初中数学教师解题(精选8篇)
近10天的宁大浙江省初中数学90学时解题能力培训已圆满结束,本以为这次培训是走走过场,形式而已,可没想到本次培训给我所带来的教学观念上的洗礼和震撼,是我从教这么多年来未曾经历过的,这么多专家和名教师(他们中有年过60的一辈子从事数学研究的老教授、有50多岁还奋战在教学第一线的特级教师、有宁波市重点中学的一线骨干数学教师、也有从事教学研究指导的数学教研员),他们的解题分析都是结合教学实践,来自于课本,源于学生在解题实践中所暴露出的一些问题,他们的报告都是真金白银,没有虚的东西,他们精彩的解题分析给我们参加培训的老师深深的启迪,不断地敲及我们的灵魂深处。本次培训之旅是一次心灵之旅,是一次教学观念的大洗脑,培训虽然已经结束,但我仍在回味,本次培训也带给我很多感想,一吐为快。
感想一:这么多专家和名教师的共同点都是对数学研究充满激情,他们爱数学,喜欢研究习题,沉浸在自已的研究世界里,其乐融融。即使是一道很普通的习题,也可以研究到极致,他们通过对习题的研究,可以得出一系列的变式和拓展问题,(这里我在前面的文章中都有所分析,就不一一展开了)引导学生通过做一题从而达到会一片的目的,以此来减轻学生的解题负担,让学生跳出题海。
感想二:他们都有较为先进的教学教学观和学生观,都能设身处地为学生考虑,都是一再呼吁要让学生远离题海,必要的练是要的,但大量重复低效的练习他们都是很反感的。要减轻学生解题负担,唯一的办法是教师加强对习题的研究与分析,通过对习题的研究归类,对学生进行一题多解,多题一解,多解归一的科学指导,以及解题策略的梳理与分析,从而通过典型性一定量习题的训练,就可以达成学生轻负高质的教学效果。
感想三:这些名教师都有一个共同点,他们在习题研究上很勤奋,但在学生的作业布置和批改上都显得很”懒惰”,他们不太喜欢布置作业,也不太想去批改作业,他们更多的是想办法去引导学生,充分调动学生的学习积极性,让学生互相批改,有问题互相问一下,集体研究一下,我想这才是真的体现以教师为主导,以学生为主体的一种先进的教育教学观,我们要走“学生路线”,只有真正的把学生调动起来了,我们的老师才会有更多的时间去研究,去享受我们的教学,提高我们的生活质量。反观我们现在的教育教学现状,有很多青年教师,每天都把大量的时间花在布置作业和批改上,每天都很忙,那里会想到要去做习题研究和分析,长此以往,把自已搞得很累,学生也基本上搞死了,初
一、初二还好,一到初三学生就越显疲惫了,这样的学生到了高中,潜力基本上没有了,很多教师30多一点,就失去了应有的朝气与活力,失去了教学的热情。
感想四:“轻负高质”的教学效果能否实现,以前我还不敢肯定,最多只是提轻负中质的这一目标,但现在听了他们这些名师的报告,以及他们的现身说法之后,我想这肯定是可以做到的,因为他们这些名师在教学实践中确实做到了(这个不是他们自吹的,有据可查的)。我想要做到学生的轻负高质,首先你教师自身的工作状态要做到轻负高质,要做到教师的轻负高质,唯一的办法是研究、研究、再研究,没有对习题的大量研究,谈何轻负高质,谈何跳出题海。真正的这些名教师也不是我们所想象的这么累,他们在成功的初期搞研究可能会累一点,但积累到了一定的阶段之后,已形成了自已的研究思路和方法,也很轻松了,实际上和他们交流的过程中,我感觉他们的心态都很好,生活质量也挺高的,<莲~山 课件 >知识面也很广,并不是除了数学之外,其它方面就不懂了,他们的工作状态真的是轻负高质,你想有这样的教师,在他们班学习的学生也不会吃多少苦头。
一、学生解题错误的类型
在解题过程中,学生出现的错误有很多,为了有效利用这些丰富的资源,使学生从中吸取教训,达到纠错目的,我们需要对错误进行分类.但是错误产生的原因很多、很杂,且有不同的分类标准,这里我们就将错误类型分为知识性错误、逻辑性错误、策略性错误和心理性错误.
二、教师对学生解题错误分析能力的现状
总体而言,教师对学生解题错误分析能力的现状表现为以下四个方面:
1.对错误的识别.有些教师不能发现学生的解题错误;或能发现学生的解题错误,但不太自信,需经长期思考、查阅资料或与其他教师交流讨论后,才能作出最终的判断.
2.对错误的解释.有些教师分析不出学生出错的原因,无法对错误类型进行归类;或能分析出学生出错的原因,但只是“就题论题”,不具有一般性,不能从较高的理论视角或多角度分析问题.
3.对错误的评估.有些教师根据学生的解题错误,判断不出学生现有的知识与技能水平,无法评估此类错误对学生以后学习的影响;或能基本判断出学生现有的知识与技能水平,了解其对以后学习的影响,但评估水平还不高.
4.对错误的纠正.对于学生的解题错误,有些教师只会“就题论题”,把出错的习题改正就结束了,而没有从教学的角度思考如何预防学生再次出错;或能从教学的角度思考,提出相应的教学改进策略,但改进策略不够全面、针对性不强.
三、影响教师对学生解题错误分析能力的因素
影响数学教师对学生解题错误的分析能力的因素有很多,如教师的观念、知识、个性特征及教材等,其中,观念和知识是决定性因素,而教师的个性特征和教材只是表面因素,最终可以归纳到观念、知识因素中.因此,在这里只研究教师的观念和知识这两个因素对教师错误分析能力的影响.
1.教师的知识.教师的知识包括课程知识、学科知识、教学知识、学生知识.课程知识体现在教师对课程标准、教材的了解程度等;学科知识体现在联系相关知识点、从数学的高观点分析知识,认识知识的地位与作用等;教学知识体现在善于采用灵活多变的方式组织教学;学生知识体现在了解学生的心理特征、学习习惯、学习情况以及容易出错的地方等.
2.教师的观念.教师的观念包括数学观、教学观、学习观、错误观、自我效能感等.数学观指对数学的看法,对数学教育价值的理解等;教学观指对数学教育教学工作的看法;学习观指对数学学习的看法,强调学生的独立思考,强调学生对知识的理解等;错误观指对学生解题错误的态度;自我效能感指对教学的信心程度和对判断学生思维的信心程度等.
四、提高教师对学生解题错误分析能力的策略
1.从内部入手,转变传统的教学观念.教师应经常进行自我反省,转变传统的教学观念.教师要对自己的教育教学工作进行反思,认真领悟数学知识中蕴含的思想方法,感悟教育教学工作的本质,提高自己对学生解题错误的分析能力.教师应加强与同事、学生之间的交流,树立终身学习的观念,通过不断学习来提高自身的综合素质.
2.从外部入手,参加职业培训.学校或当地教育部门定期组织教师参加职业培训,让教师树立终身学习的观念,提高教师的错误分析能力和专业能力.
数学教师在日常教学中会遇到很多学生解题出错的情况,教师要注意收集和整理学生的错误,并把具有典型性和研究性的错误用于案例研究,与学校教师共同分析、讨论案例,并给予学生恰当的引导和启发,最后进行总结.
关键词:初中数学;解题策略;方法运用
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)11-190-01
数学学习离不开解题,除加强必要的训练以外,还要掌握一定的解题策略。解题策略是指在解题过程中,从宏观的角度来考虑解题途径的思想方法。在平时的学习中,我们比较重视数学思想方法的领悟和使用,而对解题策略总结和关注得较少,这种情况导致部分同学尽管数学基础较好,可拿到一个新问题时却无从下手,不知所措。这里通过几个中考试题来说明初中数学解题时常用的几种解题策略。
策略之一:化繁为简,分而解之
一个较复杂的数学问题往往是由若干个较简单的问题通过适当的方式结合起来的。因此,在解决这类问题的时候,我们要善于排除干扰信息,把繁杂问题进行分解,变成若干个简单问题,通过解这些较简单的问题达到最后解决问题的目的。
例1(2007郴州市中考题)李叔叔承包了家乡的50亩荒山,经过市场调查,预测水果上市后A种水果每年备亩可获利0。3万元,B种水果每年每亩可获利0。2万元。李叔叔决定在承包的山上种植A、B两种水果,他了解到需要一次性投入的成本为:A种水果每亩1万元,B种水果每亩0。9万元,设种植A种水果x亩,投入成本总共y万元。(1)求y与x之间的函数关系式; (2)若李叔叔在开发时投入的资金不超过47万元,为使总利润每年不少于11。8万元,应如何安排种植面积(亩数x取整数)?请写出获利最大的种植方案.这是一次函数的应用;一元一次不等式组的应用.属于方案型.本题文字较长,阅读时容易产生急躁心理而影响解题。其实,有些信息并不是对每一个具体问题都有用,我们要善于化繁为简,如第(1)题中,只需要以下信息:种植A、B两种水果共50亩,种A种水果每亩1万元,B种水果每亩0。9万元,设种植A种水果x亩,投入成本总共y万元。这样,复杂的问题就变得简单多了。
策略之二:苦做巧做,触类旁通
几乎每个学生都知道,要想获得好成绩,务必增强练习,只有多做习题,方能熟能生巧。解数学题,千万不要忽视最基本的概念、公理、定理和公式,把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特別是容易混淆的概念更要彻底搞清,不留隐患。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,注重发现题与题之间的内在联系,要“苦做”更要“巧做”,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。此外,大家在做题时要及时记录错题,还要想一想为什么会错、以后要特別注意哪些地方,这样就能避免不必要的失分。如果试题中涉及你的薄弱环节,一定要通过短时间的专题学习,攻克难关,別留下弱点。
首先,应非常知道得清楚习题中所牵涉的内部实质意义,做到概念清楚,对定义、公式、定理和规则清楚明白。解题时,我们的概念越清楚,对公式、定理和规则越清楚,解题速度就越快。所以,我们在解题之前,应经过阅览课本和做简单的练习,先清楚、记忆和鉴别这些基本内部实质意义,准确了解其含义的实质,继续立刻就做后面所配的练习,一刻也不要停留。我引导学生按此办法学习,几乎全部的学生都大大增长理解题的速度,其效果非常好。第二,还要清楚习题中所牵涉的曾经学过的知识和与其他学科有关的知识。例如,在反比例函数这一章的教学中涉及到物理概念和物理公式,这时我们应先补充一点有关知识,弄明白与题目有关的概念、公式或定理,再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
策略之三:注重思路,方法得当
数学解题方法很多,下面我谈下增长解题速度的几个方法。
1、配方法。所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理。一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数。
总之,在解题过程中我们要灵活地运用解题方法,我们在实践中不段的总结,反复地领会,才能更好的提高解题速度。
参考文献:
[1] 胡炯涛.数学教学论[M]。广西:广西教育出版社,1996,71-72.
[2] 贡永生.精心建构问题,培养创新意识[J].中小学数学,2001(1):2.
一、初中数学学习的一般方法:
1.突出一个“勤”字(克服一个“惰”字)
数学家华罗庚曾经说过:
“聪明在于学习,天才在于勤奋”“
勤能补拙是良训,一分辛劳一分才:
我们在学习的时候要突出一个勤字,克服一个“懒”字,
怎么突出“勤”字“聪”:怎么个勤法,?
要做到五勤:
“耳勤” “眼勤”(耳朵听,眼睛看,接受信息)
“口勤”(讨论,回答问题,而不是讲话,消化信息)
“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)
“手勤”(动手多实践,不仅光做题,做课件,做模型)
最大的提高学习效率,
首先要做到—— 上课认真听讲(这是根本)
回家先复习再做题
如果课听不好,就别想消化知识
2.学好初中数学还有两个要点,要狠抓两个要点:
学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么动手就是多实践,
多做题,要“拳不离手”“曲不离口”
同学就是“题不离手”,
这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率”
3.做到“三个一遍”大家听过“失败是成功之母”听过“重复是学习之母”吗?
培根——“知识就是力量”“重复是学习之母”
如何重复?
上课要认真听一遍,
动手推一遍,想一遍
下课 和 考试前都看一遍
4.重视“四个依据
”读好一本教科书——它是教学、中考的主要依据;
记好一本笔记 ——它是教师多年经验的结晶;
做好做净一本习题集——它是使知识拓宽;
记好一本心得笔记,最好每人自己准备一本错题集二、分课前、课上、课后三个方面来谈一谈数学的学习。
1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。
首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。
其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。
那该如何预习,预习些什么内容呢?
第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。
第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路
2.课上做什么,认真听讲。
听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么?
第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。
第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。
第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。
第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。
第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。
3.课后该怎么做,完成练习和作业。
要学好数学,必须多做练习,但并不是题海战术。只顾看书,而不做或少做练习,是不可能学好数学的。而一味的做题,而不顾解题方法,也是很难在学习上收到成效的。
做练习要在有充分的准备之后,认真独立地完成。所谓有充分准备,就是要先复习今天所学的知识和老师补充的例题,把课本上的知识弄懂之后才能做练习。如果课本知识还有不懂之处,应先复习课文,询问同学或老师,直至懂了之后再做练习。
所谓认真,是指对每个习题都要认真思考,对问题的每个细节都应思考清楚。注意养成一个全面细致地思考问题的习惯。
这种良好习惯一旦养成,它会在你的一生中大有益处。另一方面,要认真演算,注意解答表述的条理性和解题格式的规范性。许多同学常常在考试中马虎出错,究其根源,必然形成马马虎虎的坏习惯。而“马虎”会长久地带来危害,这种坏习惯一旦养成,十分顽固,很难克服。所谓独立完成作业,就是要靠自己的能力完成作业。因为做练习的目的,一是巩固所学知识,
二 是检查对知识的理解是否正确,培养和提高分析解决问题的能力。
要敢于啃难题。遇到难题一定要反复仔细推敲条件,深入思考,在山穷水尽、自己能力确实承受不了的情况下,问问别人是可以的,不要一觉得难,就不想做了。当然,做难题要耗费较长的时间。有些同学以为这样做不合算,不如问问省事,这种想法是不全面的。其实,帐得算两笔,比如你由于解难题耗费的时间较长联想过很多知识,设想了很多解法,都失败了,似乎收获是“零”,但事实上,你获得了大量的“副产品”,而这“副产品“的价值会远远大于本题目的价值。因为,由于解题的迫切需要联想了很多知识,恰好是对这许许多多知识积极的复习;你想出了很多方法,虽然没有能解决这个题目,但它是很好的思维训练,对提高思维能力起到了不可低估的作用,况且这一个个方法很可能在解决其他题目上奏效。大数学家希尔伯特把“费尔马大定理”这道难题叫做“能下金蛋的母鸡”。正是因为有很多数学家在攻克“费尔马大定理”的失败中,发现和开创了许多新的数学领域,大大地推进了数学的发展。
对于数学《评价手册》:学习较吃力的同学只要完成基本题就可以了,中等的同学完成辨析与反思;好的同学加上探索与思考;还有额外学习能力的同学可以选择好一本课外书,自己挑选部分习题、能够巩固所学知识并拓展知识面的,在做题时尽量讲究一题多解,发展自己分析问题和解决问题的能力。做过的题目希望大家一段时间(一周之类)要消化,对于这类题目的解题方法要掌握,争取做到举一反
三,触类旁通
在练习当中,我认为“做”是次要的,而“思”是主要的。出错的地方也正是我们学习中最薄弱的地方,把这些地方弄懂弄通,避免在同一地方摔倒二次,这比把十道习题演算正确收效也许更大一些。
4.复习与总结。
复习是为了巩固,和遗忘做斗争;
总结是为了条理知识,发现、掌握规律,积累经验,有所提高。
学完每一章,要及时做好阶段复习。
阶段复习要围绕每一节知识的重点、难点,阅读教材、听课笔记、练习本,从中提炼出本章的知识重点和难点,特别对于曾不大懂和理解错误或不够深度的地方,要着重复习巩固。凡是在作业或测验中不会做或做错了的题目,在阶段复习中要独立做一遍,检查一下对这些题目自己是否已经掌握。有些同学多次在某一类问题上出现错误,或曾不会做的题目,再考时仍不会做,正是没有完成复习任务的结果。较难的知识与题日,不仅难做、难理解,而且很容易忘。
反复复习的本身,则是与遗忘作斗争的有效方法。阶段总结是十分必要的,通过阶段复习,应该有较大的提高。
华罗庚有句名言:“读书要由薄到厚,再由厚到薄”。阶段总结,正是要完成由厚到薄的过程。总结要提炼出每一章知识的重点、难点,每一小节知识的重点与本章知识重点的联系,做出条理性的归纳和概括,从而积累解题经验,提高分析解题的能力。
5.课外自学与研究。课外自学与研究的目的是扩大知识面,开阔眼界,掌握与积累思维方法和解题方法,进一步提高分析解题能力。围绕所学的教材进度看一些课外参考书及数学杂志,作一些较新鲜或难度较大的习题。课外自学应该是有计划地有节制地进行,不要影响以上环节的学习,更不要影响其它学科的学习。在课外自学的过程中,发现一些新颖而有价值的习题、一些好地思维方法与解题方法,应该记下来,以便进一步学习掌握。
爱因斯坦说过:
“成功==艰苦的劳动+正确的方法+少说空话”。
对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。
初中数学解题方法大全
一.选择题
1、排除法(筛选法)
从已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。
比如二次函数和一次函数图像的选择题,逐一排除错误选项,从而确定正确的一项。
2、验证法
把各个选择项代入原题加以验证,看是否符合题意,然后得出结论。比如图像是否经过这点,就可以用验证的方法带入题中,得出正确的选项。
3、特殊值法
根据题设条件,选取恰当的特殊数值,替代题中的字母和数式,通过计算,得出答案,再类推一般性答案,从而得出正确答案。
比如规律题,推理结果时,可以用一些数值来进行验证。
二、填空题
填空题是初中数学测试中常见的一种基本题型,突出考查同学们准确、严谨、全面、灵活的运用知识进行正确运算的能力。
填空题只要求写答案,缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,要想又快又准的做好填空题,要在「准、巧、快」三字上下功夫。
1、直接法
直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。
2、数形结合法
数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。
通过对图像的观察、分析和研究、启发解题思路,找出问题的隐含条件,从而简化解题过程,检验解题结果。
三、解答题
解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。
解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。
解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。运用各种数学思想,构建各种数学模型解决问题。
1、构造图形
复杂的几何图形问题,一般需要添加恰当的辅助线才能顺利解决,如连接、延长、做平行、做垂直等,将不规则、不常见的图形转化为规则或特殊的图像求解。
如:构造等长线段、三线八角、全等三角形、相似三角形、直角三角形等,从而利用特殊图形的性质和判定解决问题。
2、动静结合
在图形的运动变化过程中,需要认真研究图形的变化规律,抓住主动变量与从动变量,动静结合,从中探索出它们之间的关系,利用函数关系解决。
数学重在练习,在实战中要注重总结解题技巧和方法。
有时我们做了几张卷子都在练习一种解题思路和方法,这时需要举一反
3、一题多解
多解归一是学习数学最有效的方法,在探索中和体验中找到解题的突破点,不至于陷入题海无法自拔,还给自己增添了压力和负担。
4、答题思路
在数学考试中,很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高。
掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。
建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在考试中游刃有余。
提高数学计算能力的方法
1、养成良好的计算习惯
(1)仔细审题的习惯。拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。
(2)细心检查的习惯。先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。
(3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免错误的发生。
2、强化口算能力
任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。
3、速算巧算
平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。
4、强化估算能力
很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。
5、合理利用一些数的性质
比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。
说了这么多,总结起来其实也很简单,只要坚持一个好的学习习惯,做好复习练习,那么数学学习就能够事半功倍,学好数学自然也就不在话下。
6、建立错题本
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式
解函数、方程、不等式相关问题的常用数学思想方法有:
⑴数形结合的思想方法。
⑵待定系数法。
⑶配方法。
⑷联系与转化的思想。
⑸图像的平移变换。
四、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、等腰梯形同一底上的两个角相等。
11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。
12、圆内接四边形的任何一个外角都等于它的内对角。
13、同弧或等弧所对的圆周角相等。
14、弦切角等于它所夹的弧对的圆周角。
15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、全等三角形的对应角相等。
17、相似三角形的对应角相等。
18、利用等量代换。
19、利用代数或三角计算出角的度数相等
20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
⑵ 定义、在同一平面内不相交的两条直线平行。
⑵平行定理:两条直线都和第三条直线平行,这两条直线也互相平行。
⑶平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷平行四边形的对边平行。
⑸梯形的两底平行。
⑹三角形(或梯形)的中位线平行与第三边(或两底)
⑺一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
⑴两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵直角三角形的两直角边互相垂直。
⑶三角形的两个锐角互余,则第三个内角为直角。
⑷三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹三角形(或多边形)一边上的高垂直于这边。
⑺等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻矩形的两临边互相垂直。
⑼菱形的对角线互相垂直。
⑽平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾半圆或直径所对的圆周角是直角。
⑿圆的切线垂直于过切点的半径。
⒀相交两圆的连心线垂直于两圆的公共弦。
六、证明线段的比例式或等积式的主要依据和方法:
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
七、几何作图
1、掌握最基本的五种尺规作图
⑴作一条线段等于已知线段。
⑵作一个角等于已知角。
⑶平分已知角。
⑷经过一点作已知直线的垂线。
⑸作线段的垂直平分线。
2、掌握课本中各章要求的作图题
⑴根据条件作任意的三角形、等要素那角性、直角三角形。
⑵根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶作已知图形关于一点、一条直线对称的图形。
⑷会作三角形的外接圆、内切圆。
⑸平分已知弧。
⑹作两条线段的比例中项。
⑺作正三角形、正四边形、正六边形等。
八、几何计算
(一)角度与弧度的计算
1、三角形和四边形的角的计算主要依据
⑴三角形的内角和定理及推论。
⑵四边形的内角和定理及推论。
⑶ 圆内接四边形性质定理。
2、弧和相关的角的计算主要依据
⑴圆心角的度数等于它所对的弧的度数。
⑵圆周角的度数等于它所对的弧的度数的一半。
⑶弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据
⑴n边形的内角和=(n-2)180°
⑵正n边形的每一内角=(n-2)180°÷n
⑷ 正n边形的任一外角等于各边所对的中心角且都等于
(二)长度的计算
1、三角形、平行四边形和梯形的计算
用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、有关圆的线段计算的主要依据
⑴切线长定理
⑵圆切线的性质定理。
⑶垂径定理。
⑸ 圆外切四边形两组对边的和相等。
⑹ 两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、直角三角形边的计算
直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。
4、成比例线段长度的求法
⑴平行线分线段成比例定理;
⑵相似形对应线段的比等于相似比;
⑶射影定理;
⑷相交弦定理及推论,切割线定理及推论;
⑸正多边形的边和其他线段计算转化为特殊三角形。
(三)图形面积的计算
1、四边形的面积公式
⑴S□ABCD = a·h
⑵S菱形 = 1/2a·b (a、b为对角线)
⑶S梯形 = 1/2(a + b)·h = m·h (m为中位线)
2、三角形的面积公式
⑴S△ = 1/2· a·h
⑵S△ = 1/2· P·r(P为三角形周长,r为三角形内切圆的半径)
3、S圆 =πR2
4、S扇形 = nπ= 1/2LR
5、S弓形 = S扇 -S△
九、证明两线段相等的方法:
1、利用全等三角形对应线段相等;
2、利用等腰三角形性质;
3、利用同一个三角形中等角对等边;
4、利用线段垂直平分线;
5、角平分线的性质;
6、利用轴对称的性质;
7、平行线等分线段定理;
8、平行四边形性质;
9、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。推论1:平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
10、圆心角、弧、弦、弦心距的关系定理及推论;
11、切线长定理。
十、证明弧相等的方法:
1、定义;同圆或等圆中,能够完全重合的两段弧。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。
②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。
③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:两条平行弦所夹的弧相等
3、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)
4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)
十一、切线小结
1、证明切线的三种方法:
⑴定义——一个交点;
⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);
⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)
2、切线的八个性质:
⑴定义:唯一交点;
⑵切线和圆心的距离等于半径(d=r);
⑶切线的性质定理:圆的切线垂直于过切点的半径;
⑷推论1:过圆心(且垂直于切线的直线)必过切点;
⑸推论2:过切点(且垂直于切线的直线)必过圆心;
⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。
⑺ 连接两平行切线切点间的线段为直径
⑻ 经过直径两端点的切线互相平行。
3、证明切线的两种类型:
⑴已知直线和圆相交于一点
证明方法:连交点,证垂直
⑵未知直线和圆是否相交于哪点或没告诉交点
证明方法:做垂直,证半径
十二、辅助线的作用与添加方法:
辅助线是沟通已知与未知的桥梁.现已学过的添加辅助线方法有:
1、梯形的七类辅助线:
⑴作梯形的高;
⑵延长两腰;
⑶平移一腰;
⑷平移对角线;
⑸利用中点;
⑹连结两腰中点;
2、一般的辅助线
⑴过两定点作直线;
⑵作三角形的高、中线、角平分线;
⑶延长某一线段;
⑷作一点关于已知直线的对称点;
⑸构造直角三角形;
⑹作平行线;
⑺作半径;
⑻弦心距;
⑼构造直径上的圆周角;
⑽两圆相交时常连公共弦;
⑾构造相交弦;
⑿见中点连中点构造中位线;
⒀两圆外切时作内公切线;
⒁两圆内切时作外公切线;
2,题意新或解题思路新的题目。
3,探究性或开放性的数学题。
有些老师认为,对全班进行面上的复习只要复习到中等题就行,不必进行难题的复习,那些智力好的学生你不帮他们复习他们也会做,那些智力差的学生你教他们也白白浪费时间。
其实,学生有一定的数学知识和基本的解题技能也不一定能解出难题,这是因为从数学基础知识出发到达中考的难题的答案,或者思维深度要求较高——学生思维深度不够,或者思路很新——学生从来没有接触过。
但很多有经验的初三毕业班的老师的多年的实践证明,针对难题进行专题复习是很有必要的,只要复习得好,对中等以上学生解难题的能力的提高作用是较大的。
对此,我们在第二阶段复习中就要针对难题进行思维能力的训练和思路拓宽的训练。
当然,这种训练这种训练要注意题目的选择,不只针对中考,也要针对自己思维的不足,一定量的训练是必要的,但要给出足够的时间给进行解题方法和思路的反思和总结,只有多反思总结,我们的解题能力才能提高。
我们对难题进行分类专题复习时,应该把重点放在进行对数学难题跟基础知识的联系的把握能力的训练以及迅速正确分析出解题思路这一点上,并从中培养自己解题的直觉思维。
应当先把难题进行分类。然后进行分类训练。
我认为可以将初中数学中考题的难题分以下几类进行专题复习:
第一类:与一到两个知识点联系紧密的难题
例1已知:⊙O1与⊙O2相交于A,B两点,若PM切⊙O1于M,PN切⊙O2于N,且PM>PN.试指出点P所在的范围。
引导:
(1)先画图,试判断,并尝试去证明。
(2)看看可能有几种情况。
(用切割线定理:PM2=PA*PB,PN2=PA*PB,故,PM=PN)现在可以应用切割线定理来证明PM>PN吗?
第二类:综合多个知识点或需要一定解题技巧才能解的难题。
这类难题的教学关键要求学生运用分析和综合的方法,运用一些数学思想和方法,以及一定的解题技巧来解答。
例2在三角形ABC中,点I是内心,直线BI,CI交AC,AB于D,E.已知ID=IE.
求证:∠ABC=∠BCA,或∠A=60°。
本题要运用分析与综合的方法,从条件与结论两个方向去分析。 从条件分析,由ID=IE及I是内心,可以推出△AID和△AIE是两边一对角对应相等,有两种可能:AD=AE或AD≠AE。
例3:某公司在甲,乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆。已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元。
(1)设从乙仓库调往A县农用车x辆,求总运费y的关于x的函数关系式;
(2)若要求总运费不超过900元。问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
这样解:
(1)先把题目的数量关系弄清楚。
把本题数量关系表格化:
(2)写出y与x的函数关系式后,运用函数的性质解答题目的后两问。
第三类:开放性,探索性数学难题。
无论是开放性还是探索性的数学难题,重点是要学会把握问题的关键。
例4:请写出一个图象只经过二,三,四象限的二次函数的解析式。
点拨:二次函数的图象只经过二,三,四象限,就是不能经过第一象限,即当x>0时,y<0.什么样的解析式的二次函数必有x>0时y<0呢?这是问题的核心。
第四类:新题型(近年全国各地中考题型)
例5:电脑CPU芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”。现为了生产某种CPU芯片,需长,宽都是1cm的正方形小硅片若干。如果晶圆片的直径为10.05cm.问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。(不计切割损耗)
分析:本题解题的关键是①一排一排地放小正方形,②利用圆的内接矩形的对角线就是圆的直径的知识。
一、对待学生解题错误的态度
在初中数学教学中, 教师害怕学生出现解题错误, 对错误采取严厉禁止的态度是司空见惯的.在这种惧怕心理的支配下, 教师只注重交给学生正确的结论而不注重揭示知识形成的过程, 害怕启发学生进行讨论会得出错误的结论.
事实上, 错误是正确的先导, 成功的开始.学生所犯错误及其对错误的认识, 是学生知识宝库的重要组成部分.我至今还对一节数学课记忆犹新.当时老师讲过a2-b2= (a+b) (a-b) 后, 让我们自己分解x4-y4.很快大家就做完了.但在最后教师宣布只有一人做对时, 我们都感到非常吃惊.我们把x4-y4分解为 (x2+y2) (x2-y2) , 错在哪里呢?做对的学生的答案是 (x2+y2) (x+y) (x-y) , 两相对照, 我们发现原来x2-y2还可以继续分解.于是“分解因式要进行到每个因式都不能再分解为止”给每名同学留下了深刻印象.由此也可以看出, 利用典型错误并进行正确诱导会收到良好的教学效果.
基于上述原因, 教师把错误的惧怕心理和严厉态度转变为承受心理和宽容态度是十分有意义的.因为数学学习实际上是不断地提出假设、修正假设, 使学生对数学的认知水平不断复杂化, 并逐渐接近成熟的过程.从这个意义上说, 错误不过是学生在数学学习过程中所做的某种尝试, 它只能反映学生在数学学习的某个阶段的水平, 而不能代表其最终的实际水平.因此, 揭示错误是为了最后消灭错误, 我们所说的承受与宽容也是相对于这一过程而言的.在教学中给学生展示的这一尝试修正的过程, 是与独立解题的过程相吻合的.因而学生在教师教学过程中学到的不仅仅是正确的结论, 而是领略了探索、调试的过程.这对学生的解题过程会产生有益的影响, 使学生学会分析, 自己发现错误, 改正错误.教师只有具备这样的承受心理与宽容态度, 才会耐心地寻找学生解题错误的原因, 并做出适当的处理.
二、初中学生解题错误的原因
1. 小学数学知识的干扰
七年级学生在小学阶段形成的某些认识会防碍他们学习代数初步知识, 使其产生解题错误.例如, 在小学数学中, 解题结果是一个确定的数, 受此影响, 学生在解答下述问题时会出现混乱与错误.原题是这样的:礼堂第一排有a个座位, 后面每排都比前一排多1个座位, 第二排有几个座位?第三排呢?设m为第n排的座位数, 那么m是多少?求a=20, n=19时, m的值.学生在解答上述问题时, 受结果为确定的数的影响, 把用n表示m与求m的值混为一谈, 暴露出其思考过程受到上述干扰的痕迹.
又如, 小学数学中形成的一些结论都只是在没有学负数的情况下成立的.在小学, 学生对数之和不小于其中任何一个加数, 即a+b≥a是坚定不疑的.但是, 学了负数后, a+b
2. 初中数学前后知识的干扰
随着初中知识的展开, 初中数学知识本身也会前后相干扰.例如, 在学有理数的减法时, 教师反复强调减去一个数等于加上它的相反数, 因而3-7中7前面的符号“-”又成了负号.学生不禁产生到底要把“-”看成减号还是负号的困惑.这个困惑不能很好地消除, 学生就会产生运算错误.
学生在解决单一问题与综合问题时的表现也可以说明这个问题.学生在解答单一问题时, 所提取、运用的知识少, 因而受到知识间的干扰小, 产生错误的可能性小;而遇到综合问题, 在知识的选取、运用上受到的干扰就比较大, 容易出错.
3. 数学中的“巧解”掩盖了基本思想方法的渗透
数学教学中, 对于某一个问题的解决思路越来越多, 方法越来越巧, 教师会特别注意引导学生进行巧妙地构思, 以期产生教学上的捷径, 其实这是教学上的第二大误区.“巧解”往往有局限性, 实用的范围一般都比较特殊和窄小, 换一条件或变一个简单的结论, 也会使之完全丧失解题的通法, 不具有普遍性、指导性.从学生的学习心理上看, 当他们对于一道题一旦了解或掌握了某一个巧解后, 就会对较为复杂的基本方法产生厌倦心理, 从根本上阻碍了基本思想方法的渗透.只有恰如其分地介绍巧解特殊思路, 这样才能避开这一误区.
三、减少初中学生解题错误的方法
1. 课前准备要有预见性
预防错误的发生, 是减少初中学生解题错误的主要方法.讲课之前, 教师如果能预见学生学习本课内容可能产生的错误, 就能够在课内讲解时有意识地指出并加以强调, 从而有效地控制错误的发生.例如, 讲解方程x0.7+0 (0.17.0-30.2x) =1之前, 要预见到本题要用分式的基本性质与等式的性质, 两者可能混淆, 因而要在复习提问时准备一些分数的基本性质与等式的性质的练习, 帮助学生弄清两者的不同, 避免产生混乱与错误.因此备课时, 要仔细研究教课书正文中的防错文字、例题后的注意、小结与复习中应该注意的几个问题等, 同时还要揣摩学生学习本课内容的心理过程, 授业解惑, 使学生预先明了容易出错之处, 防患于未然.
2. 课内讲解要有针对性
关键词:数学教学数学知识课前准备解题误区算术解法
一、对初中学生在出现解题错误时的态度
在初中数学教学中,大多数教师对学生出现的解题错误往往采取严厉禁止的态度。教师往往只注重教给学生正确的结论,而不注重揭示知识形成的过程,对问题的解答不愿进一步的分析和讨论,害怕通过启发学生进行分析讨论会得出错误的结论。长此以往,学生只接受了正确的知识,但对错误问题的出现缺乏心理准备,看不出错误或看出错误但改不对。持这种态度的教师只关心学生用对知识而忽视学生会用知识。例如,在讲因式分解时,由于只注重得出正确的结果,强调如何进行因式分解,只求完成本节的教学任务,而对运用因式分解简化运算注意不够,但后者对发展学生运算能力却更为重要。总之,这种对待错误的态度会对教师教学及学生的学习带来一些消极的影响。
事实上,错误是正确的先导,成功的开始。俗话说“失败是成功之母”也就是这个道理。学生所犯错误及其对错误的认识,是学生知识宝库的重要组成部分。因此教师把对待错误的惧怕心理和严厉态度转变为承受心理和宽容态度是十分有必要的。因为数学学习实际上是不断地提出假设,修正假设,使学生对数学的认知水平不断复杂化,并逐渐接近成熟的过程。从这个意义上说,错误不过是学生在数学学习过程中所做的某种尝试,它只能反映学生在数学学习的某个阶段的水平,而不能代表其最终的实际水平。
二、初中学生解题错误的原因
学生能顺利正确地完成解题,表明其在分析问题、探索问题和解决问题时,提取、运用相应知识的环节上没有受到干扰或者说克服了干扰。若在上述环节上不能排除干扰,就会出现解题错误。就初中学生解题错误而言,造成错误的干扰主要来自以下两方面:一是小学数学的干扰,二是初中数学前后知识的干扰。
(一)小学数学的干扰
从进入初中一开始,学生在小学数学学习中所形成的某些认识会妨碍他们在初中学习的代数初步知识,使其产生解题错误。
初中数学的开始阶段,学生解题错误的原因常可追溯到小学数学知识对其新学知识的影响。教师在教学中要讲清新学知识的意义(如用字母表示数)、范围(正数、0、负数)、方法(代数和、代数方法) 与旧有知识(具体数字、非负数、加减运算、算术方法)的不同,这样才能有助于克服干扰,减少初始阶段的错误。
(二)初中数学前后知识的干扰
随着初中知识的展开,初中数学知识本身也会前后相互干扰。
例如,在学有理数的减法时,教师反复强调减去一个数等于加上它的相反数,因而5-9中9前面的符号“-”是减号给学生留下了深刻的印象。紧接着学习代数和,又要强调把5-9看成正 5与负9之和,“-”又成了负号。学生不禁产生到底要把“-”看成减号还是负号的困惑。这个困惑不能很好地消除,学生就会产生运算错误。
其次,学生在解决一些单一问题与综合问题时的表现也可以说明这个问题。学生在解答单一问题时,需要提取、运用的知识少,因而受到知识间的干扰小,产生错误的可能性小;而遇到综合问题,在知识的选取、运用上受到的干扰大,容易出错。
总之,这种知识的前后干扰,常常使学生在学习新知识时出现困惑,在解题时选错或用错知识,导致错误的发生。
三、减少学生解题错误的方法
由上所述,学生不能顺利正确地完成解题,产生解题错误,表明其在解题过程中受到多方面的干扰。因此,减少学生解题错误的方法是预防和排除干扰。为此,作为教师必须要抓好课前、课内、 课后三个环节。
(一)课前准备要有预见性
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。同时还要揣摸学生在学习授课内容时的心理过程,让学生预先明了容易出错之处,防患于未然。如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。
(二)课内讲解要有针对性
在课内讲解时,要对学生可能出现的问题进行针对性的讲解。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。对于规律,应当引导学生搞清它们的来源,分清它们的条件和结论,了解它们的用途和适用范围,以及应用时应注意的问题。教师要给学生展示揭示错误、排除错误的手段,使学生会识别错误、改正错误。要通过课堂提问及时了解学生情况,对学生的错误回答,要分析其原因,进行针对性讲解,利用反面知识巩固正面知识。课堂练习是发现学生错误的另一条途径,出现问题,及时解决。总之,要通过课堂教学,不仅教会学生知识,而且要使学生学会识别对错,知错能改。
(三)课后讲评要有总结性
批改作业时要认真分析学生作业中的问题,总结出典型错误,加以评述。通过对作业中学生出现的错误的讲评,进行适当的复习与总结,也使学生再经历一次调试与修正的过程,增强识别、改正错误的能力。
【初中数学教师解题】推荐阅读:
初中数学教学解题策略09-10
浅谈初中数学解题方法09-15
初中数学教师心得12-01
初中数学教师年度述职05-27
初中数学教师研修总结09-23
初中数学教师如何备课10-31
初中数学教师培训体会12-01
人教版初中数学教师教案01-19
新教师初中数学教学反思06-20