解三角形高三复习教案

2024-11-06 版权声明 我要投稿

解三角形高三复习教案(共8篇)

解三角形高三复习教案 篇1

复习要求:

1.理解正弦定理,余弦定理。

2.能应用正弦定理,余弦定理解三角形。3.能解决一些与三角形有关的实际问题 知识精讲:

正弦定理: 余弦定理: 定理变式:

三角形面积公式: 解题注意点:

大边对大角,小边对小角;

判断三角形中角是是锐角,直角,钝角,尽量用余弦定理(0--间余弦值和角一一对应)。

“知三求三“,已知三角求三边除外。(1)三边:余弦定理(2)两边一夹角:余弦定理(3)两边一对角:正弦或余弦

(4)两角一边:先求第三角,再正弦定理求。题型精讲:

例一:已知在ABC中,sinA:sinB:sinC=2:6:(31),求ABC的最小内角。

解: a:b:c= sinA:sinB:sinC=2:6:(31)设a=2k, b=6k, c=(31)k a边最小,c为最小内角 cosA=6k231k24k226k231k=2A45

例二:已知在ABC中,A45,AB=6,BC=2,解此三角形。法一:(正弦定理)623sinC= sinCsin452AB>BCC45

当C60,B75,AC=31 当C120,B15,AC=31 法二:(余弦定理)

设AC=b,由余弦定理有4=b2(6)226bcos45

即b223b20,解得b=31, 由余弦定理得cosC=

C=60或120,B75或15。

12例三:在ABC中,若a2tanBb2tanA,试判断ABC的形状。分析:边化角,角化边 解:(法一)a2tanBb2tanA

4R2sin2AtanB=sinBcosB Sin2A =sin2B Sin2A=sin2b0不符合三角形内角和定理 Sin2A=sin2B0

2A,2B(0,)

2A=2B或2A+2B=

即A=B或A+B=

ABC是等腰三角形或直角三角形

aa2c2b2a2sinAcosBa22R2ac2(法二):由题设,有=2,得出222cosAsinBbbcabb2bc2R2化简得b2(a2c2b2)a2(b2c2a2)

a2c2a4b2c2b4

(a2b2)(a2b2c2)0

a2b2或a2b2c2

ABC是等腰三角形或直角三角形

巩固练习:

由一题四解浅析解三角形 篇2

关键词:解三角形;正余弦定理;多种分析方法

一、正弦定理和余弦定理是解三角形的关键

1.正弦定理■=■=■=2R(R为△ABC外接圆半径),推广:

(1)a=2RsinA b=2RsinB c=2RsinC(边化角)

(2)sinA=■ sinB=■ sinC=■(角化边)

2.余弦定理c2=a2+b2-2abcosC(求边,另两个略),推广:cosC=■(求角)

以上是两定理的内容和推广,它揭示了任意三角形边角之间的规律。利用两定理可求三角函数的值,可求三角形的内角和边,判定三角形的形状,综合考查三角变换以及深化三角形和平面向量等多种知识的运用能力,当然这也是高中数学的主要精髓之一。

二、举例分析

说明:由于篇幅有限,例子中图形已省略,个别步骤作了简化。

例子:在△ABC中,AB=4,cosB=■,AC边上的中线BD=■,求sinA的值.

解法一:设M为BC的中点,则DM∥AB,且DM=2。在△BDM中,cos∠BMD=cos(180°-∠ABC)=-■,由余弦定理,得:(■)2=BM2+22-2×2×(-■).BM解得BM=3,BM=-5(舍去)。

则BC=6,由AC2=AB2+BC2-2AB·BC·cosB=28

得AC=2■,又由正弦定理■=■,得:sinA=■

解法二:作AE⊥BC,垂足为E,延长BD到M,使DM=BD,再作MF⊥BC,垂足为F,则BE=AB·cosB=2,并且AE=2■·BF=■=8,而CF=BE=2,所以BC=BF-CF=6又EC=4,所以AC=■=2■

在△ABC中,由正弦定理,得:sinA=■

解法三:延长BD至M,使DM=BD,连接AM,CM,则ABCM为平行四边形。

于是∠BAM=180°-∠ABC,在△ABM中,由余弦定理,得: (2■)2=42+BC2-2×4·BC·(-■)

解得BC=6。再根据解法一求出AC,最后得:sinA=■

解法四:以B为原点,向量■为x轴建立直角坐标系,由sinB=■,得:向量■=(4·cosB,4·sinB)=(2,2■).设■=(x,0),则向量■=(■,■),从而向量■的模=■=■解得x=6,于是向量■=(-4,2■),所以根据两向量夹角公式,有:■·■=■·■·cosA,得cosA=■,故sinA=■=■(负值舍去,需讨论)

三、简评

1.所有三角形的边角变换,其实就是有条件限制的三角关系式的计算与证明,在三角形的三角变换中,正余弦定理、勾股定理和直角三角形中的边角关系都是解题的关键,通过本例可以看出。

2.解三角形的有关问题,常常需作一些辅助线。如解法一中的中位线,解法二和解法三中的延长线都是解三角形中常作的辅助线,应引起学生学习的足够重视。如果不作辅助线,解题方法就受局限,甚至造成解不出的可能。

3.通过建立适当直角坐标系,利用向量或点坐标的工具解答有关边角的问题,这也是解三角形中常用的方法。本例解法四就是用解析几何知识解决纯平面几何问题的典例,希望对学生有所启迪。

4.当然,解三角形有时还要用到两角和公式、倍角公式、半角公式、和差化积、积化和差公式、推导公式、两点间距离公式等诸多公式,希望学生灵活运用,以不变应万变。

5.解三角形其主要作用是解决在实际生活中的一些应用。常见有距离、高度、角度及平面图形的面积等计算与测量问题,希望学生学习时要有应用意识与动手能力,做到学有所用。

另外,本题还可继续探讨,例如,作△ABC的外接圆或利用点坐标法是否可解。感兴趣的学生可以试试。总之,解一般三角形万变不离其宗,其要领都是平面几何与正余弦定理两方面知识的结合。

(作者单位 辽宁省本溪市机电工程学校)

解直角三角形复习反思 篇3

这节课的基本结构为:基础知识回顾――习题讲解――练习应用三个环节。

1、基础知识回顾,共费时16分钟,所涉及的知识都是简单的记忆性知识,没有难度,通过对知识体系的复习,使学生们在心中对本章有一个整体的认识。能灵活的运用本章的知识来解决实际问题,也使学生对所学的知识有比较系统的掌握和理解。

2、对历年中考试题进行来精讲,因为根据对学生作业的了解,发现很多学生对解直角三角形的步骤和思路不清晰,步骤繁嗦,思路混乱,因此,我就将帮助学生分析解题的思路,和书写的严谨精炼作为本节复习课的重点来突破。我对这两道题进行一题多解的方法来进行讲解,给他们提供了三、四种不同的解法,让学生们在对这些方法进行比较的同时,总结出自己最擅长的方法,同时多吸收不同的方法为我所用。另外我将学生们普遍采用的比较多的那种方法的书写步骤进行了规范的板书,给学生一个清晰的认识,然后让他们进行订正,这两道题讲解完之后本节课正好结束。

3、通过对本节课的两道题的掌握,我发现第二天的作业质量明显的比第一天上升了一个台阶,所以我感觉复习课其实并不是拿着习题来讲解,而是要多发现学生的不足和弱势的地方,进行有重点的强调和补充,让学生们在复习的过程中不是单纯的会做题,而是会总结每一类题的做题方法和技巧,怎么能快速而准确的得到这道题的结果,同时会总结出不同的数学模型,看到哪一道题,就能迅速的想到用哪一种解题的方法来突破,这道题属于数学哪种模型,这样对训练学生的思维能力有很大的帮助。同时复习侧重于总结和提升,我们要把握准中考的动向和出题的切入点,以点带面,让学生的思维能力在深度和广度上都有质的飞跃才行,我们要善于从一道典型的例题中进行一题多解,或者是深入的横向和纵向的剖析,只有这样,我们的学生才能在大量的习题中跳出来,才能不被数学所吓倒,而是摸清数学的脾气,才能让数学在我们的手中变得不再刁蛮,才能慢慢的在解题中有游刃有余的快乐。

4、本节课不足的地方是我准备的一道练习题没有让学生来独立的完成,或许是前边讲解的比较多吧,不过我认为能让学生真正将陌生的知识学好,学扎实,即使少做一道题,也会是收获很多的。

老师教案12 解三角形 篇4

一、课前检测

1.在ABC中,根据下列条件解三角形,其中有两个解的是()A.b10,A45,C70

B.a60,c48,B60

C.a7,b5,A80

D.a14,b16,A4

52.在△ABC中,已知B30,b503,c150,那么这个三角形一定是 _________三角形。答案:等腰或直角三角形

|3.在ABC中,已知|AB||AC2且,ABAC1,则这个三角形的BC边的长为 .答案:6

二、知识梳理

1.角与角关系:A+B+C = π,由A=π-(B+C)可得:

1)sinA=sin(B+C),cosA=-cos(B+C). 2)A22BC2.有:sinA2cosBC2,cosA2sinBC2.

解读:

2.正弦定理

①a:b:csinA:sinB:sinC;

②a2RsinA,b2RsinB,c2RsinC; ③asinAbsinBcsinCabcsinAsinBsinC;

④a:b:csinA:sinB:sinC。

解读:

3.射影定理:

a=b·cosC+c·cosB,b=a·cosC+c·cosA,c=a·cosB+c·cosA.

解读:

三、典型例题分析

例1.在△ABC中,若acosBbcosA,则这个三角形是__________ 三角形 答案:等腰三角形

变式训练

在△ABC中,若答案:等边三角形

小结与拓展:

例2.a:b:c1:3:2,求A,B,C

acosAbcosBccosC,则这个三角形是__________ 三角形

答案:A=30°,B=60°,C=90°

变式训练: a:b:c2:6:(31),求A,B,C

答案:A=45°,B=60°,C=75°

小结与拓展:

例3.△ABC的内角A,B,C的对边分别为a,b,c,已知c求角A,C,边a及三角形的面积 答案:A=30°,C=30°,SABC322,b6,B120。

a8,b6,变式训练:在△ABC中,a,b,c分别为内角A,B,C的对边,且SABC123,求c

答案:c=8或c=237

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

1.知识:

2.思想与方法:

3.易错点:

解三角形高三复习教案 篇5

28.2解直角三角形

一、教学目标

1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角

2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.

3、巩固用三角函数有关知识解决问题,学会解决方位角问题.

二、教学重点、难点

重点:用三角函数有关知识解决方位角问题

难点:学会准确分析问题并将实际问题转化成数学模型

三、教学过程

(一)复习引入

1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。

2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线

(二)教学互动

例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,解:如图, 在中,PCPAcos(900650)

80cos2 72.8 0在中,.,因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?

(三)巩固再现

1、习题1

2、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小

时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).

3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?

《解三角形》学习导引 篇6

1.两个基本定理

正弦定理:

[asinA=bsinB=csinC=2R(R]为[△ABC]外接圆的半径).

余弦定理:

[b2+c2-a2=2ac cosA] [cosA=b2+c2-a22bc]

[c2+a2-b2=2ac cosB][cosB=c2+a2-b22ca]

[a2+b2-c2=2abcosC][cosC=a2+b2-c22ab]

2.三角形的面积

设[△ABC]的面积为[S],则:

(1)[S=12aha=12bhb=12chc]

[=12acsinB=12bcsinA=12absinC.]

(2)[S=abc4R=2R2sinAsinBsinC]

[=pr=p(p-a)(p-b)(p-c)]

(其中[p]为[△ABC]的周长的一半,[r]为[△ABC]内切圆半径)[.]

3.几个常用的结论

(1)在[△ABC]中,[sinA>sinB⇔a>b⇔A>B⇔][cosA

(2)在[△ABC]中,任意两边之和大于第三边,任意两边之差小于第三边.

(3)在[△ABC]中,三边[a、b、c]成等差数列,则 [a+c=2b.] [sinA+sinC=2sinB.]

二、易错点提醒

1.在运用正弦定理解决“已知两边和其中一边的对角,解三角形”问题时,要注意对解的个数的判断.这是同学们学习这部分内容的最大难点和易错点.

2.在处理三角形中的三角函数的求值、证明问题时,要注意角的范围对三角函数值的影响,避免造成增解或漏解. 如在[△ABC]中,[sinA=12],[A=π6]或[π-π6].

3.恰当选用正、余弦定理解决问题,简化运算过程,提高解题速度,用方程的观点去认识余弦定理,一般地,凡能用正弦定理解决的问题也可用余弦定理解决,但有时要复杂些.

4.在解三角形时,要注意把平面几何中的性质、定理与正、余弦定理结合起来,挖掘题目中的隐含条件,并结合三角形的有关性质,注意数形结合,灵活地进行边角互化从而使问题顺利解决.

5.向量也是解三角形的武器之一.

三、典型例题

例1 在[△ABC]中,[bcosA=acosB],试判断[△ABC]的形状.

解法一:(利用余弦定理的推论将角转化为边)

∵[bcosA=acosB],

∴[b⋅b2+c2-a22bc=a⋅a2+c2-b22ac],

∴[b2+c2-a2=a2+c2-b2],∴[a2=b2].

∵[a>0,b>0],∴[a=b],

∴[△ABC]是等腰三角形.

解法二:(利用正弦定理的推论将角转化为边)

∵[bcosA=acosB],又由正弦定理,

[b=2RsinB,a=2RsinA],

∴[2RsinBcosA=2RsinAcosB],

∴[sinBcosA-sinAcosB=0],

∴[sin(A-B)=0].

又[0

∴[-π

∴[A-B=0],即[A=B],

∴[△ABC]是等腰三角形.

方法总结若已知条件既含有边,又含有角,一般用正、余弦定理完成边角转化,化为只含有边或只含有角的式子,然后再求解.

例2在某点[B]处测得建筑物[AE]的顶端[A]的仰角为[θ],沿[BE]方向前进[30m],至点[C]处测得顶端[A]的仰角为2[θ],再继续前进[103m]至[D]点,测得顶端[A]的仰角为4[θ],求[θ]的大小和建筑物的高[AE].

解法一:(用正弦定理求解)

由已知可得在[△ACD]中,[AC=BC=30,][AD=DC=103],[∠ADC=180°][-4θ,]

[∴][103sin2θ]=[30sin(180°-4θ)],

[sin4θ=2sin2θcos2θ,]

故[cos2θ][=32],得[2θ=30°],[θ=15°],

[∴]在Rt[△ADE]中,[AE=ADsin60°=15,]故所求角[θ]为[15°],建筑物高度为15m.

解法二:(设方程来求解)

设[DE=x,AE=h,]

在 Rt[△ACE]中,(10[3+x)2+h2=302.]

在 Rt[△ADE]中,[x2+h2=(103)2],

两式相减,得[x=53],[h=15],

故在 Rt[△ACE]中,[tan2θ]=[h103+x]=[33],

[∴][2θ]=30°,[θ]=15°,

故所求角[θ]为15°,建筑物高度为15m.

解法三:(用倍角公式求解)

设建筑物高为[AE=x,]

由题意,得[∠BAC=θ],[∠CAD=2θ],

[AC=BC=30m,][AD=CD=103m],

在Rt[△ACE]中,[sin2θ]=[x30],①

在Rt[△ADE]中,[sin4θ]=[x103],②

②÷①,得cos2[θ]=[32],[2θ]=30°,

[θ]=15°,AE=ADsin60°=15.

例3在[△ABC]中,[a]、[b]、[c]分别为内角[A]、[B]、[C]的对边,[2asinA=(2b+c)sinB+(2c+][b)sinC].

(1)求[A]的大小;

(2)求[sinB+sinC]的最大值.

解(1)由已知,根据正弦定理得

[2a2=(2b+c)b+(2c+b)c,]即[a2=b2+c2+bc],

由余弦定理得[a2=b2+c2-2bc cosA,]

故[cosA=-12],[A=120∘].

(2)由(1)得[sinB+sinC=sinB+sin(60∘-B)]

[=32cosB+12sinB][=sin(60∘+B)],

故当[B=30∘]时,[sinB+sinC]取得最大值1.

三角形专项复习教案. 篇7

一、单元知识网络:

二、考试目标要求:

1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中

线和高,了解三角形的稳定性.2.探索并掌握三角形中位线的性质.3.了解全等三角形的概念,探索并掌握两个三角形全等的条件.4.了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件;

了解等边三角形的概念并探索其性质.5.了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件.6.体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形.三、知识考点梳理

知识点一、三角形的概念及其性质

1.三角形的概念

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类

(1)按边分类:

(2)按角分类:

3.三角形的内角和外角

(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系

三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系

在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线

三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:

三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:

三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:

三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:

三角形三条高线的交点.5.三角形的中位线:

连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:

(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点

三、全等三角形 1.定义:

能完全重合的两个三角形叫做全等三角形.2.性质:

(1)对应边相等

(2)对应角相等

(3)对应角的平分线、对应边的中线和高相等

(4)周长、面积相等 3.判定:

(1)边角边(SAS)

(2)角边角(ASA)

(3)角角边(AAS)

(4)边边边(SSS)

(5)斜边直角边(HL)(适用于直角三角形)

要点诠释:

判定三角形全等至少必须有一组对应边相等.知识点

四、等腰三角形 1.定义:

有两条边相等的三角形叫做等腰三角形.2.性质:

(1)具有三角形的一切性质.(2)两底角相等(等边对等角)

(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)

(4)等边三角形的各角都相等,且都等于60°.3.判定:

(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);

(2)三个角都相等的三角形是等边三角形;

(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:

(1)腰、底、顶角、底角是等腰三角形特有的概念;

(2)等边三角形是特殊的等腰三角形.知识点

五、直角三角形 1.定义:

有一个角是直角的三角形叫做直角三角形.2.性质:

(1)直角三角形中两锐角互余;

(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;

(7)SRt△ABC=3.判定: ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高.(1)两内角互余的三角形是直角三角形;

(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点

六、线段垂直平分线和角平分线 1.线段垂直平分线:

经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:

(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:

(1)角的平分线上的点到角的两边的距离相等;

(2)到角的两边的距离相等的点在角的平分线上;

(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导 1.数形结合思想

本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想

在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3.化归与转化思想

在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结

应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析

考点一、三角形的概念及其性质

例1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()

A.直角三角形

B.锐角三角形

C.钝角三角形

D.等边三角形

思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B

(2)三角形的三边分别为3,1-2a,8,则a的取值范围是()

A.-6<a<-3

B.-5<a<-2

C.2<a<5

D.a<-5或a>-2

思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5<a<-2,应选B.举一反三:

【变式1】已知a,b,c为△ABC的三条边,化简

思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边 ∴a-b-c<0,b-a-c<0

=(b+c-a)+(a+c-b)=2c.得_________.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能()A.1种

B.2种

C.3种

D.4种 解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.例2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()

A.5个

B.4个

C.3个

D.2个

考点:等腰三角形

答案:A

(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°

又∵BD∥AC,∴∠CBD=∠C=40°.例3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中()

A.一定有一个内角为45°

B.一定有一个内角为60°

C.一定是直角三角形

D.一定是钝角三角形

考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A

∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:

【变式1】下图能说明∠1>∠2的是()

考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是()

A.锐角三角形

B.钝角三角形

C.直角三角形

D.不能确定

思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C

又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是()

A.0 个

B.1个

C.2个

D.3个

思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大

于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线

例4.(1)与三角形三个顶点距离相等的点是这个三角形的()

A.二条中线的交点

B.二条高线的交点

C.三条角平分线的交点

D.三边中垂线的交点

考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.

考点:三角形中位线找规律

思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;

图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;

图⑤有(1+4+4+4+4)个正三角形;….

答案:17

例5.一个三角形的内心在它的一条高线上,则这个三角形一定是()

A.直角三角形

B.等腰三角形

C.等腰直角三角形

D.等边三角形

考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:

【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;

(2)O为内心时,∠BOC=90°+∠A=119°;

(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是()

A.锐角三角形

B.只有两边相等的锐角三角形

C.直角三角形

D.锐角三角形或直角三角形

解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的()

A.中线

B.高线

C.边的中垂线

D.角平分线

思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.例6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是()

A、15米

B、20米

C、25米

D、30米

考点:三角形中位线定理.思路点拨:BE=AE=5,CF=FA=5,BC=2EF=10

答案:C

(2)已知△ABC中,AB∶BC∶CA=3∶2∶4,AB=12厘米,D,E,F分别是AB,BC,AC的中点,则△DEF

的周长是________.考点:三角形中位线定理.思路点拨:本题考查三角形的中位线,先求出△ABC各边的边长,由三条中位线构成的△DEF是原三角形周长的一半.解析:由已知求出△ABC另两边长为BC=8厘米,AC=16厘米

∵D,E,F分别是AB,BC,AC的中点,∴DE、EF、DF是△ABC的中位线

∴DE=

举一反三: AC=8 EF=AB=6 DF=BC=4,∴△DEF的周长等于8+6+4=18厘米.【变式1】求证:三角形的一条中位线与第三边上的中线互相平分.思路点拨:本题考查三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半.解析:已知:如图,在△ABC中,AD=DB,BE=EC,AF=FC.求证:AE、DF互相平分.证明:连结DE、EF

∵AD=DB,BE=CE

∴DE∥AC(三角形中位线定理)

同理EF∥AB

∴四边形ADEF是平行四边形

∴AE、DF互相平分(平行四边形的对角线互相平分).【变式2】已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,四边形EFGH是平行四边形吗?为什么?

思路点拨:考虑到E、F是AB、BC的中点,因此连结AC,就得到EF是△ABC的中位线,由三角形中位线定理得,证明:连结AC,同理,则EF∥GH,EF=GH,所以四边形EFGH是平行四边形.∵E、F是AB、BC的中点,∴EF=,EF∥AC

同理,GH=,GH∥AC,∴EF∥GH,EF=GH

∴四边形EFGH是平行四边形.考点

三、全等三角形

例7.对于下列各组条件,不能判定△

≌△的一组是()

A.∠A=∠A′,∠B=∠B′,AB=A′B′

B.∠A=∠A′,AB=A′B′,AC=A′C′

C.∠A=∠A′,AB=A′B′,BC=B′C′

D.AB=A′B′,AC=A′C′,BC=B′C′

思路点拨:判定三角形全等的条件中,已知两边及一角必须是两边及其夹角,而已知两角一边和三边都可以判定三角形全等.解析:A可利用ASA判定;B可利用SAS判定;D可利用SSS判定.而C是两边和一边对角对应相等,不能判定三角形全等.故选C.举一反三:

【变式1】两个三角形有以下三对元素对应相等,则不能判定全等的是()

A.一边和任意两个角

B.两边和它们的夹角

C.两个角和它们一角的对边

D.三角对应相等

思路点拨:两个三角形中,三角对应相等不能证明三角形全等.解析:A的判定方法为ASA或AAS;B的判定方法为SAS;C的判定方法为AAS;要判定三角形全等必须有一个元素是边,所以D不能判定.故选D.例8.(2010湖南长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.

(1)求证:△BEC≌△DEC;

(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

第8题图

考点:三角形全等的判定及性质.思路点拨:(1)利用ASA判定;(2)利用 △BEC≌△DEC

答案:(1)证明:∵四边形ABCD是正方形

∴BC=CD,∠ECB=∠ECD=45°

又EC=EC

∴△ABE≌△ADE

(2)∵△ABE≌△ADE

∴∠BEC=∠DEC=∠BED

∵∠BED=120°∴∠BEC=60°=∠AEF

∴∠EFD=60°+45°=105°

举一反三:

【变式1】如图,已知:AC =DB,要使

≌,只需增加一个条件是___________.考点:三角形全等的判定.思路点拨:增加条件判定三角形全等时,题中已有一条公共边这一条件,答案不唯一.解析:填AB=DC,可利用SSS;填∠ACB=∠DBC,可利用SAS.【变式2】如图,已知,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是_____

考点:利用三角形全等的性质证明线段或角相等.思路点拨:本题作出M到AB的距离,可以利用证三角形全等求距离.更简单的是利用角平分线上的点到角两边距离相等.解法一:过M作MD⊥AB于D,∴∠MDA=∠C=90°

∵AM平分∠CAB,∴∠CAM=∠DAM

∵AM=AM,∴△AMC≌△AMD(AAS),∴MD=CM=20cm

解法二:过M作MD⊥AB于D

∵∠C=90°,∴MC⊥AC

∵AM平分∠CAB,∴MD=CM=20cm 考点

四、等腰三角形与直角三角形

例9.(1)(2010湖北黄石)如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_____________.思路点拨:等腰三角形的性质

答案:45°

(2)等腰三角形一腰上的高与底边所成的角等于()

A.顶角的2倍

B.顶角的一半

C.顶角

D.底角的一半

思路点拨:本题适用于任何一种等腰三角形.总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.解析:如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C=90°-

答案:B.(180-∠A)= ∠A,例10.△ABC等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出尽可能多的结论.思路点拨:本题是先猜想再验证的探索性题型,关键是掌握等边三角形及三线合一的性质.答案:如:①DB=DE;②BD⊥AC;③∠DBC=∠DEC=30°;④△ABD≌△CBD; ⑤∠CDE=30°;⑥BD平分∠ABC等.总结升华:等腰三角形是特殊的三角形,具有对称性,边、角之间的联系较多;三线合一的性质在解题时应用广泛,但经常被忽略,应注意灵活运用.举一反三:

【变式1】若一个三角形的两个内角分别为50°、80°,则这个三角形是_________三角形.考点:等腰三角形的判定.思路点拨:会根据三角形内角的度数判断三角形的形状.解析:三角形的两个内角分别为50°、80°,则另一个内角为50°,这个三角形有两个角相等,所以是等腰三角形.总结升华:三角形是按边和角进行分类的,会根据题意判断三角形的形状.【变式2】已知等腰△ABC中,∠ABC=∠ACB=2∠A,且BD⊥AC,垂足为D,求∠DBC的度数.思路点拨:本题利用三角形内角和求出∠C,从而得出结论.解:∵等腰△ABC中,∠ABC=∠ACB=2∠A,∠ABC+∠C+∠A=180°

∴∠C=72°,∵BD⊥AC,∴∠DBC+∠C=90°,∴∠DBC=90°-72°=18°.【变式3】把腰长为的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.解析:本题是动手操作题型,展开后会发现小三角形一边恰好是原三角形的中位线,从而得出小三角

形的周长就是原三角形周长的一半.答案:.例11.如果线段a、b、c能组成直角三角形,则它们的比可以是()

A.1:2:4

B.1:3:5

C.3:4:7 D.5:12:13

考点:考查勾股定理的逆定理.思路点拨:常见的一些勾股数如:3、4、5;5、12、13;7、24、25及倍数等,应熟练掌握.解析:D中设三边的比中每一份为k,则(5k)2+(12k)2=(13k)2,所以该三角形是直角三角形.其它答案都不满足,故选D.例12.(1)(2010年江苏无锡)

①如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.

(下面请你完成余下的证明过程)

②若将①中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

③若将①中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:

当∠AMN=_____________°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

考点:考查三角形全等知识,辅助线的做法.解:(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=1355°,∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°

在△AEM和△MCN中:∵

(2)仍然成立.

在边AB上截取AE=MC,连接ME

∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°,∴∠ACP=120°.

∵AE=MC,∴BE=BM

∴∠BEM=∠EMB=60°

∴∠AEM=120°.

∵CN平分∠ACP,∴∠PCN=60°,∴∠AEM=∠MCN=120°

∴△AEM≌△MCN,∴AM=MN

∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM

∴△AEM≌△MCN,∴AM=MN

(3)

如图所示折叠,使顶点

落在点.已知,则

(2)将一张矩形纸片折痕的长为()

A.B.C.D.考点:勾股定理和直角三角形中,30°角所对的边等于斜边的一半.思路点拨:考查学生了解折叠前后图形的变化,找出对应相等的量,运用勾股定理解答.解析:由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.总结升华:直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理.举一反三:

【变式1】下列条件能确定△ABC是直角三角形的条件有()

(1)∠A+∠B=∠C;(2)∠A:∠B:∠C=1:2:3;(3)∠A=90°-∠B;(4)∠A=∠B=

A.1个

B.2个

C.3个

D.4个

考点:直角三角形三个内角之间关系.∠C.解析:三角形中有一个角是90°,就是直角三角形.题中四个关系式都可以解得△ABC中∠C =90°.故选D.【变式2】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为()

A.B.C.D.5

考点:勾股定理和线段垂直平分线定理.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=

设BD为x,则CD=8-x

AB

∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2

∴AB2=42+82=80,∴AB=,∴BE=

在Rt△ACD中,AC2+CD2=AD2,∴42+(8-x)2=x2,解得x=5

在Rt△BDE中,BE2+DE2=BD2,即(【变式3】已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证: AD=BD;)2+DE2=52,∴DE= 故选B.(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.图1

图2

思路点拨:(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.(2)利用三角形内角和及角平分线定义或利用三角形外角性质.解析:

(1)证明:∵∠BAC=30°,∠C=90°,∴ ∠ABC=60°

又∵ BD平分∠ABC,∴∠ABD=30°,∴ ∠BAC =∠ABD,∴ BD=AD;

(2)解法一: ∵∠C=90°,∴∠BAC+∠ABC=90°

∴=45°

∵ BD平分∠ABC,AP平分∠BAC

∠BAP=,∠ABP=

即∠BAP+∠ABP=45°

∴∠APB=180°-45°=135°

解法二: ∵∠C=90°,∴∠BAC+∠ABC=90°

∴=45°

∵ BD平分∠ABC,AP平分∠BAC

∠DBC=,∠PAC=

∴ ∠DBC+∠PAD=45°

解三角形高三复习教案 篇8

复习过程:

1、复习概念:

概念:1、由三条线段组成的图形叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

3、三角形的内角和为180度

4、三角形任意两条边的和大于第三条边

2、练习讲评:

(一) 在钉子板上画指定的三角形

注意:画的时候为了准确,需要画在钉子之间

(二) 填空:

1、一个三角形有( )条边、( )个角和( )个顶点

2、三角形按角的大小来分,可分为( )、( )( |三类

3、三角形按边的长短来分,可分为( )、( )

注意:基础概念题,主要是给学生对知识做个梳理

4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。

(三) 判断:

1、2、3、4、5都为概念的延伸题,要求学生要记忆

6、7、8为多项选择,主要是让学生利用公式、概念灵活做题

(四) 画高:

注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。

学生说一说画高的时候应该注意什么

1、用三角板画垂线,用虚线

2、要标上垂直符号

(五) 计算

1、在三角形中角1=136度;角2=29度;角3=?

2、妈妈买了个等腰三角形的风铃。它的一个底角是25度,它的顶角是多少度?

3、在直角三角形中,一个锐角是35度,另一个锐角是多少度?

注意:强调三角形的内角和是180度

四年级数学下册三角形复习教案三

教学目的:●使学生理解三角形的意义,掌握三角形的特征和特性。●经历度量三角形边长的实践活动,理解三角形三边不等的关系。●通过引导学生自主探索、动手操作、培养初步的创新精神和实践能力。●让学生树立几何知识源于客观实际,用于实际的观念,激发学生学习兴趣。

教学重点:掌握三角形的特性

教学难点:懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;

教学过程:

联系生活:找一找生活中有哪些物体的形状或表面是三角形?请收集和拍摄这类的图片。

创设情境,导入新课:

1让学生说说生活中有哪些物体的形状是三角形的。展示学生收集的有关三角形的图片

2播放录像

师:接下来来看老师收集的到的一组有关三角形的录像资料。

3导入新课。

师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。(板书:三角形的认识)

师生互动引导探索

(一)三角形的意义:

1活动。要求:(1)每个小组利用教师事先为其准备的三根小棒,把小棒看成一条线段,利用这三条线段摆一个三角形。比一比,看哪一个小组做得最快!

(提供的小棒有一组摆不成的。)

2学生拼图时可能会出现以下几种情况:

请同学一起来观看做得有代表性和做得有特色的图案(展示学生所摆的图)

请同学们一起做裁判,看看哪些是三角形?[学生会认为(1)、(2)、(3)(4)为三角形,但对(2)、(3)(4)有争议]

师:那你认为怎么样的图形才是三角形?到底这几个图是不是三角形呢?同学们可以从书上找到答案!请学生阅读课本的内容。

板书:三条线段围城的图形叫做三角形。

因此判断图案(2)(3)(4)不是三角形。

判断:下面图形,哪些是三角形?哪些不是三角形?

3.教师问:除了三角形概念,书中还向我们介绍了什么?

(1)三角形的边、角、顶点

(2)三角形表示法;

(3)三角形的高和底

(二)三角形的特性:

1课件出示自行车、屋檐、吊架等三角形的图片,为什么这些部位要用三角形?

2解决这个问题,下面我们先做个试验:

出示三角形和平行四边形的教具,让学生试拉它们,并思考,你发现了什么?

3要使平行四边形不变形,应怎么办?试试看。

4那些物体中用到三角形,你知道为什么了吗?三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。

(三)三角形两边之和大于第三边

1师:在我们围三角形的时候,有一组同学的三条线段围不成三角形, 看来不是任意三个小棒就可以围成三角形,这里面也有奥秘。

这与它三条线段的长短有关。现在我们就来讨论这个问题——到底组成三角形的这三条线段有什么特点?

2学生小组活动:(时间约6分钟)。

下列每组数是三根小木棒的长度,用它们能摆成三角形吗?(学生每回答一题后就利用电脑动画进行演示:三条线段是否能组成三角形)

(1)6,7,8; (2)5,4,9; (3)3,6,10;

你发现了什么?

3学生探讨结束后让学生代表发言,总结归纳三角形三边的不等关系。学生代表可结合教具演示。

教师问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的大小关系来检验)。

4得到结论:三角形任意两边之和大于第三边(电脑显示)。

教师问:三角形的两边之和大于第三边,那么,三角形的两边之差与第三边有何关系呢?

感兴趣的同学还可以下课继续研究。

5巩固练习:为了营造更美的城市,许多城市加强了绿化建设。这些绿化地带是不允许踩的。(电脑动画演示有人斜穿草地的实践问题)。他运用了我们学习过的什么知识?

6(1)有人说自己步子大,一步能走两米多,你相信吗?为什么?

(由学生小组讨论后回答。然后电脑演示篮球明星姚明的身高及腿长,以此来判断步幅应有多大?)

7有两根长度分别为2cm和5cm的木棒

(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?

(2)用长度为1cm的木棒与它们能摆成三角形吗?为什什么?

(3)在能摆成三角形,第三边能用的木棒的长度范围是

四、反思回顾

通过这节课的学习,你有什么收获?

五、板书设计

三角形的认识

由三条线段围成的图形叫做三角形.

三条边、三个角、三个顶点

特性:稳定性

上一篇:乡村医生工作的总结下一篇:大班美术活动:西红柿