圆柱圆锥复习课(精选10篇)
(二)教学目标:
⑴知识目标:引导学生通过回忆、整理、拓展等实活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。⑵能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。
⑶情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。
教学重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
教学难点:通过对知识进行整理,提高学生的自主获取知识与概括知识能力。教学过程:
一、知识整理
1、谈话揭题:今天这节课我们来复习一下圆柱和圆锥的内容。
2.圆柱与圆锥的知识,你都知道了什么?还学会了什么?
3.师板书:特征,表面积,体积。
4、课件展示:圆柱、圆锥的特征,基本公式。
二、解决问题
1.屏幕出示圆柱体木桩。
2.仔细观察木桩,结合已学圆柱与圆锥的知识,提出一些数学问题。
3.整理:刷、切、削。
(底面直径20厘米,高30厘米)
4.“刷”出表面积相关知识。(怎么刷?)
5.“切”出新的表面,求增多的表面积。(怎么切?)
6.“削”出圆锥,圆柱与对应圆锥的关系。(怎么削?)
7.画草图,计算,说说思路。
三、深化应用。
*.抢答题:
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指
().A.底面积B.侧面积C.表面积D.体积
2.甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()。A高一定相等B侧面积一定相等C侧面积和高都相等
D侧面积和高都不相等
3.一个圆锥的体积是a立方米,和它等底等高的圆柱体的体积是()立方米。
A.a÷3B.2aC.3aD.a的立方
4.把一个圆柱在平坦的桌面上滚动,那么滚动的路线是().A 圆弧B直线C曲线
*动手思考
1.一个圆柱形水池的容积是18.84立方米,池底直径是4米,水池的深度是
().2.一根圆柱形木材长20分米,把截成4个相等的圆柱体.表面积增加了18.84平方分米.截后每段圆柱体积是().3.已知两个体积不同的圆柱,高相等,它们的底面半径的比是1:2,那么它们的体积的比是()
四、课堂总结。
通过今天这节课的学习,说一说你有哪些收获?你还存有疑惑或问题吗?
五、布置作业。
.整理单元学习小报。(1.你学到了什么?2.还有什么问题?3.错题集。)
圆柱圆锥复习课
(一)教学目标:
1、进一步掌握圆柱和圆锥体的特征、公式,能正确熟练地运用公式求解、计算
2、培养学生正确灵活地运用所学知识解决简单实际问题的能力。
3、使学生明确基本上解圆柱圆锥的有关应用题,都可以归纳为涂、切、削、挖的问题。
教学重点:灵活地运用所学知识解决简单实际问题
教学过程:
一、复习出示课题
师:前段时间我们和大家一起学过圆柱和圆锥的知识,今天针对我们这些知识来上一节复习课。(板书课题:复习课)现在请大家回忆一下,这一单元里,我们都学会了些什么?
二、集体探究
提问题:师:嗯!看来,大家学得还真不少!在这一部分内容中,我们学习了三个内容。第一是圆柱和圆锥的特征;后来我们又学会了它们表面积的计算;最后我们研究的是它们的体积的计算。(教师板书:特征、表面积、体积)
师:到底怎么样?那么就试试看。这些知识之间有什么联系呢?一会儿我们通过回答问题,看看它们之间到底有什么样的联系。请看屏幕——(出示一个圆柱体)现在屏幕上出现了一个什么?
生:圆柱体的木头
师:告诉了我们什么条件?
生:它高30厘米,底面直径20厘米
师:高30厘米,底面直径20厘米,对不对?好了,接下来就交给各组一个任务仔细观察这个木桩儿,结合圆柱和圆锥的知识,以及我们的生活实际,展开你们想象的小翅膀,看看你们组能提出什么样的问题来。看看谁提的问题最有创意,综合性最强。好了,要求听清楚了吗?生齐答:听清楚了——
师:那就开始(学生开始讨论,教师参加小组讨论。)
师:好,停——,结合这个小木桩,你提出了一个什么样有创意的问题? 生1:这个木桩的体积是多少立方分米?
生2:把这个圆柱形的木桩削成最大的圆锥形的,那么这个圆锥形的木桩体积是多少?
师:哎!你看这个同学挺有创意的,他用了一个词,一个字,你觉得那个字用的最好呀!
„.解决问题:师:同学们真棒,提出了这么多有创意的问题,这节课我们就一一来解决他们。
1、刷——求这个圆柱木桩的面积
让学生明确在什么情况求表面积,什么情况下求一个底面和一个侧面的面积,什么情况下只求一个侧面的面积?
2、切——纵切 横切 使学生明确将圆柱纵切后、横截面为长方形,横切横截面为圆形。
3、挖、削——求体积
师:你说这木桩干什么的时候,我们要求它的体积呀?
生:装水。
师:用这个东西装水?你得把它干什么以后,他才能够装水?
生:把它挖空。
师:你看——,有一个字特别好。
生齐答:挖
师:对——了——。把它挖了。把它挖孔成一个水杯,求它的容积,如果把壁厚忽略不计的话,就是求它的体积。对吗?
生齐答:——
师:底面积乘以高,好,请坐。你看,我们把它挖了以后,就能算出他们的体积。刚才是,先刷,再切,又挖,最后干嘛?终于轮到你的那个字了。我们说,再要削——,刚才哪个同学提的削?你把它削成什么样子?
生:削成圆锥形
师:圆锥体——
生:最大的师:她说,要削成一个最大的圆锥体。那么谁来说一说,削成一个怎样的圆锥体,才是最大的圆锥体呢?
师:来,看看。(演示课件)怎么样,削出几个来?1个,1个等底等高的最大的圆锥体。刚才真的很佩服大家!而且我们的课也马上到点了。我们通过这个小小的木桩,提出如此多的问题来,而且,我们很多同学提的问题真的很有创意。从涂到刷。到切,到削。
我真的很佩服大家,因为提出问题他还真的比解决问题更重要。接下来,我提一个问题,好吗?因为咱们都是平等的嘛!听好了。我这问题可难可难了呢!我要把这个圆柱体削成底面积和它一样,高是10厘米的圆锥体来,请问,我可以削出几个来。你们再次商量一下。(3个,有学生小声说出了答案)怎么样?几个?
生:3个——
师:为什么?
教师总结:是不是这样?(学生回答是后)先分成3个等底等高的小圆柱,然后把每一个小圆柱削成等底等高的圆锥。(电脑动画演示)是这样吗?最后能削成几个?(学生回答3个)
三、谈收获
为了研究如何上好过渡教材中的复习课,我所在的备课组决定由我来上一堂“圆柱和圆锥单元复习课”。接到命令我马上搜集教学素材并且设计实施,试讲的时候呈现给学生的是这样一个教学设计,首先和学生复习本章的知识,采用的是知识框图的方法,目的是让学生能够对本章的知识全面地了解,然后通过一系列判断进行概念巩固,然后通过典型习题进行应用训练,通过对特殊习题的探究使学生得到能力的提升。应该说这是一堂中规中矩的复习课,课堂上学生们也有比较良好的课堂表现,但是接下来在习题课中的反馈效果却没有达到我所期望的程度,走出课堂我不断反思教学设计中的问题,正当我百思不得其解的时候,有幸阅读了王仁甫老师在《教学体验探路》一书中提出的“时间价值理论”。于是在另一个教学班采用了全新的设计收到了很好的教学效果,现赘述如下:
时间价值理论指出:45分钟时间价值随着学生生理心理的变化呈现出一种动量状态。在45分钟之内,学生的生理心理状态分为五个时区,呈波谷——波峰——波谷——波峰——波谷的起伏发展规律。我们可以模拟出这样一个学生心理变化的曲线:
课堂起始时区:5分钟。角色进入时区。这个时段学生的学习在波谷阶段,我开始的设计中采用传统的框图设计,枯燥而乏味,虽然完成了知识的穿线过程,但是在学生的记忆映射中却很难留下比较深刻的印象。为了解决这个问题,我把牵引式的回顾改为学生的片段补充,让学生自主回忆本章所学的重点知识,由学生重点补充,问题开放而且明确。这样设计学生主动思考互相补充,对本章知识形成感性回顾,然后通过图表的方式对比圆柱和圆锥的相同点和不同点:
这样学生在开始的五分钟快速进入角色,有效地避免了第一个波谷的出现。
兴奋时区:15分钟。第一黄金时区。这个时段的到来如果不能及时地推向比较重要的学习内容,那么这个时段应该说就被浪费掉了,原始的设计中我只考虑了学生的年龄比较小,知识辨析能力不强。于是设计了十几个判断问题,虽然学生反馈比较积极,但是并没有得到能力的提升而是简单的复习,我想这也是一些复习课失败的主要原因,所以改进的设计中我选择了具有代表性的3个问题进行研究:
1.从圆锥的顶点到底面圆上的线段是圆锥的高。()
2.因为等底等高圆柱体积是圆锥体积的3倍所以圆锥体积都比圆柱体积小。()
3.两个体积相等的圆柱和圆锥,圆柱的高一定是圆锥高的1/3。()
把一些更具典型性的问题改编成填空题、解答题增加了学生的思维深度和广度。同时渗透了举反例、特殊值法等适应现在学段的解题方法。然后马上转入本章典型例题的研究,我没有马上进入很高的难度,而是不断地铺设台阶,在这一时期学生的兴奋点得以提升,在一次次的成功中获得知识的体验并且不断地总结方法。
调试时区:5分钟。心理过渡时区。教学时间已过去将近一半,学生的兴奋过程开始转为抑制过程,会出现一个疲劳波谷。这个时期学生的注意力开始放松,原有的设计中这个时段我正在和学生探究一道比较难的综合题——求复合图形的体积,需要学生调动所有本章所学习的知识,而且在编写这道习题的时候我又增加了思维的难度,所以在第一次上课的时候这个环节学生出现了比较明显的推进吃力现象。为了平稳地度过这一时期,在后来的设计中我设计了一个错例辨析的环节,这也是我在以往的复习课中研究过的一种方法,把一道典型的作业题中出现的几个错误,呈现给学生,通过学生的互相纠正强化正确的做法。
82页第8题,如图3,求钢管所用钢材的体积。(图3中单位为cm)
果然改进后的设计让学生再次兴奋起来,找到别人没有发现的错误,给学生又一次兴奋的机会。课堂收益呈现明显的波峰趋势。
回归时区:15分钟。第二次黄金时区。经过5分钟的调适过渡,学生的生理、心理出现第二次波峰状态,因此,称为回归时区。这个时段学生能否形成能力很关键,在原始的设计中这个时段我采用了一些特殊习题,需要通过对数据的特殊处理才能够解决,课堂上的确有一部分学生积极响应,但是反思起来,这个环节并没有针对全体学生形成能力,更谈不上很好的提升。所以一部分学生在后续的反馈中不理想也正是这个环节处理不当造成的。所以在改进后的设计中,我采用了连环改编的方式设计了两个互相关联又各有特点的两道习题:
(1)甲乙两人分别利用一张长25.12厘米,宽6.28厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么关于这两个圆柱结论正确的有()个
①高相等②侧面积相等③表面积相等④体积相等
(2)把一个直角边是3和4的直角三角形绕着它的直角边旋转,那么得到的圆锥体积是多少?
这样开放的习题不但考虑了学生具有的知识储备,而且引导学生分类讨论思想的形成。在回归期对学生思维能力进行再次训练的同时也让学生的计算能力得以发展。
终极时区:5分钟。总结回应时区。这时候,学生趋于疲劳状态,注意力渐次分散,进入尾声。在先前的设计中我采用学生总结的方式对知识进行总结,这个时间学生的注意力并不集中,没有很好地回顾开始的知识收获。而在后来的设计中我在开始就已经采用了互补的复习方法,所以在这五分钟里我采用图示的方法和学生共同补充完成知识结构图4:
总结本节课出现的解题方法,学生的知识片段得以完整形成知识体系,对本章的知识进行了很好的回顾,同时为了不同的学生获得不同的知识体验,并且把学习带到课下,我将原有的两道需要特殊的方法解决的问题,当做思考问题提出,学生在课下进行了激烈的讨论,在后续的反馈中出现了比较多的解决方案。这也是后来设计中的一些意外收获。
课后反思:同样的知识,同样的习题,如果组织恰当,即使是面对学习技巧不够完善的低年龄段学生,面临章节复习课比较难于操作的课型,只要我们再设计中充分考虑学生在课堂上表现出来的时间价值,对教学素材进行全面的调整和组合一样能够取得良好的教学效果。正如电影中的蒙太奇手法所遵循的原则一样。根据教材所要表达的内容,和学生的心理顺序,将一堂复习课分别分成若干个可以操作的片段,然后再按照原定的构思组接起来。通过实践我相信这样的教学设计,一定能够提高我们的教学效果。
参考文献
一、教学分析
圆柱和圆锥是我们日常生活中常见的几何体,本节是继学习《多面体——棱柱与棱锥》知识之后对立体几何的进一步深化,同时也对后续学习简单组合体打下良好的基础。
1.学情分析
我所授课的班级是一年级学前教育专业。学生们活泼开朗,动手能力强,喜欢形象直观的事物,对立体几何的学习信心不足,空间感较弱,但喜欢动画、电脑操作。因此,要有效利用动画等信息化手段变抽象为直观,让学生自主探究产生成就感,从而增强自信心。
2.教学环境
在信息化教学中,我结合学校的数字化校园建设,利用学校自主研发的学习平台和动画、游戏等软件资源,把学生对网络的痴迷转化为对学习的兴趣,促进学生自主学习。
二、教学策略
基于教学大纲、教学分析,制定了如下的教学目标和教学重难点:
1.教学目标
[知识目标]:让学生理解圆柱和圆锥的概念和性质,掌握圆柱和圆锥各基本元素(半径、高、母线)之间的关系,并能准确进行面积、体积的计算。
[能力目标]:培养学生的计算能力、空间想象力以及分析问题、解决问题的能力;培养学生将立体几何问题转化为平面几何问题的能力。
[情感目标]:
使学生养成良好的实践意识和创新意识;提高学生的就业能力和团队合作精神。
2.教学重难点
教学重点:帮助学生了解圆柱和圆锥的概念及性质,掌握圆柱和圆锥面积、体积的计算方法。
教学难点:公式的实际应用。关键是对学生立体空间感和数形结合思维的培养
3.教学方法
教师通过创设情境、启发引导等教法引导学生完成知识的学习。而学生则通过做教具、做实验、测数据、做练习等方式进行自主学习、自主探究。这一过程充分体现了做中学、做中教的教学理念。
三、教学过程
教学过程主要分为课前、课中、课后三部分。
1.课前准备
课前教师通过微信公众平台推送课前任务。任务一: 通过网络搜索圆柱和圆锥形的手工作品,并上传至教学平台,丰富了学校的教学资源库;任务二:手工制作教具“圆柱、圆锥”,初步体验其结构特征;任务三:通过电子教材预习圆柱、圆锥的相关知识,同时了解上课流程;任务四:进行在线测试,教师根据反馈信息进行教学策略调整。
2.课中实施
课中实施主要从引、建、体、用、测、结六个环节展开。其中概念建构环节解决教学重点;知识体验、知识应用和练习检测三个环节突破教学难点。
①情境引入
通过手工作品的展示,提出问题导入新课:圆柱和圆锥都有哪些基本特征?他们的面积、体积又是如何进行计算的呢?
②概念建构
探究一:结构特征
圆柱和圆锥结构特征的概念主要分为两部分:一是母线、轴、底面、侧面等基本概念,二是底面、截面、轴截面的性质特点。为了让学生准确把握其结构特征,我们制作了FLASH仿真动画,化抽象为直观,逐步培养学生的立体空间感。学生通过观察、讨论、归纳、总结,提高分析问题、解决问题的能力。
接下来,为了强化学生对结构特征的认知,我设计了闯关游戏。游戏寓教于乐,学生快乐地学、教师轻松检测,使知识于无形之中得以内化。
探究二:认识公式
首先,教师引导学生通过几何画板交互式动画探究圆柱的侧面展开图,让学生从三维立体空间平稳过渡到二维平面,从而准确把握公式当中各个元素(半径、高、母线)之间的关系,使数和形得到有机结合,为准确计算打下扎实的理论基础。然后通过类比学习,让学生自主探究圆锥的侧面展开图,了解公式。
至此,通过仿真动画、FLASH小游戏、几何画板等信息化手段逐步解决了教学的重点。以下三个环节,将以步步深入的方式逐步解决“计算”这一教学难点。
③知识体验
首先,让学生测量自己手中的圆柱、圆锥教具,并计算其面积和体积,然后将其相关数据上传至教学平台。教学平台会自动给予结果评定。
④知识应用
公式的逆应用在我们的实际生活当中普遍存在,例如:已知圆锥的母线和高,求圆锥的体积?教师通过讲授,引导学生明确计算过程:知题意、建空间;数形结合画平面图;应用公式灵活变通。接着借助于微课、公式查询器等信息化工具,小组协作探究公式的逆应用。最后小组代表上台讲解:同样大小的纸以不同方式作的圆柱,体积是否相同呢?
⑤练习检测
美籍匈牙利数学家波利亚说过:“解题是一种实践性的技能,就像游泳、滑雪或弹钢琴一样,只能通过模仿、练习和钻研来学到它。”因此练习是数学学习中必不可少的环节。学生登陆教学平台,借助资源库中的微课、公式查询器、电子教材等资源完成在线练习,系统最终会自动给出成绩和解题思路。由此,将微课、公式化查询器、电子教材、在线测试等技术手段融入到讲练结合的过程当中,改变了传统教学讲练枯燥乏味的局面,使教学难点得以突破。
⑥课堂小结
师生共同复习回顾本节所学知识点。布置作业,作业分为基础作业、拓展作业。
3.课后拓展
拓展一: 结合手工制作课,充分发挥自己的想象力,为自己制作一顶合适的帽子,并计算纸张大小和体积。此作品将在艺术节汇报表演中使用。拓展二:在教学评台上互动交流学习体会。
四、教学反思
1.多元评价
课前、课中、课后,我主要通过FLASH小游戏、在线测评、作品展示、师生互评等方式对学生实现了诊断性评价、效果性评价和过程性评价。学生的成绩作为平时成绩记录到学分制系统中。
2.教学创新
数字化教学平台的使用有机整合了动画、游戏、计算工具等资源, 使教学资源多样化,寓教于乐,促使学生自主学习。课程与学生所学专业有机结合:通过做教具、测教具,逐渐转化成做计算、做手工,在量体裁衣过程中,提高学生的节约意识。
3.教学效果
从课后的问卷调查分析以及学生访谈可以看出:学生学习灵活主动性强了;课堂效率大大提高;师生交流更加充分,学生的空间感得到培养,减弱了对数学学习的抗拒心理。■
从课堂实践来看,知识点与相关练习融合在一起,比与知识点完全割裂,边复习边练习,学以致用,学生的脚步更稳健,知识掌握更扎实。这节课上,学生真正成为课堂的主体,给学生充分的空间和时间来思考、交流、展示;我们的评价及时、客观,对学生有激励性;教学内容设计有层次性,重难点突出;课堂上学生活动量大。不足之处:因为复习课我们缺乏学法的指导,所以这节课上,孩子们没能把知识点紧密联系,没能找到那种游刃有余的感觉,因此,以后的复习课,需要我们给孩子们更多的指导,让孩子们掌握一种知识梳理的方法。另外,课前预设,备学生这块,预设不够细致,判断题②圆柱的侧面展开一定是长方形。当学生意见没能达到统一时,不同意见方的辩论组织不够有效,觉得苍白的语言让学生游离于正确与错误之间,不可置否。试想,如果我们课前准备实物演示,直观的演示会代替万语千言。
使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。
教学过程:
教师:在这个单元里,我们学习了两种新的立体图形:圆柱、圆锥,知道了它们的特征、学会了如何求出它们的体积等知识。并学会运用这些知识解决一些简单的实际问题。
一、复习圆柱
1、圆柱的特征。
⑴圆柱有什么特点?⑵做第91页第1题的上半题。
2、圆柱的侧面积和表面积。
⑴教师:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)
圆柱的侧面积怎样计算?(底面的周长×高)
为什么要这样计算?(底面的周长=长方形的长,高=长方形的宽)
圆柱的表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
⑵做第91页第2题的第⑴、⑵小题,第3题上半题求圆柱表面积部分。
3、圆柱的体积。
⑴教师:圆柱的体积怎样计算?(底面积×高)计算的公式是怎样推导出来的? 圆柱体的体积计算的字母公式是什么?(v=sh)
⑵做第91页第3题的上半题求圆柱体积部分。
二、复习圆锥
⑴圆锥有什么特点?
⑵做第91页第1题的下半题和第2题的第⑶小题。
2、圆锥的体积。
⑴教师问:怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?
这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)。
⑵做第91页第3题的下半题。
三、课堂练习
1、做练习二十三的第1题、第2题。
学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。
四、创意作业。
在这节课中,代老师紧紧抓住新课标中“从现实情境中体验和理解数学”这一理念,从备教材、用教材、备学生的角度去进行备课,以实际行动实践新课标、落实新课标。
一、关注每一位学生,根据学生认知的实际,把数学知识与生活有机地结合在一起。
每一位学生都是生动活泼的人,在教师的课堂教学理念中,包括每一位学生在内的全班所有的学生都是自己应该关注的对象。在设计这一课时,代老师考虑到学生对几何知识比较难理解这一实际,因此在教学中,创设了与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量。课前我先让学生收集一些圆柱和圆锥的物品,并用学具盒当中的圆柱学具材料制作一个圆柱,使学生在感性上对圆柱和圆锥有初步的认识,建立圆柱和圆锥的初步表象。
二、关注学生的情感体验,用生活中的实例激发学生学习的兴趣。教学过程应该成为学生一种愉悦的情绪生活和积极的情感体验。如在上课时提了一个问题:“你对圆柱体和圆锥体有哪些认识?”有个别学生汇报了他自己做的一个小实验:分别用纸做了一个圆柱体和圆锥体、一个正方体,用同样重的重物放在这两个物体上,结果他发现圆柱体比较稳固,教师及时肯定了这一学生的勤学好思,同时也激发了学生要进一步验证这一结果的准确性。
三、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动。在这一节课中,代老师提供了多次的探索与交流的活动,引导学生投入到探索与交流的学习活动之中。如认识圆柱的特征之一:圆柱的两个底面相等,提了一问题:你用什么方法验证这两个底面是相等的?“一问激起千层浪”,围绕这一问题,学生立即投入到探究活动当中。通过小组的合作、操作、研究、讨论等活动,很快学生就有了多种方法:(1)把圆柱物体的盖与另一个面重叠,看是否重合;(2)测量圆柱两个底面的半径或直径,计算底面的面积看是否相等;(3)测量圆柱两个底面的半径或直径,计算底面的周长看是否相等;(4)把圆柱的一个底面压在橡皮泥中弄一个洞,再把圆柱的另一个底放进这一个洞里看是否是重合……
又如在组织学生探讨圆锥的侧面展开图是什么图形时,学生也充分发挥了他们的聪明才智,这时老师鼓励学生再认真思考:“圆柱的侧面展开图和圆锥的有什么不同呢?”这时学生又积极地投入到实践当中比较观察。这样的教学活动为学生提供了动手操作、独立思考、合作交流的机会,使学生在探索、交流中体验和理解数学,这样的学习是有效的学习。
四、充分利用多媒体软件的优势,及时、适时地展示信息,有效改变学习方式。
工程形体中常见回转体圆锥、圆柱正交的情形,要弄清楚它们及组合的几何性质,分析时就得将其从工程形体中抽象出来,因为直接用工程形体来讨论,会由于形体上的复杂和困难而转移了解题目标。正交是指这两回转体轴线垂直相贯,这状况是一种形,工程设计与制造要用到“形→图”和“图→形”之间的转换。图是形在画面上的展现,在画法几何学科中,求解圆锥与圆柱的正交———表面交线为相贯线,通常运用投影的积聚性、辅助平面及辅助球面两种方法将三维形用二维图表示。但设计时仅掌握画法几何原理,按这两种方法设计绘图,往往对圆锥与圆柱正交相贯线的投影形状、变化趋势及其特殊点的位置等把握不准,因为画法几何与数学上的几何有所不同,前者的理论基础是投影几何,是用几何方法处理几何问题,更多的是从空间概念形象地去审视,而后者则偏重于解析方法。我们主张,不可过多地依赖直观感觉,应多使用数学思维方式,来揭示相贯线投影的本来面目,本文力求考虑如何将其化成代数方程(公式),来分析它的过程与结果。
1圆锥与圆柱正交相贯的情形分析
圆锥和圆柱都是空间曲面,它们的相贯线为空间曲线。要想正确画出该曲线的投影图,就必须搞清楚其空间的形,即圆锥与圆柱的位置关系[1]。
设正交相贯的圆锥半顶角为θ、圆柱半径为R、圆柱轴心线到锥顶的距离为c,从圆锥圆柱的侧面投影图上可看出它们的位置关系有三种情况:
1)相离。相离是指圆柱投影线在圆锥前后两条素线的投影的内侧(如图1),此时csinθ>R。2)相割。相割是指圆柱投影线与圆锥前后两条素线的投影相交(如图2),此时csinθ<R。3)相切是指圆锥前后两条素线的投影与圆柱的投影线相切(如图3),此时csinθ=R。
2建立圆锥与圆柱正交相贯的数学模型
2.1建立相贯线的数学方程
在解析几何里,曲面是由方程表示的。我们知道,以z轴为轴,原点为顶点,o为半顶角的直圆锥面方程为x2+y2=z2tan2θ(如图4);又,轴心线平行于y轴,半径为R,轴心坐标为x=0,z=-c的圆柱面方程为x2+(z+c)2=R2(如图5);我们还知道,一条空间曲线可以由过这条曲线的任意两个曲面来表示,所以此圆锥和圆柱的相贯线为:
2.2相贯线用柱面方程表示
一般地说,任意两个投射柱面的交线即表示原曲面,由此可见已知空间一条曲线的方程时,可以推出它关于三个坐标面的投射柱面的方程(坐标面的投射柱面是指以坐标平面的法线方向为母线方向,空间曲线为准线,所产生的柱面)。于是可以选取两个比较简单的投射柱面的方程作为这条曲线的方程[2,3]。
2.2.1用两个相交的柱面表示圆锥与圆柱的相贯线
现在我们任取前两个相交的柱面来表示此圆锥与圆柱的相贯线,即:
2.2.2两个相交柱面表示的圆锥与圆柱相贯线的简化
下面将用柱面表示的此相贯线的方程简化,将坐标变换中的平移公式(y′=y-h,z′=z-k)代入式(1),整理得
其中式(3)为相贯线关于y′o′z′新坐标平面的柱面方程[4]。
3圆锥与圆柱正交相贯线的讨论
前面已说过任意两个投射柱面的交线即表示原曲线,这里柱面式(3)和柱面式(4)即表示该正交圆锥、圆柱的相贯线(空间曲线)。因此在描绘该相贯线时,就可以描绘这两个柱面式(3)和式(4)的交线[5]。
3.1当圆锥与圆柱的侧面投影相离时的相贯线
当圆锥与圆柱的侧面投影相离时,csinθ>R,这时式(3)化为y′2/(c2sin2θ-R2)-z′2/[(c2sin2θ-R2)cos2θ]=1,为双曲柱面(在平面解析几何里它为焦点在y′轴上的双曲线标准方程)。图6画出此双曲柱面与圆柱面x2+(z+c)2=R2相交的原相贯线(圆锥与圆柱的正交贯线),图7为圆锥与圆柱正交相贯的三视图[6]。
3.2当圆锥与圆柱的侧面投影相割时的相贯线
3.3当圆锥与圆柱的侧面投影相切时的相贯线
当圆锥与圆柱的侧面投影相切时,csinθ=R,这时式(3)化为y′2-(sec2θ)z′2=0,即z′=±(cosθ)y′为两个相交的平面(在平面解析几何里它表示两条过原点的直线)。图10画出了这两个平面与圆柱面x2+(z+c)2=R2相交的原相贯线。图11为圆锥与圆柱正交相贯的三视图[6]。
4结论
本文的研究对象是工程形体中常见的回转体圆锥、圆柱正交的情形,对其相贯线做了详细的分析,依据圆锥、圆柱正交的三种情形进行解析和几何分析,得出如下结论:1)当圆锥与圆柱的侧面投影相离时,其相贯线的实质是圆柱与双曲柱面的交线,该双曲柱面关于一个侧平面对称。2)当圆锥与圆柱的侧面投影相割时,其相贯线的实质亦为圆柱与双曲柱面的交线,但该双曲柱面关于一个水平平面对称。3)当圆锥与圆柱的侧面投影相切时,其相贯线的实质是圆柱与两个相交的平面的交线,这两个相交平面本身的交线为正垂直线。
参考文献
[1]谷艳华,侯洪生,张秀芝.圆柱和圆锥相交时左侧相贯线上最右点的解析证明与图解[J].工程图学学报,2010,31(4):146-150.
[2]张晓东,王园宇,郝鹏飞,等.交线及其展开曲线的方程构建方法的研究[J].机械设计与研究,2008,24(2):21-24.
[3]孟宪铎.解析画法几何[M].北京:机械工业出版社,1984.
[4]高丽华.相交圆柱与圆锥表面展开图的计算机绘制[J].机械设计与制造工程,2001,30(5):45-46.
[5]储,高满屯.用形态图方法建立圆柱与圆锥相贯图谱[J].机械科学与技术,2003,22(1):63-65.
教学目标:
1、在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。
2、认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。
3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
课前准备:教师准备一个带商标纸的罐头盒,一个圆柱图,小鼓、卫生纸、小木头段、圆台形物品。学生每人准备一个圆柱体实物。
教学过程:
一、创设情境
1、师:同学们,今天大家都带来了一件物品,谁来给同学们说一说你带的是什么?它的形状是什么?多让几个人交流。学生可能会说:
●我带的是一个茶叶桶,它的形状是圆柱。
●我带的是一个饮料筒,它的形状也是圆柱。
2、师:很好。同学们看着这些物品,都能说出它们的形状是圆柱。那大家想一想,在现实生活中,还有哪些形状是圆柱的物体?
指名发言,只要学生说的对,就给予鼓励,特别是不爱发言的学生。
二、认识圆柱
1、师:看来大家已经知道什么样的物体是圆柱体,现实生活中,有许多物体的形状都是圆柱体,这节课我们就来进一步研究圆柱体。
板书课题:圆柱的认识。
2、师:请大家拿出自己带来的圆柱体,先进行观察,再闭着眼睛摸一摸它的面。学生观察,并用手摸表面。
师:谁能用自己的话说一说摸圆柱表面的感受?(圆柱摸起来像一个柱子。圆柱有上下两个圆,中间的面是弯曲的)
学生说不到,教师可参与交流。
3、师:刚才大家初步感受了圆柱的表面,现在请同学们讨论一下:圆柱有几个面?各有什么特点?(给学生充分观察、讨论的时间)
教师在黑板上画出一个圆柱体。
师:谁来说一说你们讨论的结果?(圆柱有3个面,上下两个面都是圆形,而且两圆的大小相等,还有一个侧面,圆柱的侧面是一个曲面)
学生说不完整,教师参与交流。
4、师:同学们说得很好,圆柱上下两个面叫底面,它们是完全相同的两个圆。(在圆柱图上标出两个底面)
师:圆柱有一个曲面,叫做侧面。(在图上标出“侧面”)圆柱两个底面之间的距离叫做高。(在图上标出高)请同学们拿出自己的圆柱体物品,同桌互相指一指它的两个底面、侧面和高。(同桌合作学习,可让学习稍差的学生在全班指一指)
师:同学们已经知道了圆柱的特征和各部分名称。现在,老师有一个问题:有什么方法可以验证圆柱体上下两个面的大小相等呢?
5、学生可能说到以下方法:
(1)测量底面直径来验证,两个底面直径相等,两个圆大小就一样。
(2)可以用卷尺或线绳测量周长来验证。
(3)可以用圆柱体物体的一个底面描一个圆,用另一个底面比一比,如果重合,就说明两个圆大小一样。
如果方法(3)学生说不到,教师介绍。
6、师:同学们已经认识了圆柱,并且知道了用什么方法验证圆柱上下两个圆的大小相等,课前老师也准备了几件东西,请同学们判断一下,它们的形状是不是圆柱体?
●先拿出圆柱体小木棒,让学生判断,可用直尺测量一下横截面直径。
●再拿卫生纸卷让学生判断。使学生了解,卫生纸卷是一个圆柱体,中间的空心也可以看做一个小圆柱体。
●拿出瓶子让学生判断,使学生了解瓶身是一个圆柱体。
●拿出小鼓让学生判断,使学生了解虽然小鼓上下两个面的大小相等,但它不是一个柱形。
三、圆柱侧面积
1、师:通过刚才的判断,相信同学们对圆柱体有了更深刻的认识。现在,请大家再来观察这个圆柱体罐头盒,它的侧面贴着包装纸,想象一下,如果把包装纸沿着圆柱的一个高剪开,再展开。这张包装纸的形状会是什么形状?
(学生自由发言)
2、师:大家猜想的对不对呢?我们来亲自验证一下吧!现在我们沿着它的一条高剪开,再展开。(把展开的商标纸拿在手上)
3、师:你们看展开的商标纸是什么形状?(长方形)
师:对,侧面展开后是一个长方形。请同学们认真观察,你发现这个长方形的面积和罐头盒侧面积有什么关系?(长方形的面积就等于罐头盒侧面的面积)
师:真聪明。请同学们再观察,并想一想这个长方形纸的长和宽分别与罐头盒的什么有关系?先同桌讨论一下。
学生讨论,教师巡视了解情况。
4、师:谁来说一说你们讨论的结果?
预设;长方形纸的长相当于罐头盒底面的周长,长方形的宽相当于罐头盒的高。
师:有不同意见吗?(征求意见,形成共识)
师:对,长方形的宽就是罐头盒的高,长方形的长相当于罐头盒底面的周长。
边说边在长方形上标出“高”和“底面周长”。
师:我们知道了长方形的面积等于罐头盒侧面的面积,又知道了长方形的长和宽与罐头盒底面周长和高的关系,那应该怎样计算这个罐头盒的侧面积呢?
随学生的回答,教师板书:
圆柱的侧面积=底面周长×高
四、尝试应用
1、师生共同测量出罐头盒的周长和高。
师:现在,咱们就一起量出罐头盒的底面周长和高,并计算一下它的侧面面积。
找两名学生合作,测量出罐头盒的底面周长和高,教师把测量出的数据写在黑板上。
2、师:我们已经知道了罐头盒的底面周长和高,现在自己试着算一算罐头盒的侧面积。
学生独立计算,然后全班交流计算的结果。
五、课堂练习
1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。
预设;先观察饮料桶和三张商标纸,饮料桶的高是12厘米,底面直径是8厘米。因为商标纸的长就是饮料桶的底面周长,商标纸的宽就是饮料桶的高。所以先计算出饮料桶的底面周长,再选择。
3.14×8=25.12(厘米)
也就是说商标纸的长应等于25.12厘米,宽应为12厘米,所以选择第3张纸比较合适。
2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。学生算完后,请学习稍差的学生交流计算方法和结果。
3.14×12×10=376.8(平方厘米)
3、第3题,用字母给出圆柱的半径或直径和高,求圆柱的侧面积。先让学生独立完成,然后全班订正。
师:谁来说一说你是怎么算的?
答案1:d等于8cm,表示圆柱的直径是8cm,h等于6cm,表示圆柱的高是6cm,根据公式计算。3.14×8×6=150.72(平方厘米)
2:第(2)题,r=3m,表示圆柱的半径是3米,h=1.5m,表示圆柱的高是1.5米,计算圆柱的侧面积:3.14×3×2×1.5=28.26(平方厘米)
教学内容:冀教版《数学》六年级下册第25、26页。
教学目标:
1、经历认识圆柱展开图和探索表面积计算方法的过程。
2、认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。
3、积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。
课前准备:教师准备一个圆柱体纸盒,剪刀,学生准备一个圆柱体茶叶桶。
教学过程:
一、创设情境
师:上节课,我们认识了圆柱,学会了计算圆柱的侧面积。谁来说一说你对圆柱有哪些了解?(给学生充分发言的机会,教师要关注更多的学生)
二、认识表面积
1、师:上节课,我们研究了圆柱的侧面积,这节课我们继续来研究圆柱体的表面积。想一想圆柱的表面包括什么?(两个底面和一个侧面)
师:现在,老师把这个圆柱体纸盒剪开。看一看圆柱的展开图是什么样的。边说边动手操作,照教材上的样子贴在黑板上。
师:观察这个圆柱体展开图,用自己的语言描述一下。
学生可能会说:
(1)圆柱的表面是由上、下两个底面和侧面组成的。
(2)圆柱的表面是由两个同样大的圆和一个侧面组成的。
(3)圆柱的展开图是两个同样大的圆和一个长方形。
2、师:谁来说一说怎样求这个圆柱的表面积?
圆柱的侧面积加上两个底面的面积,就是圆柱的表面积。
教师板书:
圆柱的表面积=侧面积+底面积×2
三、计算表面积
1、师:刚才我们已经知道了怎样计算圆柱的表面积,现在请大家实际计算一个圆柱的表面积。
(出示第25页的示意图)师:观察图,你知道了什么?(这个圆柱的底面半径是5厘米,高是14厘米)
师:你们能计算出这个圆柱的表面积吗?试一试。
学生独立计算,教师巡视了解学生的计算情况。
2、交流学生的计算方法和结果。教师根据学生的汇报随机板书。如果出现列综合算式的给予表扬,如果没有,提出兔博士说的话,鼓励学生尝试,教师进行必要的指导。
学生可能会出现以下方法:
(1)分步解答。先求侧面积,再求一个底面积,最后求圆柱的表面积,列式:
5×2×3.14×14=439.6(平方厘米)
3.14×52=78.5(平方厘米)
439.6+78.5×2=596.6(平方厘米)
(2)先求两个底面面积,再求侧面积,最后求表面积。算式:
3.14×52×2=157(平方厘米)
5×2×3.14×14=39.6(平方厘米)
157+439.6=596.6(平方厘米)
(3)列综合算式:
5×2×3.14×14+3.14×52×2
=439.6+157
=596.6(平方厘米)
四、尝试应用
1、师:同学们真了不起,自己学会了计算这个圆柱体的表面积。下面请同学们拿出自己带来的茶叶桶,同桌合作,测量出有关数据,并计算出它的表面积。
学生合作测量并计算,教师巡视指导。
2、全班交流。师:谁说说你们是怎么做的?计算的结果是多少?
学生可能出现不同测量方法。如:
(1)测量直径和高。
(2)测量底面周长和高。
如果学生出现了综合算式,教师给予肯定,并告诉学生:我们在做题时,不做统一要求,同学们可以选择自己喜欢的方法进行计算。
五、课堂练习
1、“练一练”第1题,师:大家读一读“练一练”的第1题,自己解答。
学生读题、解答,教师巡视指导有困难的学生。
师:谁来说说你是怎么做的?
预设:20÷2=10(厘米)
3.14×102=314(平方厘米)
3.14×20×15=942(平方厘米)
942+314×2=1570(平方厘米)
2、“练一练”第2题。
(1)师:请大家看练一练的第2题,这道题要求的是什么呢?与前面的练习有什么区别?(求的是做这个容器至少需要多少铁皮;不同的是这是一个半圆柱形铁皮容器)
师:求这个半圆柱形容器需要多少铁皮,就是求这个容器的什么?(表面积)
师:这个容器的表面积包括什么?(圆柱体表面积的一半和一个长方形)
师:你们能解决这个问题吗?试一试。
学生在练习本上解答,教师个别指导。
(2)师:谁来说一说你是怎样算的,结果是多少?
学生可能出现的方法:
(1)先求出圆柱表面积的一半。
10÷2=5(厘米)
3.14×52=78.5(平方厘米)
3.14×10×15÷2=235.5(平方厘米)
(2)再求长方形的面积。
10×15=150(平方厘米)
(3)求容器的表面积。
78.5+235.5+150=464(平方厘米)
学生如果出现了其他方法,只要正确,就给予肯定。
3、师:下面请看“练一练”的第3题,自己读一读题。
师:谁来说一说求剩下铅板的面积,应该先算什么,再算什么?最后算什么?
预设:先计算制作这样一个圆柱需要多少铁皮,再求长方形铝板的面积,最后求剩下铝板的面积。
师:请同学们自己解答。
学生算完后全班交流。答案:
(1)圆柱的表面积:
3.14×82=200.96(平方厘米)
3.14×16×16=803.84(平方厘米)
803.84+200.96×2=1205.76(平方厘米)
(2)铅板的面积:
16×2×52=1664(平方厘米)
(3)剩下铅板的面积:
1664-1205.76=458.24(平方厘米)教学目标:
1、经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
2、探索并掌握圆柱体积公式,能计算圆柱的体积。
3、在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。
教学重点:圆柱体积计算公式的推导过程
教学难点:圆柱体积计算公式的灵活运用
教具准备:圆柱体转化成长方体的模型
教学过程:
一、复习铺垫:
1、请同学们回忆一下什么是物体的体积。
2、(出示幻灯片长方体)这是什么体?怎样计算它的体积?
同样的方法复习正方体。
3、长方体和正方体的体积可以用一个统一的公式来表示是怎样的?
[复习旧知,为后面推导圆柱体积计算公式做铺垫]
二、情境导入:
1、师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?
生:喜欢。
师:为什么?
生:有礼物,还有生日蛋糕。
师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?
生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的知识来说。
生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。
师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。
三、推导、论证:
1、拿出两个不易分辨体积大小的茶叶筒。
师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?
让学生思考和交流。
2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)
3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?
4、师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:
生:相同点:都可以拼成一个近似的长方体。
不同点:等分的份数越多,就起接近一个长方体。
5、同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?
6、学生汇报讨论结果,同时板书。
生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。
7、根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示V=Sh。
四、实际应用
1、要求圆柱体积,必须知道哪些条件?(生:底面积和高)
2、如果已知底面积和高,你们会求圆柱的体积吗?
出示书中的例题:一根圆柱形的钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?
3、学生读题,特别提示统一单位。学生自主计算后全班交流。
4、反馈练习。P31页练一练1。
练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。
五、家庭作业:
测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?
板书设计:
圆柱的体积
长方体体积 = 底面积 × 高
▏▏ ▏▏ ▏▏
教学内容: 青岛版教材五年级下册教科书第三单元信息窗三及自主练习部分题 教学内容: 青岛版教材五年级下册教科书第三单元信息窗 教学目标:
1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:
理解和掌握圆柱的体积计算公式。教学难点:
圆柱体积计算公式的推导。教学策略: 采用直观与演示相结合的方法进行教学。教具学具准备:
圆柱体积演示教具。教学过程:
一、创设情景,提出问题。
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。要求说出解题思路。
2、想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些? 4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
5、出示信息窗3,引导学生提出问题
二、自主探究,学习新知
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)
4、学生根据公式自主解决问题。
5、班内交流,教师板书并让学生说说每一步的具体含义,是怎样算的。
三.自主练习,应用拓展。
1、做“自主练习”第1题。指名三人板演,其余学生做在练习本上。集体订正,说说计算时有什么不同的地方,为什么?指出:计算圆柱的体积,要注意题里的条件,正确列出算式计算。
2、做“自主练习”第2题
提问:这道题实际是求什么?怎样做?指名学生板演,其余学生做在练习本上。集体订正,追问用什么公式?
四、全课总结,回顾整理
圆柱与圆锥这一单元是小学阶段立体几何的最后一部分内容,同时也为今后立体几何的学习打下坚实的基础。本节课是圆柱圆锥的启始课,安排在圆柱表面积等课之前,是帮助学生充分理解表面积、体积计算方法重要的一课,所以此节课中的设计应多下功夫,为学生今后的学习打好基础。青岛版教材《圆柱和圆锥的认识》和原教材相比,在编排上有较大的变化。新教材集中认识圆柱和圆锥,而原教材圆柱和圆锥是分别认识的。这样安排有利于将圆柱与圆锥的特征更好的进行对比,通过两种形状的联系加深对两种形状的认识。教案设计过程中本课重点是圆柱和圆锥特征的认识而难点是圆柱与圆锥高的认识,1、注重联系生活实际,加深圆柱和圆锥的认识。
由实物抽象出几何形体:圆柱和圆锥体,引导学生对照模型和图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。接着让学生举生活实例,你在周围见过哪些这样的物体?
2、动手实践,探索对圆柱的特征。
认识圆柱时,引导学生通过观察、比较、交流等活动,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。通过对两个高度不同的圆柱让学生比较引出圆柱高的概念,学生在理解概念的基础上思考圆柱有几条高。
3、运用迁移的方法学习圆锥的特征。
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:圆柱是从面(面的个数、面的特征)、高(什么是高、高的条数)等几个方面进行研究的。引导学生利用圆柱的学习方法去自主学习交流圆锥的特征。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织,学生对于圆锥有了较好的认识。
通过本课的`教学,我认识到在今后的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。使我深深的意识到这节课留下了不少遗憾之处:
再次,课堂上评价性语言太少。比如:证明“圆柱的两个底面大小相等”这个环节,在备课时预想学生可能会有以下几种证明方法:1、将圆柱形容器的盖子取下与底面相比较;2、用圆柱形实物的底面在纸上画一个圆,然后将另一底面和画好的圆作比较;3、用尺子量出两个底面的直径或半径作比较。然而在课堂教学中,有许许多多的意想不到,生3从侧面展开图是长方形的角度的说法就没有在我的预设之中。如何应对突如其来的想法?如何把握生成?是对教师把握课堂水平的一次考验。在这个过程中,令自己感到惋惜的是在生3回答之后,我竟然没有做出任何评价。我用沉默这盆冷水,浇灭了该生创新的火花;我的无动于衷,击退了该生答题的热情。这就暴露了本节课的另一个问题,缺乏评价性语言。这样一来,创设一个敢于质疑,乐于表达的课堂学习气氛的想法也就成了一句空话。在后来的评课中,是呀!一次次精彩的回答,独辟溪径的思路,我却视而不见,至今我还后悔不已。究其原因,一方面是我有时没有细心倾听学生的回答,没有马上反应过来;另一方面,暴露出在我的思想深处,关注课堂的进程比关注学生多一些。因为学生的回答在我的预设之外,便敷衍了事,心里更想听到的是预设中的答案。以学生为主体,具体落实到课堂上,教师应该关注每一位学生表现,重视教师评价对学生所起到的激励作用。课堂因生成而精彩,而生成离不开师生之间的互动,只有互动才能更好的促进学生的生成,课堂才能焕发出生命的活力。
【圆柱圆锥复习课】推荐阅读:
《复习圆柱和圆锥》教学反思11-14
圆柱和圆锥分类练习05-28
六年级奥数圆柱和圆锥06-28
认识圆柱和圆锥教学设计06-15
《圆锥体积》评课稿10-19
圆锥体积的教学反思10-25
圆锥体积计算应用题06-04
《圆锥的体积》的说课稿10-14
8《圆锥的体积练习》教学设计07-12
六年级数学下册《圆锥的体积》教案10-09