特殊平行四边形证明题(精选11篇)
1、如图8,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若ADBD,则四边形BFDE是什么特殊四边形?请证明你的结论.
F C
A E B2、如图,四边形ABCD中,AB∥CD,AC平分BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.
(1)求证:AD=CE;
(2)填空:四边形ADCE的形状是.
A
DMN
B
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
6、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
F
A
B
E
D B N
7.600,它的两底分别是16cm、30cm。求它的腰长。
(两种添线方法)
C
8.如图
(七),在梯形ABCD中,AD∥BC,ABADDC,ACAB,将CB延长至点F,使BFCD.
(1)求ABC的度数;
(2)求证:△CAF为等腰三角形.
C
这个几何事实常常被忽视, 其实大有用处, 有时运用起来妙不可言.下面例举两道经典题供大家欣赏.
例1如图2, 在五边形A1A2A3A4A5中, B1是A1对边A3A4的中点, 连接A1B1, 我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.
求证:五边形的每条边都有一条对角线和它平行.
证明:如图3, 取A1A5中点B3, 连接A3B3、A1A3、A1A4、A3A5.
因为A3B1=B1A4,
所以S△A1A2A3=S△A1B1A4.
又因为四边形A1A2A3B1与四边形A1B1A4B5的面积相等,
所以S△A1A2A3=S△A1A4A5.
同理S△A1A2A3=S△A3A4A5,
所以S△A1A4A5=S△A3A4A5.
所以△A3A4A5与△A1A4A5边A4A5上的高相等,
所以A1A3∥A4A5.
同理可证A1A2∥A3A5, A2A3∥A1A4, A3A4∥A2A5, A5A1∥A2A4.
例2如图4, △ABC的面积是10, 点D、E、F (与A、B、C不同的点) 分别位于AB、BC、CA各边上, 而且AD=2, DB=3.如果△ABE的面积和四边形DBEF的面积相等, 求这个相等的面积值.
2、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.
3、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.
4、如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.
5如图,已知□ABCD的对角线AC,BD相交于点O,直线EF经过点O,且分别交AB,CD于点E,F.求证:四边形BFDE是平行四边形..
6、如图,平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别是E、F.求证:△ABE≌△CDF.
7、已知ABCD是平行四边形,用尺规分别作出△BAC与△DAC共公边AC上的高BE、DF.求证:BE=DF.
8、如图,在▱ABCD中,点E是DC的中点,连接AE,并延长交BC的延长线于点F.
(1)求证:△ADE和△CEF的面积相等
(2)若AB=2AD,试说明AF恰好是∠BAD的平分线
9、如图,在平行四边形ABCD中,点E、F是对角线AC上两点,且AE=CF.试说明:∠EBF=∠FDE.
10如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()
11、已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.
12、如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.
13、如图,点B、C、E是同一直线上的三点,四边形ABCD与四边形CEFG都是正方形,连接BG、DE.求证:BG=DE;
14、已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足. 求证:AP=EF.
15、如图,AC是菱形ABCD的对角线,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.
15、如图,四边形ABCD是矩形,直线L垂直分线段AC,垂足为O,直线L分别于线段AD,CB的延长线交于点E,F,证明四边形AFCE是菱形.
16、如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.(1)求证:四边形ABCD是平行四边形;(2)若AC平分∠BAD,求证:▱ABCD为菱形.
17、如图所示,在菱形ABCD中,∠BAD=120°,AB=4. 求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.
18、如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.
19、如图,矩形ABCD的对角线AC、BD交于点O,∠AOB=60°,AB=3,求BD的长.
20、在矩形ABCD中,已知AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,求CE的长.
1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E、F分别是棱AD、PB的中点,求证:直线EF∥平面PCD
P
D
F
C
E
A
B
2.如下图,在正方体ABCD—A1B1C1D1中,E、F、G分别是AA1、AD、B1C1、的中点。求证:平面EFG∥平面ACB1
C1
D1
1G
B1
D
F
A
B
3.如图,在底面为平行四边形的四棱锥PABCD中,E是PD的中点.求证:PB∥平面AEC
E
A B D
4.如图,已知正三棱柱ABC-A1B1C1中,点D为A1C1的中点。求证:
(1)BC1∥平面AB1D;
(2)若D1为AC的中点,求证平面B1DA∥平面BC1D1.AB1
平行线证明题
1.已知:如图,AE是一条直线,O是AE上一点,OB、OD分别是∠AOC、∠EOC的平分线。求证:OB⊥OD
第1题图
2.如图,AD⊥BC,EF⊥BC,∠AMD=104°, ∠BAC=76°
求证:∠BEF=∠
ADM
第2题图第3题图
3.(1)画图:(保留画图痕迹,不写作法)
①过C点作CD⊥AB,垂足为D;
②过D点作DE∥BC,交AC于E;
③取BC的中点G,作GF⊥AB,垂足为F。
(2)用量角器量一量∠CDE和∠BGF,它们相等吗?如果相等,请加以证明。(根据画图,写出已知,求证和证明)
4.如图,已知直线AB、CD被直线EF所截,∠1=∠2,∠3=∠4,∠1+∠3=90°.求证:AB∥CD。
第4题图第5题图
5.已知:如图,AD∥BC。求证:∠B+∠C+∠BAC=180°。
6.如图已知:AD∥BC,DC∥BE,∠A=∠D。
求证:∠CBE=∠ABC。
第6题图
7.根据下列证明过程填空:
如下图,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
图7
证明:∵BD⊥AC,EF⊥AC()
∴∠2=∠3=90°
∴BD∥EF()
∴∠4=_____()
∵∠1=∠4()
∴∠1=_____()
∴DG∥BC()
∴∠ADG=∠C()
8.阅读下面的证明过程,指出其错误.图8
已知△ABC
求证:∠A+∠B+∠C=180°
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
特殊的四边形在生活中有非常广泛的应用,也是现行教材中的一个重点和难点。学生在运用特殊四边形的性质,特别是构造四边形来解决有关的计算,证明问题时,存在严重缺陷。我认为构造特殊的四边形来解决相关问题时,能够另辟佳径,减少繁难的计算和证明,同时能够开阔学生视野,增强学生观察图形,分解图形,构造基本图形的能力。
一、数形结合,巧妙构造特殊的四边形。
1、如图,点A、B是反比例函数y=(k>0,x>0)的图象上两点,过点A作x轴的垂线,过点B作y轴的垂线,垂足分别为C、D,AC、BD交于点F,则():AS△ADE>S△BECBS△ADE=S△BECCS△ADE
法确定解析:过点A作AM⊥y轴,过点B作BN⊥x轴,垂足分别为M、N,则S矩形AMOC=S矩形BNOD
矩形BNCE,=k ,即S矩形MADE=S矩形BNCE,又S△ADE= MADE,S△BEC=S
S2矩形∴S△ADE=S△BEC。解决此类问题一般的同学采用参
数法通过计算三角形的面积来解,计算量比较大,同时引入的参数个数也别较多,给学生造成较大的障碍,而我们采用数形结合,转化的思想,利用矩形的性质就很巧妙地加以解决。
二;培养数感,从直觉出发,构造特殊的四边形。
2,如图,AB=8,DB⊥AB,EA⊥AB,BD=6AE=12,点M是DE的中点,求BM的长。
解析:AE和BD的位置关系为平行,数量关系为BD=6,AE=12,BD=AE,延长DB至F点,使DF=12,连接EF、AD,则四边形ADFE是平行四边形。MB
分别是DE DF的中点,∴BM=EF,EF=AD,通过勾股定理可求出AD,从而解决BM长的计算问题。
我们利用学生对数字的敏感程度,对图形中相应边的位置关系和数量
关系进行分析,利用我们的直觉来构图,同时进行思维的发散,通过构造平行四边形将边的关系进行转化,联系三角形的中位线和勾股定理来进行计算。这是一道解法灵活多变的综合性较高的习题,学生没有现成的模式
可以套用,也不能简单依靠知识的叠加来实现解题,需要进行细致的观察。对数学敏感的程度和较好的构造图形的能力。.............
121
2练习:如图所示,已知六边形ABCDEF,其中∠A=∠B=∠C=∠D=∠E=
∠F=120°, AB=10㎝,BC=70㎝,CD=20㎝,DE=40㎝。求AF、EF的长度。
解析:延长FA、CB交于点P ,延长FE、CD交于点Q,△APB △DEQ
均为等边三角形,从而可以证明四边形PCQF为平行四边形,利用方程思想可求出AF、EF的长。
三:生活问题数学化,建立数学模型,构造特殊的四边形。
E
F
B G
C4、如图,是某城市部分街道示意图,AF∥BC BA∥DE BD∥AE EC⊥BC,甲乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误的时间相同,那么谁先到达F站?请说明理由!
解析:1路车路程:BA+AE+EF ,2路车路程:BD+DC+CF,谁先到达F站,即比较BA+AE+EF与BD+DC+CF的大小。延长ED交BC于G点,则四边形ABGD为平行四边形,∴DG=AB 又四边形ABDE是平行四边形 ∴DE=AB ∴D为直角三角形ECG斜边上的中点 ∴CD=DG=AB, ∵DF∥CG,D为EG的中点∴EF=CF ∴1路车2路车同时到达F站.这是一些立意新颖的情景性习题,充满浓厚的生活气息,它强化了学生对文字、图形、符号语言的理解,并能将生活实际问题纯数学化,建立相应的数学模型,来解决问题。它让学生感受到数学来源于生活,又能指导我们的生活生产。从而培养学生运用数学的意识,体现数学在生活中的价值,同时体验成功的快感,感觉学有所获。
四:构造特殊的四边形解决探究性问题
D5、如图,E是平行四边形ABCD边DC的延长线上的一点,且CE=DC=AC,连AE分别交BC、BD于F、G,连AC交BD于点O,则下列结论:(1)AE⊥BC(2)AB=2OF(3)S△CEF=S平行四边形ABCD(4)四边形AOFB为等腰梯形,其中正确的是___,若将条件改为CE=CD,那么正确的结论呢?
解析:连接BE,则四边形ABEC为菱形。∴AE⊥BC,F为BC中点 ∵O为AC中点 ∴S△CEF =S△ABC=S平行四边形,而(4)只有在AB=AD时
才成立。
我们设计一些探究性练习,给学生提供资助探索的机会,使其经历观察 实验 猜想 证明 比较 推理 反设 验证 等数学思考,体验数学问题的探索性和挑战性,培养提高学生的探究能力,并通过变换命题,变换条件,变换图形来引发学生的认知冲突,从而进一步探索新问题,发现新见解。
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.
一、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.
1.利用一组对边平行且相等构造平行四边形
例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.
求证:OE与AD互相平分.
分析:因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证. 证明:连结AE、OD,因为是四边形OCDE是平行四边形,所以OC//DE,OC=DE,因为0是AC的中点,所以A0//ED,AO=ED,所以四边形AODE是平行四边形,所以AD与OE互相平分.
图1 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.
2.利用两组对边平行构造平行四边形
例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.
分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.
证明:过点E作EH//BC,交AC于H, 因为ED//AC,所以四边形CDEH是平行四边形, 所以ED=HC, 又FG//AC,EH//BC, 所以∠AEH=∠B,∠A=∠BFG, 又AE=BF, 所以△AEH≌△FBG, 所以AH=FG,图2 所以FG+DE=AH+HC=AC.
说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.
3.利用对角线互相平分构造平行四边形 例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.
证明:延长AD到G,使DG=AD,连结BG,CG,因为BD=CD,所以四边形ABGC是平行四边形,所以AC=BG,AC//BG,所以∠1=∠4,因为AE=EF,所以∠1=∠2,又∠2=∠3,所以∠1=∠4,所以BF=BG=AC.
图3
图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.
二、和菱形有关的辅助线的作法
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.
例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形. 分析:要证明四边形CDEF是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD是∠BAC的平分线,AE=AC,可通过连接CE,构造等腰三角形,借助三线合一证明AD垂直CE. 求AD平分CE.
证明:连结CE交AD于点O,由AC=AE,得△ACE是等腰三角形,因为AO平分∠CAE,所以AO⊥CE,且OC=OE,因为EF//CD,所以∠1=∠2,图5 又因为∠EOF=∠COD,所以△DOC可以看成由△FOE绕点O旋转而成,所以OF=OD,所以CE、DF互相垂直平分.所以 四边形CDEF是菱形.
例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.
分析:要证明EF+BF的最小值是DE的长,可以通过连结菱形的对角线BD,借助菱形的对角线互相垂直平分得到DF=BF,然后结合三角形两边之和大于第三边解决问题. 证明:连结BD、DF.
因为AC、BD是菱形的对角线,所以AC垂直BD且平分BD,所以BF=DF,所以EF+BF=EF+DF≥DE,当且仅当F运动到DE与AC的交点G处时,上式等号成立,所以EF+BF的最小值恰好等于DE的长.
图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.
三、与矩形有辅助线作法
和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.
例6 如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.
分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.
解:过点P分别作两组对边的平行线EF、GH交AB于E,交CD于F,交BC于点H,交AD于G.
因为四边形ABCD是矩形,所以PF2=CH2=PC2-PH2,DF2=AE2=AP2-EP2,PH2+PE2=BP2,所以PD2=PC2-PH2+AP2-EP2=PC2+AP2-PB2=52+32-42=18,所以PD=32 .
图7 说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD与PA、PB、PC之间的关系,进而求到PD的长.
四、与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.
例7如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:∠BCF= 1∠AEB. 2分析:由BE//AC,CF//AE,AE=AC,可知四边形AEFC是菱形,作AH⊥BE于H,根据正方形的性质可知四边形AHBO是正方形,从AH=OB=∠BCF=15°.
证明:连接BD交AC于O,作AH⊥BE交BE于H.
1AC,可算出∠E=∠ACF=30°,2在正方形ABCD中,AC⊥BD,AO=BO,又BE//AC,AH⊥BE,所以BO⊥AC,所以四边形AOBH为正方形,所以AH=AO=
1AC,2因为AE=AC,所以∠AEH=30°,因为BE//AC,AE//CF,所以ACFE是菱形,所以∠AEF=∠ACF=30°,因为AC是正方形的对角线,所以∠ACB=45°,所以∠BCF=15°,所以∠BCF=
图8 说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题.
五、与梯形有关的辅助线的作法
和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等. 例8 已知,如图9,在梯形ABCD中,AD//BC,AB=AC,∠BAC=90°,BD=BC,BD交AC于点0.求证:CO=CD.
分析:要证明CO=CD,可证明∠COD=∠CDO,由于已知∠BAC=90°,所以可通过作梯形高构造矩形,借助直角三角形的性质解决问题.
证明:过点A、D分别作AE⊥BC,DF⊥BC,垂足分别是E、F,则四边形AEFD为矩形,因为AE=DF,AB=AC,AE⊥BC,∠BAC=90°,所以AE=BE=CE=所以AE=DF=
1∠AEB.
21BC,∠ACB=45°,21,2180DBC75,2又DF⊥BC,所以在Rt△DFB中,∠DBC=30°,又BD=BC,所以∠BDC=∠BCD=所以∠DOC=∠DBC+∠ACB=30°+45°=75°. 所以∠BDC=∠DOC,所以C0=CD.
图9 说明:在证明线段相等时,一般利用等角对等边来证明,本题作梯形的高将梯形转化为矩形和直角三角形,进而根据直角三角形知识解决.
例9 如图10,在等腰梯形ABCD中,AD//BC,AC⊥BD,AD+BC=10,DE⊥BC于E.求DE的长. 分析:根据本题的已知条件,可通过平移一条对角线,把梯形转化为平行四边形和直角三角形,借助勾股定理解决.
解:过点D作DF//AC,交BC的延长线于F,则四边形ACFD为平行四边形,所以AC=DF,AD=CF,因为四边形ABCD为等腰梯形,所以AC=DB,BD=FD,因为DE⊥BC,所以BE=EF==
111BF=(BC+CF)=(BC+AD)2221×10=5. 2因为AC//DF,BD⊥AC,所以BD⊥DF, 因为BE=FE,所以DE=BE=EF=5, 即DE的长为5.
图10 说明:当有对角线或垂直成梯形时,常作梯形对角线的平行线,构造平行四边形,等腰三角形或直角三角形来解决.
六、和中位线有关辅助线的作法
例10 如图11,在四边形ABCD中,AC于BD交于点0,AC=BD,E、F分别是AB、CD中点,EF分别交AC、BD于点H、G.求证:OG=OH.
分析:欲证0G=OH,而OG、OH为同一个三角形的两边,又E、F分别是AB、CD中点,所以可试想作辅助线,构造三角形中位线解决问题. 证明:取AD中点P,连结PE,PF. 因为E是AB的中点,F是CD的中点,所以PE//BD,且PE=11BD,PF//AC,且PF=AC,22所以∠PEF=∠PFE,又∠PEF=∠OGH,∠PFE=∠OHG,所以∠OGH=∠OHG,所以OG=OH.
说明:遇中点,常作中位线,借助中位线的性质解题.
(2)如图②,当EF⊥GH时,四边形EGFH的形状是;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.B
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF
是什么特殊四边形?并证明你的结论.
D
3.如图,ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BEAD,垂足为E,连结CE,过点E作EFCE,交BD于F.
(1)求证:BFFD;
(2)A在什么范围内变化时,四边形ACFE是梯形,并说明理由;(3)A在什么范围内变化时,线段DE上存在点G,满足条件DG由.
4DA,并说明理
A
F图①
C
B
F图②
(第1题图)C
A
B
图③
G C
B
F
图④
2.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
B
B
F
D M
4.如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.
(1)试探索四边形EGFH的形状,并说明理由.
(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明.
(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并证明你的结论.
5.如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足_________________________条件时,四边形DAEF是矩形; ②当△ABC满足_________________________条件时,四边形DAEF是菱形;
③当△ABC满足_________________________条件时,以D、A、E、F为顶点的四边形不
存在.
DE
BC
(第29题图)
6.如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过A作AG⊥EB于G,AG交BD于点F,则OE=OF,对上述命题,若点E在AC的延长线上,AG
⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,说明理由。
A
D
G
B
C问题一图
17、在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且
GCDG
AEBE
=
FCBF
=
=
AHHD
=k(k>0),阅读下列材料,然后回答下面的问题:
AEBE
如上图,连结BD∵=
AHHD,FCBF
=
GCDG
∴EH∥BD,FG∥BD
①连结AC,则EF与GH是否一定平行,答:;
②当k值为时,四边形EFGH是平行四边形;
③在②的情形下,对角线AC和BD只需满足条件时,EFGH为矩形; ④在②的情形下,对角线AC和BD只需满足条件时,EFGH为菱形;
A
H
D
E
G
BFC
第2题图
8.如图,E、F分别是正方形ABCD的边AB、BC上的点,且EF∥AC,在DA的延长线上取一点G,使AG=AD,EG与DF相交于点H。求证:AH=AD。
B
C
例1图
9、如图,等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于点O,∠ACD=60,点S、P、Q分别是OD、OA、BC的中点。
(1)求证:△PQS是等边三角形;(2)若AB=8,CD=6,求SPQS的值。
(3)若SPQS∶SAOD=4∶5,求CD∶AB的值。
DS
P
C
AB
第4题图
10.将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑行,直角的一边始终经过点B,另一边与射线DC相交于点Q。
探究:设A、P两点间的距离为x。
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的关系?试证明你观察得到的结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出函数的定义域;
(3)当点P在线段AC上滑行时,△PCQ是否可能成为等腰三角形,如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x值;如果不可能,请说明理由(题目中的图形形状大小都相同,供操作用)。
A
D
A
D
A
D
BC
BC
BC11、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.
如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.如图,若AB∥CD,猜想∠A、∠E、∠D之间的关系,并证明之。
如图,AB∥CD,∠BEF=85°,求∠ABE+∠EFC+∠FCD的度数。
如图,已知ABCD,EAF1EAB,ECF1ECD,求证:AFC3AEC
444AECBDAEDCBF
已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。
教学目标: 1 经历探索、猜测、证明的过程,进一步发展推理论证能力 能够用综合法证明矩形、菱形、正方形的性质定理和判断定理以及其他相关结论 进一步体会证明的必要性以及计算与证明在解决问题中的作用 体会证明过程中所运用的归纳、概括以及转化等数学思想方法
教时:三课时
一课时: 矩形的性质及判定方法
? 情境设计:你了解那些特殊的平行四边形?还记得它们与平行四边形的关系吗?能用一张图来表示它们之间的关系吗? 它们具备平行四边形的性质,它们还有自己独特的性质。如矩形,你能说出它的性质吗?及判定方法吗? ? 探究:定理:矩形的四个角都是直角 矩形的对角线相等
推论:直角三角形斜边上的中线等于斜边的一半 拿此推论为例去证明
例 1 :如图 矩形 ABCD 的两条对角线相交于点 O 已知: AOD=120 AB= 2.5CM
第 1 页 求矩形对角线的长
解:∵四边形 ABCD 是矩形
AC=BD 且 OA=OC= 0.5AC OB=OD=0.5BD(矩形的对角线相等且互相平分)OA=OD ∵ AOD=120
ODA= OAD=(180 120)2=30 ∵ DAB=90(矩形的四个角都是直角)BD=2AB=2 2.5= 5CM(三)拓展 P88 1、2(四)作业 P88习题 1 3(五)反馈及小结 二课时 菱形
? 设置情境:你还记得菱形的性质吗?请你证明它们 定理: 1 菱形的四条边都相等 菱形的对角线互相垂直并且每条对角线平分一组对角 ? 探究及应用
例 2 :如图 四边形 ABCD 是边长为 13CM 的菱形,其中对角线 BD 长 10CM 求(1)对角线 AC 的长度(2)菱形 ABCD 的面积
解:(1)∵四边形 ABCD 是菱形
第 2 页 AED=90(菱形的对角线互相垂直)DE=0.5BD=0.5 10= 5CM(菱形的对角线互相平分)AE= AD AD DE DE= 13 13 5 5= 12CM AC=2AE=2 12= 24CM(菱形的对角线互相平分)(2)菱形 ABCD 的面积
= △ ABD 的面积 + △ CBD 的面积 =2 △ ABD 的面积 =2 0、5 BD AE = 120CM CM 想一想 怎样判别一个平行四边形是菱形?请证明后与同伴交流
? 拓展: 1 证明:四条边都相等的四边形是菱形 2 证明:正方形的四个角都是直角并且互相垂直平分 每条对角线平分一组对角 ? 作业 P90 1 3 ? 小结 学生总结 三课时 正方形
? 情境设计:依次连接任意四边形各边的中点,可以得到一个平行四边形。那么依次连接正方形的各边的中点能得到一个怎样的图形呢?先猜一猜,再证明。
? 探究:(1)依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明
第 3 页(2)依次连接平行四边形四边的中点呢? 依次连接四边形各边中点所得到的新四边形的形状与那些线段有关系?有怎样的关系。
? 拓展:如图,四边形 ABCD 是正方形 △ CDE 是等边三角形 求 Q 的度数
? 作业: P94 1 3
证明:∵四边形ABCD为平行四边形;
∴DC‖AB;
∴∠EAF=∠DEA
∵AE,CF,分别是∠DAB、∠BCD的平分线;
∴∠DAE=∠EAF;∠ECF=∠BCF;
∴∠EAF=∠CFB;
∴AE‖CF;
∵EC‖AF
∴四边形AFCE是平行四边形
1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形
1、两组对边分别平行的四边形是平行四边形
2、一组对边平行且相等的四边形是平行四边形
3、两组对边分别相等的四边形是平行四边形
4、对角线互相平分的四边形是平行四边形
21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。
【特殊平行四边形证明题】推荐阅读:
特殊平行四边形知识点02-06
平行四边形性质证明题06-23
平行线与相交线证明题05-28
平行四边形的应用证明01-01
证明直线平行07-13
证明面面平行01-16
怎样证明面面平行06-30
立体几何证明平行垂直09-08
平行线的证明练习题01-05
立体几何垂直和平行的证明练习题10-13