产生变形的则应放在专用的小内并竖放完成后的工件操作者应做好标识,然后送到指定的区域,非检验完的工件不准上架,或送到装配区。
本门课程设计的内容是围绕教学任务或单元,以某种通用或特种高分子材料(如聚乙烯、聚丙烯、聚氯乙烯、聚氨酯等)及其制品的生产任务为依托构建,设计出相关聚合物材料及其产品项目内容,包括原料品种、型号选择、工艺流程及设备确定、产品质量检测,以及车间布局和规模等等。通过课程设计,全面锻炼学生查阅文献、设计计算、实际分析和CAD绘图能力,有效地让学生系统地掌握所学知识,并获得一定的灵活应用的能力,为后期的毕业设计乃至毕业后走上工作岗位打下基础。课程设计的选题应符合当前科技和生产发展的需要,同时必须满足教学方面的需要,使学生通过设计得到比较全面地锻炼。题目可以是来自生产现场的实际课题,也可以从教学和科研项目中选定。但题目的选择不能和往年雷同,否则会出现学生直接找来以前的电子档,从而设计完成的千篇一律。另外题目难度应该从易到难分布广泛,教师提供备充足的选题,先由同学根据自己的兴趣自由选择,再由老师根据学生选报情况,统筹分配,做到每组成员具有较均衡的知识能力。除了教师指定的题目,对于已经签订工作单位或者有明确工作意向的同学,应鼓励他们结合今后工作的方向,自己拟定设计题目。例如签约洛阳725所的同学就可以做风电叶片制备方面的设计;想去富士康应聘的同学,可以进行塑料外壳注塑成型方面的设计;有意从事管材、异型材、薄膜挤出方面工作的,可以做挤出工艺设计;对橡胶加工感兴趣的,可以自订压延成型方面的设计等等。这样既提高了学生设计的兴趣,对于他们今后的就业或工作也有很大的帮助。课程设计采用分组完成的方式,不仅有利于发挥学生特长,而且有助于培养学生的责任感和协作精神。每组同学设计题目的大方向类似,但是每个学生的设计内容上又有所区别,保证做到同组不同题。例如配方设计、工艺参数、设备选择等都可以有差别,既避免学生之间的抄袭现象,又利于组内讨论和交流,通过课程设计每个学生的设计水平都得到锻炼和提高。
2做好充足准备,提早布置任务
为更好的适应应用型人才培养的需要,课程设计的时间从原来的1周调整为2周,学生可以有更多时间和精力提高设计质量。虽然教学进程上将课程设计安排在授课结束,但是可以在理论课授课的同时就让学生初次选择题目,开始筹备课设。发题时指导教师应将设计内容、步骤、注意事项、参考书籍、网站资源一一交待清楚,使学生对自己所要从事的设计有初步的了解。学生带着“任务”去听课,针对性更强,在学习中就会积极积累收集信息,进行知识储备。教学过程中各个工艺的动画演示资料可以加深他们对工艺过程的感性认识,为下步确定设计方案创造了良好的条件。
3加强设计期间辅导和监督
在整个课程设计过程中,学生独立设计很重要,但是教师的监督辅导不能忽视。必须将学生的主导作用和教师的指导作用有机结合。教师在理论授课时可以多介绍本课程设计与本专业的关系,相关技术在实际工程中的应用,提高学生对课设的兴趣和热情。课程设计一般不安排固定教室,但是可以向院里申请专用绘图室。这样既方便学生绘图,也方便老师集中指导。课程设计不同于平时作业,要分段督促跟踪,全面掌握控制进度。“万事开头难”,在设计初期必须多花精力和学生讲解交代清楚设计的任务,题目的生产背景、特点、解决的途径,如何入手搜集查阅相关资料,讨论设计的方法思路,最终确定出可行的设计方案方案。中期重点检查工艺计算是否正确、设备选择是否合理,参数选择是否合适,设计进度是否按部就班。末期收尾时,检查数量和质量是否达到课设要求,完成太差、不合要求的提醒其抓紧修改,以免影响最后答辩。设计中发现普遍存在的问题可以集体答疑和讨论,师生之间,学生之间相互启发,相互切磋,活跃学习气氛。根据学生程度不同,采用分类指导。对于基础比较差的同学,可以进行个别指导,重点“支持”,保证学生得到基本的应用锻炼;对于学习基础好的同学,可以多采用启发引导,鼓励他们尝试有创意的设计。除了面对面的辅导还可以结合手机、QQ、电子邮件等交流方式,及时为学生释惑解疑。教师是课程实施过程的参与者,方案成功与否,教师的素质、态度很关键。在整个课程设计期间,指导教师应该不辞辛苦、尽职尽责,辅导、监督、督促每位同学认真完成每一个步骤。同时应该认真做好相应记录,为最后的成绩评定提供依据。
4科学的评定设计成绩
聚合物成型加工原理课程设计的成绩分为5个等级:优、良、中、及格和不及格,但是成绩的评定不能只看说明书和图纸,需要结合平时表现与答辩成绩,综合评定才能更准确、更合理,更有利于调动学生的积极性。平时表现占10%,包括设计期间的出勤情况,设计的态度,设计完成进度等,应避免由于老师的主观性给学生成绩造成的影响。设计说明书质量占30%,包括内容完整性、格式规范性、提交的时间等。图纸完成质量占40%,包括图纸内容数量、图标规范、尺寸标注、图面整洁等。对于选用新工艺、新设备,车间布局新颖的,成绩评定时应加以区分。答辩成绩占20%,考查学生对于设计的目的,设计的内容是否清楚,设计思路是否清晰,相应问题是否能正确回答。答辩应该是贯穿整个设计期间,老师可以根据设计内容随时提出问题,要学生回答,作为过程考核。老师可以及时了解学生掌握知识的程度情况,学生可以通过问题弄清设计过程中要注意的一些细节及必须掌握的知识。把过程考核与结果考核相结合,并且增大过程考核在总成绩中的比例。考核的标准相对固定但是不应局限。对于设计期间表现突出,方案选择有新意的,内容有创新的,设计有特点的,可以根据实际完成情况给予加分。
5结束语
关键词:新型金属材料,成型加工,加工技术,技术创新
当前, 新型的金属复合材料已经得到了广泛的应用, 复合型材料虽然成本与技术要求都较高, 但其所具有的材料特性相较于普通的金属材料具有更高的性能优势, 成为工程建设的重要材料。除此之外, 更多的零部件制作采用新型金属材料, 也催生了很多先进的成型加工技术。那么在新时代背景下, 究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善, 是当前的材料工程师应该重点关注的问题。
1 关于新型金属材料的综述
1.1 新型金属材料的固有特性
新型金属材料的种类繁多, 都涵盖在合金的范畴之内, 金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。
1.2 新型金属材料的加工特性
1.2.1 焊接性
焊接性是金属成型加工的基础特性之一, 所指是金属材料通过焊接来完成二次成型并满足设计要求。新型金属材料的焊接性良好, 在焊接时可以保证没有气孔、没有裂缝等。新型金属材料具有好的焊接性通常收缩小、导热性能好。
1.2.2 锻压性
锻压性对于金属的成型加工的关键因素, 金属具有的锻压性能够使金属在锻压的过程中承受塑性变形, 并有效缓解冲压。除此之外, 金属的锻压性还会受到加工条件的影响。
1.2.3 铸造性
金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性, 由于新型金属材料均为合金, 因此其中含有的高熔点元素会金属的流动性降低, 给材料成型加工增加了一定的难度。
2 新型金属材料成型加工的原则分析
应用于工程施工以及企业产品中的新型金属材料通常具备耐磨性良好、硬度高的特性, 具备这些特性的新型金属材料能够满足工程及产品的成型与质量要求, 却也为成型加工带来了一定的难度。通常情况下, 为了保障金属材料成型加工的质量, 针对不同的金属会采用不同的加工技术。例如有些特殊的金属复合金属材料只有通过金属基复合材料的纤维性增强, 才能实现成型加工。而其他特殊的新型金属材料在进行成型加工时需要更加复杂的技术, 因此, 在进行二次加工时要做到因材料的不同而采取有针对性的技术, 做到具体问题具体分析, 从而切实推进新型金属材料成型加工的实践进程。
当前, 新型金属材料的成型加工通常会涉及到焊接、挤压、铸造、超塑成型以及切削加工等加工技术, 笔者通在实际的工作中发现, 加工过程中的任何一个小的失误或者纰漏, 都会对材料的成型造成一定的影响, 因此, 在加工之前, 一定要对金属材料的物理及化学属性进行深入的、透彻的了解, 从而能够基于其可塑性实现成型加工, 这也是当前选择复合材料的重要原则与指标之一。
3 新型金属材料成型加工的技术
3.1 粉末冶金成型加工技术
粉末冶金法是应用于新型金属材料成型加工中的最早的技术之一, 主要用于制造复合材料零件、颗粒制造以及金属基复合材料中的晶须增强等, 且以上成型加工可以通过这一方法直接完成。粉末冶金加工技术的适用范围主要是针对尺寸较小、形状不复杂以及较为精密的零件, 因为粉末冶金技术的优势在于成型制作过程中能够根据实际中的需求来进行增强相含量的调节, 即颗粒含量在半数以上;制作中的增强相较为精密, 且组织更加细密, 除此之外, 粉末冶金法还具有界面反应少的优势, 有效提升了工作效率。例如, 美国的DWA公司在设备支撑架以及自行车架等的制作方面就充分应用了这一方法。
3.2 铸造成型技术法
铸造成型技术法已经经过了实践的检验, 成为当前最为成熟的铸造技术。铸造成型法能够满足笔者在上文中所提及的加工原则, 还被广泛应用于复合材料零件的生产与制作之中。当前, 随着实际加工情况复杂性的增加, 使得铸造成型法滞后性明显, 具体的参数设置以及工艺方法选择等都必须进行改进, 在成型加工的过程中, 流动性的增加以及熔体的粘度等都会受到材料中颗粒增加的影响, 除此之外, 高温也会使材料的化学属性发生变化。针对以上出现的问题, 具体有效的解决方法在于针对不同的材料成型加工采取熔模铸造、压铸、金属型铸造以及砂型铸造等方法。
3.3 机械加工铸造法
机械加工铸造法通常利用铣、车、以及钻等方法进行金属基复合材料的加工, 与其他金属的加工相同的是在精加工铝基复合材料中采用金刚石道具来进行成型加工。具体的方法有以下几种:首先是铣削的方法, 具体的材料包括l5%~20%的粘结剂、聚金刚石刀具以及端面铣刀, 在进行铣削时需要先利用切削液来实现冷却, 并增加铣削颗粒;其次是车削的方法, 利用乳化液进行冷却, 刀具为硬质合金刀具;最后则是钻削的方法, 利用外切削液进行冷却, 通常采用PCD镶片麻花钻头。
3.4 电切割技术法
电切割法是指在成型加工过程中根据零件形状的负极来决定采取怎样的几何切割形状, 在材料切割时利用正极溶解的基本方式来实现材料的切割。对于零件成型加工中存在的残屑以及未溶解的纤维等, 可以利用零件与负极之间的间隙来实现清洗。与传统的放电加工法相比, 显著优势在于在介电流液中浸入移动的电极线, 从而能够通过液体压力冲刷以及局部高温实现对零件的成型加工。利用电切割法进行成型加工时, 非导体复合材料通常会由于放电效果差而产生一定的影响。如在铝基复合材料加工时, 由于切割速度慢以及切口粗糙等问题, 就不能沿用传统的切割参数。
3.5 焊接技术法
焊接技术法作为成型加工的重要方法之一, 通常被应用于金属及复合材料成型构建中, 例如航天飞机、汽车传动轴以及自行车等。焊接熔池的流动性以及粘度等易发生变化, 并受到增加物的影响。成型加工中, 金属的化学反应通常发生在基体金属与增强物之间, 对焊接速度造成了一定的限制, 面对这一问题, 通常的解决办法有以下几种:首先是基于惯性摩擦, 将其中一个部件进行轴对称旋转;其次是熔化焊的基本处理方法;除此之外, 还可以利用扩散焊的方法进行焊接。
3.6 模锻塑性成型法
模锻塑性成型法在镁基复合材料与铝基础复合材料中有广泛的应用, 成型法涉及到超速成型、模锻以及挤压等方法。利用此方法生产出来的零器件性能好、组织更加细密。但是在应用的过程中需要注意以下几方面:第一方面是通过挤压温度的适度提高, 可以对应提高金属材料的塑性;第二方面是在模具表面进行涂层或者使用润滑剂等实现摩擦条件的改善, 降低材料成型的难度;第三方面则是挤压速度受到增加物的影响, 为了防止零件产生横向裂纹, 一定要控制好挤压速度。
4结语
新型金属材料作为一种现代化的先进材料, 拥有更为广泛的实际应用价值, 而其所具有的高模量、高韧性以及高强度的特性使其更具生命力。成型加工作为二次加工, 涵盖了金属学、物理学、传热学等多个学科, 这就使得在在成型加工时需要进行更加深入的、广泛的探究。笔者相信, 在现代科学技术迅速发展的今天, 通过对新型金属材料成型加工技术的探究, 能够为金属材料的广泛应用提供可能, 同时为金
属产业结构的调整与优化奠定基础。
参考文献
[1]候立强, 郭秋颖.新型金属材料成型加工技术分析[J].科技研究, 2014 (5) :124.
摘 要:随着我国经济的快速发展,我国的工业都开始向着机械自动化发展,其中钣金加工也开始向着这方面发展,钣金机械自动化能大大的提高加工效率,为企业增加额外的利润。本文重点分析和探讨了钣金加工的工艺流程,同时针对钣金加工实际操作提出一些注意事项。
关键词:钣金加工;工艺流程;数控机床
在我国的钣金行业中,由于其加工的成本比较低,产出的产品具有体积小、重量轻、性能高等特性,在各个行业中被广泛的应用。但是随着现代的用户对产品的要求越来越高,传统工艺生产的产品已经不能满足用户的需求,因此产业中的一些行业开始向钣金加工的自动化方向靠拢。随着钣金行业自动化的企业越来越多,之间的竞争也开始加剧,因此,钣金行业的机械自动化开始向着更高的技术发展。
1、钣金加工工艺分类
钣金件根据不同的要求选择不同的落料方式,其中有激光剪切,数控等离子切割,剪板机加工等不同方式。通常从成本上考虑多数会采用剪板机剪切加工。为了保证剪切质量,根据板材的厚度的不同,剪板机的刀刃之间要调整好间隙,否则板材会有毛边产生,并且刀刃要定期修磨,一是延长刀具的使用寿命,二是保证板材的剪切质量。激光剪切因为其数控程序是由CAD图形-几何位图以非均匀有理B样条曲线为基础的PLC控制程序同步转化的,机械精度理论上误差在±0.02mm,由于环境原因实际上误差在±0.05mm左右,材料利用率通常≥80%。采用激光切割,切割出的零件外形尺寸,精度、粗糙度、热影响区都完全符合设计要求。数控等离子切割,一般数控切割机在执行切割前需要完成作图及切割工艺的编辑及处理,为保证工件质量,一般不在工件轮廓上直接安排穿透点(即打火点),而是使其离开工件一段距离,经过一段切割线后再进入工件轮廓,这段线通常称之为切割引线或引入线。一般来讲,引线的长度随厚度的增加而加长。
2、钣金加工流程中的注意事项
对钣金制品的后期处理,主要是对钣金制品表面的处理。钣金制品表面处理主要包括电镀、磷化皮膜、烤漆、氧化等。钣金加工的后期处理主要是为了保护料件,而在其表面涂上一层膜,防止氧化,还可以增强烤漆的附着力,其中,磷化皮膜主要是用于电解板类和冷轧板,经过后期处理,钣金料品就基本成形了。因此,一定要注意对料件的保护,不能划碰伤,否则就不能算是合格的产品。钣金加工的过程是理论与实践的结合,是将有关机械制造的基本工艺知识、基本工艺方法和基本工艺实践等有机结合起来的一道制作过程。在钣金加工的过程中,要注意以下方面:在使用样本图纸时,展开方式要便于节省材料和加工的及时性;压铆、撕裂、冲凸点(包)等位置方向,要画出剖视图,便于加工的便利性,也能更直观地理解;要核对板厚、材质以及板厚公差等参数;特殊角度,如折弯角内半径(一般R=0.5)要试折而定展开;如果有容易出错的地方,应该重点表明,以示提示;如果有尺寸较多、较复杂的地方,应该把此部分图放大;有需要烤漆或保护的,也应做好提示。钣金加工是通过冲压、弯曲、拉伸等手段来加工零件的,因此,在加工过程中,必须严格按照加工工序来完成。
3、钣金加工的流程
3.1下料
下料分为很多种,其中最主要的是以下几种方式:剪床下料:利用剪床剪切料件,它主要是为模具落料成形、准备加工,成本低,精度低于0.2 mm,但只能加工无孔、无切角的条料或块料;冲床下料:利用冲床分一步或多步在板材上将零件展开后的平板件冲裁成各种形状料件,其优点是耗费工时短,精度高,成本低,效率高,适用于大批量生产;镭射下料:利用激光切割技术,在大平板上将其平板的结构形状切割出来,但是需编写镭射程式,它可下各种复杂形状的平板件,成本高,精度小于0.1 mm;锯床下料:主要用于铝型材、方管、圆管、圆棒料之类,成本低,精度低。
3.2 折弯
折弯就是将2D的平板件,折成3D的零件。金属板料在折弯机上模或下模的压力下,首先要经过弹性变形,接着进入塑性变形,在塑性弯曲的开始阶段,板料是自由弯曲的,随着上模或下模对板料压力的增加,板料与下模V型槽内表面逐渐靠紧,同时曲率半径和弯曲力臂也逐渐变小,继续加压直到行程终止,使上下模与板材三点靠紧全接触,此时完成一个V型弯曲。其加工需要有折弯机及相应折弯模具完成,它也有一定的折弯顺序,其原则是对下一刀不产生干涉的先折,会产生干涉的后折。折弯模具分为弯刀和直刀。铝板折弯时,有裂纹,可增加下模槽宽或增加上模R(退火可避免裂纹)。折弯时注意事项:1.图样:板材数量、厚度;2.折弯方向;3.折弯角度;4.折弯尺寸。
3.3 拉伸
在钣金的加工过程中,经常需要将其展开拉伸,这种延长料件称为拉伸。拉伸主要是针对一些有特色要求的样本料件。拉伸件由于各处所受应力大小各不相同,使拉伸后的材料厚度发生变化。一般来说,底部中央保持原来的厚度,底部圆角处材料变薄,顶部靠近凸缘处材料变厚,矩形拉伸件四周圆角处材料变厚。
3.4 成形
成形是指钣金经过下料、翻边攻丝、冲床加工、压铆、折弯、焊接等一系列加工程序后,再经过后期处理(表面加工),形成的最终钣金件。成形是钣金件加工的最终形态,也是我们所需要达到的形态。有时料品是多个零件时,还应按照一定的方式把它们组合在一起。
4、结束语
随着社会经济的发展,工业的进步,钣金件在我们日常的生产、生活中的使用越来越广泛。汽车上,机器上、各种生活用具如排油烟机、燃气灶等等均要使用到各种各样的钣金件,因此如何制作出质量好外观美观的钣金件,加工工艺也就显得尤为重要了。钣金的加工流程每个环节都很重要,一个环节出现问题都会影响到产品的加工质量,因此必须确保每道工序的准确性,只有这样才能做出外观精美、质量合格的钣金件。
参考文献:
[1]周鹏飞,钣金加工工艺流程探讨[J].金属加工,2013
【钣金成型加工技术】推荐阅读:
钣金加工技术要求汇总07-12
电火花成型加工教案10-06
成型钢筋加工合同范本10-21
钣金加工检验标准07-24
钣金加工工艺介绍10-21
材料成型新技术论文07-19
逆向工程与快速成型06-21
汽车钣金实训11-13
钣金车间实习报告06-17
钣金主管岗位职责06-22