高数知识点总结(精选4篇)
第一版块:古诗文阅读与鉴赏(7题33分)
1。名句名篇默写题与文学常识题
知识范围:课标建议的60个背诵篇目;文学常识以中国古代作家为主及60个背诵篇目名称、作家及朝代。
默写时要注意:
(1)今年高考是四选三选默,选择最有把握的几句来填写,千万不要多默。
(2)字迹一定要工整清楚,严禁潦草,切勿卖弄书法。(建议拿到试卷就先填写默写内容)
(3)要求“一字不差”。如默写内容印象不深,可先记得几个字默几个字,后面想起来了再默。
注意诗歌中有固定含义的意象:
⒈离别类:双鲤、尺素(远方来信),月亮(思乡或团圆),鸿雁(游子思乡怀亲或羁旅伤感),寒蝉(悲凉),柳(喻离别留念或代故乡),芳草(离愁别恨),鹧鸪鸟(叫声似“行不得也哥哥”,指旅途艰辛或离愁别绪),南浦(送别之地),芭蕉(离情别绪),燕(惜春或恋人思念或物是人非的变迁,或传书叙离情或游子漂泊),关山(思家),长亭短亭(送别),阳关曲(送别的歌声)。
⒉情爱类:莲(音同“怜”表达爱情),红豆(男女爱情或友谊),红叶(传情之物)。
⒊人格类:菊花(清高),梅花(不怕摧残敢为人先或保持冰清玉洁),松(傲霜斗雪坚守节操),⒋悲情类:梧桐(象征悲凉),乌鸦(衰败荒凉),杜鹃鸟或子规(象征凄凉哀伤或思家思归),⒌其它类:昆山玉(人才),折桂(科举及第),采薇(隐居生活),南冠(囚犯),柳营(军营)。东篱(高雅,洁身自好)
■第一种类型:分析主旨型(含情感及寄寓义)
诗歌就题材(内容)的不同,可分以下10类,据此可了解诗歌主旨:
⑴咏史怀古诗:凭吊古迹古人来借古讽今;或感慨昔盛今衰,今不如昔;或渴望像古人一样建功立业。(写古迹古人,多用典故)
⑵托物言志诗:不直接表露思想情感,而是运用比喻象征拟人手法把自己的理想和人格融入一物象中。(常有松、竹、梅等意象)
⑶边塞征战诗:或抒写报国立功壮志;或征夫思家的思念;或对开边拓土穷兵黩武的统治者的讽刺和规劝。
⑷羁旅思乡诗:写游子漂泊的羁旅愁苦;或所见所闻所感触发的思念故乡的乡愁。(常有月、柳、雁、书信及梦境幻觉的描写
⑸送别留念诗:或表达别时留恋;或表达别后思念;或表白理想信念;或表达彼此勉励。
⑹田园山水诗:借写山林田园的闲适美好,表达对世俗与现实的不满、向往宁静平和的归隐思想,或表达自己遗世独立,保持节操品性的情怀。
⑺即事感怀诗:或忧国忧民;或反映离乱;或渴望建功立业;或仕途失意闺中怀人;或讴歌河山。
⑻闺怨闺愁诗:或表达对戍边丈夫的思念,或写春光(青春)易逝,光阴不再的感伤,或表达对战争的厌恶。(我们认为不会考,但是课本中有,我们还是要了解一点。)
■第二种类型:分析意境类(意境=意象+情感)
常式问:这首诗歌营造了一个怎样的意境氛围?
变式问:这首诗歌为我们展现了一幅怎样的画面?表达了诗人什么样的思想?
这首诗歌描写了什么样的景物?抒发了诗人怎样的情怀?
A。意境(氛围)特点术语有:
孤寂冷清、恬静优美、雄浑壮阔、萧瑟凄凉,恬静安谧,雄奇优美生机勃勃,富丽堂皇,肃杀荒寒瑰丽雄壮,虚幻飘渺凄寒萧条繁华热闹等。
B。思想感情术语:
迷恋、忧愁、惆怅、寂寞、伤感、孤独、烦闷、恬淡、闲适、欢乐、仰慕、激愤,坚守节操、忧国忧民等。
■第三种类型:表达技巧类(着眼于全篇整体或局部)
常式问:这首诗歌采用了何种写作手法?
一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。
1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1),你敢不敢作等价无穷小替换?
分析 只凭感觉,多半不敢。依据定义与规则,能换就换。
x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小,sinα(x)~ α(x)且 sinα 处于“因式”地位。可以换。
等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2
2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性)?
分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x)周期为T的函数 f(x+T)= f(x)等式两端分别求导,得 fˊ(-x)= fˊ(x)fˊ(x+T)= fˊ(x)(实际上,由复合函数求导法则,(f(-x))ˊ= fˊ(-x)(-x)ˊ= -fˊ(-x))
所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为(x)ˊ= 1,有的非周期函数,比如y = x + sinx,的导数却是周期函数。
(潜台词:周期函数的原函数不一定是周期函数。)
单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。
如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。
有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。
取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。这个反例说明有界函数的导数不一定有界。
(画外音:写出来很吓人啊。x → 1 时,lim f(x)= 0,而 lim fˊ(x)= -∞)
3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?
分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:
取分段函数 g(x)为,x > 0 时 g =1,x ≤ 0 时 g = -1,0是其间断点。取 f(u)=√u,则 f(g(x))= 1 在 x > 0 时有定义且连续。还有一些原因让“病态点”消失。
如果只图简单,你可以取 f(u)为常函数。以不变应万变。
取 f(u)= u的平方,则 f(g(x))= 1,显然是个连续函数。
4.设 f(x)可导,若x趋于 +∞ 时,lim f(x)= +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。例如 y = x 更复杂但颇为有趣的是 y = ln x,x 趋于 +∞ 时,它是无穷大。但是 yˊ = 1∕x 趋于0,这就是对数函数异常缓慢增长的原因。5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x)= +∞ , 是否必有 lim f(x)= +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x)= +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式
f(x)= f(x0)+ fˊ(ξ)(x-x0), x0 <ξ< x(潜台词: ξ=ξ(x)。你有这种描述意识吗?)进而就有, x >x0 时, f(x)>f(x0)+ 1(x-x0)(画外音:这一步是高级动作。)因为 f(x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f(x)= +∞ 6。设 f(x)可导,若 x 趋于-∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f(x)=-∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。请你还是老老实实地象5中那样写出推理吧。结论是
若 x 趋于-∞ 时,lim fˊ(x)=-∞ , 则必有 lim f(x)= +∞
7.设 f(x)可导,若x 趋于+∞时,lim f(x)= c(常数,)是否必有lim f ˊ(x)= 0 分析 否。lim fˊ(x)有可能不存在。
这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x)= c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”
想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。
由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如,曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x)不存在的后果。对比条件强化 —— 如果 lim fˊ(x)存在,则必有 lim fˊ(x)= 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x)= A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有
f(x)>f(x0)+ A(x-x0)/2 —→+∞ 矛盾。
8.函数在一点可导,且导数大于0,能说函数在这一点单增吗?
分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim(f(x)-f(x0))/(x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f(x)> f(x0)。但是,我们不知道函数值相互间的大小。
*9 设f(x)可导,若fˊ(a)·fˊ(b)< 0,则(a,b)内必有点c,fˊ(c)= 0
分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。
在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a)> 0 而 fˊ(b)< 0 分别在a,b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:
函数的端值 f(a),f(b)都不是 f(x)在[a,b] 上的最大值。最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。考研数学讲座(18)泰勒公式级数连
中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。
中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。
在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。1.“微分是个新起点” —— 若函数 f(x)在点x0可微,Δy = f ′(x0)Δx +ο(Δx);其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:
f(x)= f(x0)+ f ′(x0)(x-x0)+ ο(Δx)(ο(Δx)尾项,比Δx高阶的无穷小)
(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)
历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。
2.拉格郎日公式 —— 若 函数f(x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f(b)-f(a)= f ′(ξ)(b-a)
定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f(x)-f(x0)= f ′(ξ)(x-x0),ξ 在 x 与 x0之间,(潜台词:任意一点x,对应着一个客观存在的“点ξ”,ξ=ξ(x))即 f(x)= f(x0)+ f ′(ξ)(x-x0),ξ 在 x 与 x0之间,3.泰勒公式 —— 如果函数在点x0 邻近有二阶导数
f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(ξ)/2)(x-x0)²,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0),0<θ<1 一般情况下,我们无法知道
ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。
如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)
f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(x0)/2)(x-x0)²+ ο(|Δx| ²)泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0),f ′(x0),f ″(x0)/ 2!,f ′ ″(x0)/ 3!,„„
可以写出,f(x)= n 次泰勒多项式 + 拉格朗日尾项
4.泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数
f(x)= f(0)+ f ′(0)x +(f ″(0)/2)x²+(f ′ ″(0)/ 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!
(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)
关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。
美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。
exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞<x<∞ sin x = x - x³/3!+ „„ -∞<x<∞
(逐项求导,cos x = 1- x²/2!+ „„
-∞<x<∞)此外还有 ln(1+x)= x - x²/2 + x³/3 + „„ -1<x< 1(1+x)的μ次方 = 1 + μ x +(μ(μ-1)/ 2!)x²+(μ(μ-1)(μ-2)/ 3!)x³+ „„ 1/(1-x)= 1 + x² + x³ + „„ -1<x< 1,上同
泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。关键在于低阶项相互抵消。应用泰勒公式直接有,x → 0 时,exp(x)- 1 ~ x,exp(x)-1-x ~ x² / 2
sin x ~ x,sin x - x ~ - x³ / 3!,cos x -1 ~ - x²/2 ln(1+x)~ x,ln(1+x)-x ~ -x²/2(1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3)-A-B(x -1)-(x -1)²)/(x -1)² = 0,试确定常数,A,B,C 分析
已知表明 x → 1 时,分子是较分母高阶的无穷小。
题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有
常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。
于是 A = y(1)= 2,B = y ′(1)= 3/4,C = y″(1)/ 2 = 39/64(画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。如果只有两个参数,可看讲座(9)。)
泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限
例88 若 x→ 0 时,极限 lim(sin6 x+ f(x))/ x³ = 0,则
x→ 0 时,极限 l im(6 + f(x))/ x² = ? 分析
分子有两项。决不能把 sin6 x 换为 6x,(潜台词:sin6 x不是分子的因式,是分子的一项。)
这时正好用“带皮阿诺余项的一阶泰勒公式”,sin 6x = 6 x -(6x)³/3!+ ο(|Δx| ³)代入已知极限,移项得 lim(6 + f(x))/ x² = 36
例89 设函数 f(x)在 x = 0 的某邻域内有连续的二阶导数,且 f(0)≠0,f ′(0)≠0, 记 F(h)= λ1 f(h)+ λ2 f(2h)+ λ
f(3h)一 f(0),试证,存在唯一的实数组 λ1,λ2,λ3,使 h → 0 时,F(h)是比 h ² 高阶的无穷小。分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x +(f ″(0)/2)x²+ ο(|x| ²)
这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f(h),f(2h),f(3h)f(h)= f(0)+ f ′(0)h +(f ″(0)/2)h ²+ ο(| h | ²)
f(2h)= f(0)+ f ′(0)2 h +(f ″(0)/2)(2h)²+ ο(| h | ²)f(3h)= f(0)+ f ′(0)3 h +(f ″(0)/2)(3h)²+ ο(| h | ²)(潜台词:常数因子不影响尾项。)将各式代入F(h),整理得
F(h)=(λ1+λ2+λ3一1)f(0)+(λ1+2λ2 + 3λ3)f ′(0)h +(λ1+ 4λ2 + 9λ3)f ″(0)h ²/2 + ο(| h | ²)
要让 h → 0 时,F(h)是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0,这就得到未知量
λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式
如果函数 f(x)二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式
f(x)≥ f(x0)+ f ′(x0)(x-x0)(或≤)
实际上 f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(ξ)/2)(x-x0)²,ξ 在 x 与 x0之间
设 f ″(x)> 0,自然有(f ″(ξ)/2)(x-x0)² > 0,舍掉此项就得到不等式。
*例91 函数 f(x)在 [-1,1] 上有连续的三阶导数,且 f(-1)= 0,f(1)=1,f ′(0)= 0,试证明在区间 内至少有一点 ξ,使得 f ″′(ξ)= 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式
如:i,2+i,a,x,自然对数底e,圆周率π。
运算符号
除号(÷或/)两个集合的并集(∪)交集(∩)
根号(↗)
对数(log,lg,ln),比(:)微分(dx)积分(∫)
曲线积分(∬)等。
结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
省略符号
三角形(△)
直角三角形(Rt△)x的函数(f(x))极限(lim)
角(∠),∮因为,(一个脚站着的,站不住)
∭所以,(两个脚站着的,能站住)
总和(↖)
连乘(↕)
从n个元素中每次取出r个元素所有不同的组合数(C(r)(n))幂(A,Ac,Aq,x^n)等。
排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination-组合A-Arrangement-排列
离散数学符号(未全)
∀ 全称量词
∃ 存在量词
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
? 命题的“双条件”运算的A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算(“与非门”)
↓ 命题的“或非”运算(“或非门”)
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
↔ 属于(?不属于)
P(A)集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
א 阿列夫
⊆ 包含
⊂(或下面加 ≠)真包含
∪ 集合的并运算
∩ 集合的交运算
-(~)集合的差运算
〡 限制
[X](右下角R)集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I(i大写)环,理想
Z/(n)模n的同余类集合r(R)关系 R的自反闭包
s(R)关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y)x,y最大公约数
LCM(x,y)x,y最小公倍数
aH(Ha)H 关于a的左(右)陪集
Ker(f)同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合d(u,v)点u与点v间的距离
d(v)点v的度数
G=(V,E)点集为V,边集为E的图
W(G)图G的连通分支数
k(G)图G的点连通度
△(G)图G的最大点度
A(G)图G的邻接矩阵
P(G)图G的可达矩阵
M(G)图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
数学符号的意义
符号(Symbol)意义(Meaning)>> 远远大于号
<< 远远小于号
∪ 并集
∩ 交集
⊆包含于
⊙ 圆
φ bet 磁通系数;角度;系数(数学中常用作表示未知角)
β fai 磁通;角(数学中常用作表示未知角)
∞ 无穷大
ln(x)以e为底的对数
lg(x)以10为底的对数
floor(x)上取整函数
ceil(x)下取整函数
x mod y 求余数
x-floor(x)小数部分
∫f(x)dx 不定积分
∫[a:b]f(x)dx a到b的定积分
拓展思考:
数学符号的应用
P为真等于1否则等于0
↖[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况
如:↖[n is prime][n < 10]f(n)
↖↖[1≤i≤j≤n]n^2
lim f(x)(x->?)求极限
f(z)f关于z的m阶导函数
C(n:m)组合数,n中取m
P(n:m)排列数
m|n m整除n
m⊥n m与n互质
a ↔ A a属于集合A
极限定义法 泰勒展开法。洛必达法则。
等价无穷小和等价无穷大。
极限的求法 1.直接代入法
适用于分子、分母的极限不同时为零或不同时为
例 1.求
极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
(x趋近无穷的时候还原成无穷小)
2落笔他 法则
首先他的使用有严格的使用前提!!!
必须是 X趋近而不是N趋近!!!必须是 函数的导数要存在!!!!必须是 0比0 无穷大比无穷大!!!!!
当然还要注意分母不能为0 落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方
对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)
E的x展开 sina 展开 cos 展开 ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则 最大项除分子分母!!!!!!
看上去复杂处理很简单!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式
(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!
x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!
当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用 证明单调性!!!
【高数知识点总结】推荐阅读:
考研高数知识总结03-08
考研高数知识点大全02-22
高数重积分总结06-21
高数复习提纲10-10
高数老师毕业赠言05-26
高数的学习感想09-29
高数(A2)复习提纲12-31
高数复习题107-22
高数课程心得体会02-26
高数1212级b卷答案10-30