数学六年级上册圆的周长和面积的测试题

2024-08-16 版权声明 我要投稿

数学六年级上册圆的周长和面积的测试题(精选4篇)

数学六年级上册圆的周长和面积的测试题 篇1

一、基础题

(一)、填空题

(1)小圆的半径是6厘米,大圆的半径是9厘米。小圆直径和大圆直径的比是,小圆周长和大圆周长的比是()。

(2)圆的`半径是7厘米,它的周长是()厘米,圆的直径是13米,它的周长是()米。圆的周长是75.36分米,它的半径是()分米。

(3)要在底面半径是14厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝()厘米。

(4)圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。

(二)、应用题。

(1)一辆自行车轮胎的外直径是70厘米,如果每分转100周,一小时能行多少千米?(保留整千米数)

(2)一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?

(3)一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?

(4)一张长30厘米,宽20厘米的长方形纸,在纸上剪一个最大的圆。还剩下多少平方厘米的纸没用?

(5)一个半圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?

二、提高题

1、在一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路。求路面的面积。

2、如下图,三角形ABC是直角三角形,阴影①的面积比阴影②的面积小23平方厘米,问BC的长度是多少厘米?(注:π取3)

数学六年级上册圆的周长和面积的测试题 篇2

新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。

根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。

二,教材与学习分析:

教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。

三,教学目标,关键和难点: 1,知识和技能:

学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。2,工艺和方法:

(1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。

(2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。3,情绪和态度:

(1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;(2)结合引进pi,使学生受爱国科学精神的教育。

(3)在解决问题的过程中,增强意识的应用。

教学重点:

所以学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。

难以教:

理解pi。

教学准备:

⒈圆形对象实物,课件。

⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。

四,教: 1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。

五,主要教学环节和设计:

通过以下链接教授本课:

一,创造形势,初步认识二,合作交流,探索新知识三,实际应用,解决问题四,谈论收获,课外推广

六,教学过程:

第一个链接:创建情境,初步感觉的分裂:

哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)健康:要求圆形周长的距离有多长。

老师:了解如何计算今天的圆周长。

这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。

第二环节:合作交流,探究 新知识

(A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。

1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。

2,分析矩形,正方形和圆周的圆是否不同?

3,指的是手指,他们自己手在圆片的圆周上的描述。

设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。

(B)探讨计算方法的周长

圆周计算公式中扣除这个内容,我安排了三个链接:

1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?

预设几种情况:

(1)滚动用绳子包起圆圈并拉直;(3)折叠圆纸几次,然后测量计算;总结:以上几方 法律是改变歌曲是直的。

课件展示地球图片。

如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。

设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。

(1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。

老师:圆的圆周是否与它相关?

圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。

(2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线 什么样的物理关系问题。

老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?

请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法-过程如何?的顺序报告实验。

面板报告:

健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。

老师:通过计算你发现什么?

健康:每个圆的圆周是其直径的三倍。问题:它不是所有的圆周和它的直径有这种关系吗?

最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。

老师:由于测量错误,导致 结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?

健康:

老师:你对pi有什么认识?

这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)

设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。

(3)得出结论:你知道计算方法的周长吗?

健康:知道。黑板公式:c =πd,c =2πr 设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。

第三环节:实际应用,解决问题

这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。

2,设计三者有一定的实践梯度:①d = 5米,c =? ②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?

①π= 3.14()

②大圆的圆周小于小圆的圆周。()

③圆的圆周是其半径的2π。()

意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。

第四个链接:谈论收获,课外推广操作:

赤道象地球带,长约40,000公里。你知道地球的半径是多少?

设计意图:在课程结束时,我设置了 在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。

你有什么?(引导学生学习内容,学习方法,情感体验等)。

七,黑板设计:

圆周

圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)

数学六年级上册圆的周长和面积的测试题 篇3

通过本节课教学,使我充分地认识到:

1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。

2、促进知识的迁移

“为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。

3、把数学教学看作一个整体。

本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到

是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。

3、充实、完善了教学目标。

数学六年级上册圆的周长和面积的测试题 篇4

1、通过教学使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。

教学过程:

一、复习。

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

C=πd                             S=πr2

3.14×7                           3.14×32

=21.98(厘米)                      =3.14×9

=28.26(平方厘米)

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=πd 或 C=2πr

求圆的面积公式:S=πr2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。         (  )

(2)半径为2厘米的圆的周长和面积相等。                             (  )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)                                    (  )

(4)             面积:3.14×62=3.14×12=37.68                      (   )

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米?                 (2)半圆的面积:

3.14×22                       3.14×2+2×2

r=2cm        =3.14×4                 =6.28+4

=12.56(平方厘米)         =10.28(cm)

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米      求:S=?

r=25.12÷(2×3.14)       S=πr2

=4(米)                   =3.14×42

=50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米  r=0.5分米   求:S=?

S环=π×(R2-r2)

3.14×(0.72-0.52)

=3.14×0.24

=0.7536(平方分米)

三、巩固发展.

1、思考题p71 (8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形:   31.4÷2=15.7(m)(长和宽的和)

长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

(2)围成圆形

直径:31.4÷3.14=10(m)

半径:10÷2=5(m)

面积:3.14× 52=78.5(m2 )

(3)比较:长方形面积:61.6 m2    正方形面积:61.6225 m2   圆面积:78.5 m2

围成圆的面积最大。

2、思考题 p71 (9)、(10)

四、作业。

课本P71第6、7题。

教学追记:

上一篇:在全县残疾人工作会议上的讲话下一篇:焰火晚会