复杂零件数控加工技术实习报告

2024-09-17 版权声明 我要投稿

复杂零件数控加工技术实习报告(精选11篇)

复杂零件数控加工技术实习报告 篇1

自己做封面(应包含实习项目、姓名、班级、学号、指导教师、实习时间)

一、实训目的数控综合加工实训是数控专业教学计划的一个重要组成部分,是各教学环节的继续深化和检验,其实践性和综合性是其他教学环节所不能替代的,通过综合实训,使学生巩固以前所学专业基础知识,使其能很好地将所学的基础理论、专业知识和基本技能,与生产实际紧密结合,掌握零件的加工工艺、规程或规范的制定方法,使学生获得综合训练,培养学生从事专业技术工作的能力。让学生有精度、效率、成本的概念。

二、实训任务

1、熟练掌握常用数控机床的各主要技术指标,常用编程指令格式、机床控制面板、操作面板各功能键的功用,能熟练操作机床;

2、掌握数控机床一般故障的原因及解决方法;

3、掌握常用量具、夹具、刀具的使用和刃磨方法;

4、掌握一般零件的加工工艺流程及切削参数的设定;

5、学会使用各类设计手册及图表资料。查找与本设计有关的各类资料的名称及出处,并能做到正确熟练运用。

6、编制零件加工程序和程序的自动生成,完成指定零件的加工;

7、掌握UG三维建模软件的使用(建模、生成刀具轨迹、后置处理)

8、掌握DNC加工基本方法;

9、交加工零件图纸、工艺卡、设计说明书各一份和加工零件。

三、指导教师

赵老师、黄老师

四、实训过程(叙述一周的实习过程、出现的问题及解决方法)

五、工序、工艺卡(写最后上交零件的)

六、加工零件图纸(正规尺规作图)

七、加工零件程序

复杂零件数控加工技术实习报告 篇2

铣刀旋转是铣削加工的主运动,工件或铣刀做进给运动的切削加工方法。用旋转的多刃刀具来进行切削是铣削加工的主要特点,所以效率较高,加工范围广。铣削是加工平面的主要方法之一。在铣床上使用各种不同的铣刀可以加工平面 (水平面、垂直面、斜面) 、阶台、沟槽 (直角沟槽和V形槽、T形槽、燕尾槽等特殊形状的沟槽) 、特形面和切断材料等。同时,使用分度装置可加工需周向等分的花键、牙嵌轮、螺旋槽、齿式离合器等。此外,在铣床上还可以进行钻孔、铣孔、铰孔和镗孔等工作。

2 加工步骤

加工零件如图1所示:

加工步骤如下:

2.1 铣六面体

用平口钳装夹工件,立式铣床上用镶齿端铣刀(直径80m m)铣削六面体。量具:游标卡尺、深度游标卡尺、角尺、千分尺。选择铣削用量(主轴转速n=325r/min,进给速度=60mm/min,切削深度=1.5mm),平口钳固定钳口与铣床主轴轴线垂直安装。

(1) 铣基准面A(面1)铣质量最差最不规则的大面作为基准面,少铣以铣平为止。

(2) (铣面2)以面1为基准靠向固定钳口,在活动钳口与工件间置圆棒装夹工件,少铣铣平为止。

(3) (铣面3)仍以面1为基准装夹工件,控制尺寸,保证平行度。

(4) (铣面4)面1靠向平行垫铁,面3靠向固定钳口装夹工件,控制尺寸,保证平行度。

(5) 平口钳夹面1和面4用90°角尺校正工件面2与平口钳钳体导轨面垂直,少铣铣平为止。

(6) 面1靠向固定钳口,面5靠向平口钳钳体导轨面装夹工件,控制尺寸,保证平行度。

(7) 用挫刀打各棱边毛刺。

2.2 铣斜面

用平口钳装夹工件,立式铣床上用镶齿端铣刀(直径80m m)铣削斜面,量具:游标卡尺、万能角度尺,选择铣削用量(主轴转速n=32r/min,进给速度=60mm/min,切削深度=1.5mm)。

(1) 读图、确定基准面。 (2) 加工步骤:平口钳固定钳口与铣床纵向工作台平行安装。 (3) 将工件转动45°用万能角度尺校正装夹工件。

2.3 铣台阶

用平口钳装夹工件,选用立

铣刀(选择直柄20mm、18mm、16mm立铣刀),选择铣削用量(主轴转速N=250r/min,进给速度=60mm/min),量具:游标卡尺、深度游标卡尺、千分尺。

(1) 读图、确定基准面。 (2) 加工步骤:校正固定钳口与纵向工作台平行。 (3) 铣双台阶、单台阶面至尺寸。 (4) 测量,卸下工件。

2.4 铣直角通槽

用平口钳装夹工件,卧式铣床上用三面刃铣刀(选择80m m×10m m×27m m的三面刃铣刀),选择铣削用量(主轴转速n=80r/min,进给速度=23mm/min),量具:游标卡尺、深度游标卡尺。

(1) 读图、确定基准面。 (2) 加工步骤:校正固定钳口与铣床主轴轴线平行。 (3) 铣宽度10±0.1mm,深度5mm。 (4) 测量,卸下工件。

2.5 铣∨形槽

用平口钳装夹工件,立式铣床上用立铣刀(选择直柄20m m、18m m、16m m立铣刀),卧式铣床上用锯片铣刀铣窄槽(选择63mm×4mm×22mm的锯片铣刀),量具:游标卡尺、深度游标卡尺。

(1) 读图、确定基准面。 (2) 铣窄槽,在卧式铣床上校正固定钳口与铣床主轴轴线平行。铣削前先用试铣法对中心,以保证其对称度要求。主轴转速=112R/min。按深度尺寸16m m手动进给铣窄槽至要求。 (3) 铣∨形槽,在立式铣床上校正固定钳口与纵向工作台平行。以前面斜面为基准校正铣削至图。 (4) 测量,卸下工件。

2.6 铣T形槽

用平口钳装夹工件,立式铣床上用立铣刀或键槽(选择直柄8mm立铣刀或键槽),卧式铣床上用三面刃铣刀铣直槽(选择63mm×8mm×22m m的三面刃铣刀)和16m m T形槽铣刀,量具:游标卡尺、深度游标卡尺,千分尺。

(1) 读图、确定基准面。 (2) 加工步骤:安装、校正平口钳固定钳口与纵向工作台方向平行。 (3) 铣直槽,用立铣刀或键槽,保证宽度10±0.05mm,深度至图。 (4) 铣底槽,用T形槽铣刀铣底槽至图。

2.7 铣封闭式键槽及十字槽

用平口钳装夹工件,立式铣床上用键槽铣刀(选择直柄6mm键槽铣刀),量具:游标卡尺、深度游标卡尺,塞规。

(1) 读图、确定基准面。 (2) 加工步骤:安装、校正平口钳固定钳口与纵向工作台方向平行。 (3) 铣封闭式键槽,用键槽铣刀,保证键宽度6H8、键长30+0.1mm、深度至图。 (4) 测量,卸下工件。

2.8 孔加工

用平口钳装夹工件,立式铣床上用麻花钻和铰刀(选择麻花钻直径5mm, 5.8mm,铰刀H7),量具:游标卡尺、深度游标卡尺,塞规,千分尺。

(1) 读图、确定基准面。 (2) 加工步骤:安装、校正平口钳固定钳口与纵向工作台方向平行。 (3) 钻孔,装夹时,应使工件底面与钳身导轨面离开一定的距离,以防钻孔时损伤导轨面。 (4) 按孔径尺寸选好麻花钻,用钻夹头和弹簧夹安装于主轴锥孔中(先安装5mm麻花钻,再安装5.8mm麻花钻。调整主轴转速为650r/min,然后纵向、横向移动工作台,用靠刀法找中心,将纵向、横向移动工作台锁紧,即可开机,手动升降台进给钻第一个孔,然后移动孔距(20mm),钻第二个孔。更换10mm的键槽铣刀(由于键槽铣刀底齿通过中心,可以作轴向运动)加工至图。 (5) 铰孔,选择切削速度v≤10m/min,进给量f≤0.8mm/r,加工至图。

3 结束语

本文介绍了铣床加工复杂零件的一般步骤。当然,在具体实现过程中还需要掌握一些基本技术和方法。本文所介绍的操作步骤虽然看起来简单,但要真正掌握它,还需在实践中不断体会和提高。

参考文献

[1]段春辉.铣床通用处理系统研制[D].成都:西南交通大学, 2008.

[2]陈良骥, 王永章.铣床加工方法[J].制造技术与机床, 2007 (3) .

复杂零件的数控车床加工工艺研究 篇3

关键词:复杂零件;数控车床;加工;工艺;研究

中图分类号:TH162 文献标识码:A 文章编号:1006-8937(2016)33-0161-02

1 概 述

数控车床在复杂零件的加工中能够起到积极的作用,并且具有较为明显的优势,能够有效促进复杂零件的加工。复杂零件,在很多机械设备中占据关键地位,在对其进行施工的过程中,需要牢牢控制其精度,使用数控车床进行加工时现阶段施工的重要手段。对复杂零件的数控车床加工工艺进行有效控制,能够有效提升复杂零件的质量和实际使用水平。

2 复杂零件加工使用数控车床的必要性

2.1 数控车床的内涵

数控车床,是一种高精度、高效率的自动化机床。使用数控车床能够有效的进行机械产品的创造,数控车床具有较为广泛的加工工艺性能。使用数控车床能够对斜线圆柱、直线圆柱、圆弧和各种螺纹、蜗杆等复杂工件进行有效的加工,同时还具有圆弧插补、直线插补各种补偿功能,能够对复杂零件进行批量生产。

2.2 数控车床对复杂零件加工的重要意义

数控车床具有较为明显的优势:第一,数控车床自身的柔性程度较高。产品形状改变之后,制造大量的刀具和专用夹具的需求就会变小,这主要是因为在进行实际生产制造的过程中,只需要对产品的结构特征,对数控车床的程序进行有效的改变,就能够保证零件加工工作顺利完成,这对于有效提升产品的更新速度具有积极作用。第二,数控车床自身的精度较高。数控车床能够对自身的参数进行有效的控制和管理,从而在完成多道工序的时候,能够降低其误差,因为其不需要进行重复的定位工作。第三,数控车床能够有效提高生产效率。数控车床具有较好的刚性,这样能够有效加快复杂零件的生产效率,减少了加工的时间。

3 数控车床对复杂零件的加工

在对一些外形复杂的回转类零件进行加工的时候,使用数控车床能够起到良好的效果,需要注意的是,在使用数控车床的时候,需要对零件的加工顺序、加工道具以及夹位等方面进行综合考虑。而针对一些十分复杂的回转类零件,就需要使用数控车床才能够起到较好效果[1]。使用数控车床进行复杂零件的加工和制造是时,具体的零件图,如图1所示。

3.1 复杂零件的分析

上图所示的零件在进行设计、加工制造的过程中,需要使用到多项技术和设备。复杂零件较为繁复,包括了椭圆、抛物线等方面,同时该零件还对角度提出了更高的要求。这样就需要有良好的设备作为支撑。

3.2 复杂零件的工艺分析

在对该复杂零件进行施工的过程中,需要对其具体细节进行有效的分析,这样能够便于施工过程中控制具体的精度和准确度。使用数控车床对该零件进行加工的时候,需要使用到的工艺主要是以下方面:O0001;T0101; (外圆粗车刀,刀尖角为 15度)

M03 S2;

G71 U2 R0.2;

G71 P1 Q2 U1 W0 F100;

G6.3 X40 Z-47.21 A30 B20 Q30000;

G01 W-1.79

G02 X44 W-2R2;

X48 W-1;

W-14;

X54 W-1;

X52 W-1;

G00 X80 Z80 M05;

从上图所示的零件来看,该零件在进行加工的过程中,需要在两头进行加工,同时还需要保持精确的尺寸,这样就需要对装夹定位工作进行有效的控制,使用良好的台阶外圆作为分工界面,这样能够分成两道工序进行施工。根据装夹位的实际位置,选择合适的加工顺序,这样能够有效提升零件加工的效果[2]。

3.3 加工工艺的路线

在对复杂零件进行加工的时候,首先需要使用三爪自定心卡盘对毛坯面进行夹持,同时还需要对复杂零件的实际尺寸进行有效的控制,这样能够达到要求的尺寸。在此基础上,还需要对装夹进行有效的调节,将工件的Φ 70 mm 左端面进行定位,同时并使用三爪自定心卡盘进行相应的夹持工作,以达到需求的尺寸[3]。

3.4 加工程序的编制工作

复杂零件在使用数控车床进行加工的过程中,需要对数控车床的程序进行有效的编制,这主要是复杂零件的外部轮廓较为复杂,并且具有椭圆和抛物线的形状要求。在对加工程序进行有效的编制时,需要对零件加工的重点和难点进行控制,如果该零件使用同一把车刀进行加工,那么就需要对刀具的角度进行控制,刀具使用在编程中使用的效率较高,这样就需要做好编制工作。不同的系统使用的指令也不一样,因而使用的编制也不一样,需要根据实际情况进行有效的调整。

4 数控车床加工工艺的分析

数控车床在进行加工的时候,通常会涉及到较多的方面,一方面主要是复杂零件的图纸中包含的数据和尺寸需要满足编程的需求这就要求在对图纸进行设计的时候,保证数据的精确性。因而在对图纸中的数据进行标注时,需要使用同一个基准标注尺寸进行,同时需要注意的是,针对复杂零件的不同节点的坐标进行准确计算,定义好复杂零件轮廓的几何元素。另一方面,还需要对复杂零件各个部位的结构进行有效控制,需要保证其能和数控车床加工的特点进行有效的契合。数控车床在进行加工的过程中,针对复杂零件,使用统一性的尺寸和几何类型,这样能够对刀具规格进行有效的控制。数控车床的加工需要对基准定位进行有效的控制,这样能够对安装定位过程中产生的误差进行有效的控制,减少误差的存在。

4.1 数控车床加工工艺中路线的分析

数控车床在进行加工的过程中需要经历多个阶段,主要分为粗加工阶段、半精加工阶段、精加工阶段以及光整加工阶段。粗加工阶段主要是对复杂零件的多数加工余量进行有效的切除,并且促进其有效接近相应的零件成品。半精加工阶段中想要使得复杂零件的表面达到一定的精度,这样能够做好相应的加工准备。精加工阶段能够使得数控车床达到图纸规定的质量要求。而在光整加工阶段,针对一些要求较高的表面,这样就需要做好相应的工作,能够有效提高复杂零件的精度。

4.2 夹具和刀具的分析

使用数控车床进行复杂零件的生产时,需要做好夹具和刀具的选择工作,尤其是针对单件小批量零件的生产时,优先选择通用的夹具、组合型的夹具能够起到良好的效果,而在进行成批的生产时,则需要使用专用夹具。在对夹具进行选择的时候,需要综合考虑到复杂零件的实际要求,这样对工件、机床坐标系的尺寸关系进行有效的协调。复合型的刀具、可转位刀具、陶瓷涂层刀具以及硬质合金刀具进行有效的选择,对于提高复杂零件的生产效果具有积极作用。需要注意的是,在对刀具进行选择的时候,需要对刀具的规格、精度和类型进行有效的控制。

4.3 切削用量的分析

对切削用量进行设计和分析的时候,需要对主轴转速、背吃刀量以及进给速度进行控制,这样能够对刀具耐用度产生较大的影响。其次进给量以及切削深度也会产生相应的影响,但是实际效果并不够十分明显。选择粗加工的切削用量时,首先需要考虑的是切削深度,其次就是进给量,最终才是切削速度,由此切削用量才能有效发挥相应的作用。复杂零件在进行实际加工的过程中,需要使用到良好的切削用量,因而对切削用量进行有效的控制就显得很有必要。需要注意的是,在对切削用量进行控制的时候,按照一定的顺序进行能够发挥积极作用。这主要是因为切削用量针对数控车床来说发挥着重要作用和意义,因而加强切削用量的控制效果十分必要,采用良好的顺序能够提高复杂零件的精确度。

5 结 语

在使用数控车床加工复杂零件的过程中,需要对其中的加工工艺进行有效的控制和分析,主要包括对加工工艺的路线、加工程序的编制工作、数控车床加工工艺中的路线、夹具和刀具以及切削用量进行有效的分析。使用数控车床进行复杂零件的加工能够有效提升工作效率,这对于有效提升复杂零件的精度具有积极作用。

参考文献:

[1] 李莹,吴成义.复杂零件在数控车床加工的工艺探讨[J].中国科技投资,

2013(A19):158.

[2] 宋理敏,李俊川.复杂椭球部件的数控车削加工工艺研究[J].组合机床 与自动化加工技术,2013(4):132-134.

复杂零件数控加工技术实习报告 篇4

1、数字化的扫描技术

一般情况下,主要通过接触式与非接触式方法来采集三维数据,其中,接触式测量方法包括连续式的数据采集和点位触发式的采集数据方式。在接触式采集中,电位触发式采集方式的采集速度比较慢,只适用于需要数据量少的表面数字化或者是检测零部件表面形状等场合;连续式采集法的采集速度比较快,可以应用在一些需要大规模采集数据的场合。从效果上来看,接触式测量具有精确度高、操作简便、采集成本低以及抗干扰能力强等优势,但由于该方法在测量过程中存在接触压力,所以在测量一些质地比较柔软的零件时,容易产生误差较大的测量结果;并且,该方法的测头半径还存在着三维补偿的问题。非接触式的测量方式由于测头不需要与其测量物体的表面直接接触,主要依靠激光、电磁场和声波等方式来传播数据,所以不会产生接触压力。目前,常见的测量方式主要有:以激光作为传播媒介的断层扫描测量和激光三角形测量法。与此同时,非接触测量还拥有测量速度快、测量过程中不会损坏零件表面、测量距离远、对测量环境要求低、不存在三维补偿问题以及适用于测量弹性较大或者是质地较为柔软的零部件等优势,这也使得该项测量技术在近些年得到了快速的发展[1]。

2、数据预处理

受设备自身缺陷或者是零件表面质量等方面因素的影响,使得获取测量数据的过程中经常会出现坏点或者是跳点,而为了保证数据结果的精确性,需要在重构CAD模型前,对获得的数据进行预处理[2]。数据预处理主要包括以下几个方面:一是消除掉测量数据中存在的噪声点;二是对数据中缺失的信息进行插补;插补数据中缺失的信息;三是优化数据信息,除掉多余的数据;四是对在不同定位点得到的测量数据进行归类和统一处理,并且,对于接触式测量得到的数据还需要消除掉测头半径产生的影响因素,保证数据的光整性。

3、重构CAD模型

当CAD模型曲面被数字化之后,就会在空间范围内形成一系列的离散点,而重构CAD模型,就是要以这些离散点为基础,将计算机设备作为辅助,利用与几何模型设计的相关基础对CAD模型的曲面进行重新构建。一般情况下,如果重构的是复杂曲面,不可以只利用一张曲面来拟合全部数据点,而是要以曲面原型具有的全部特点为依据,将测量的数据点划分成几块不同的区域,并在各个区域内拟合出不同种类的.曲面,再利用曲面过渡或者是求交的方式将不同的曲面连接成一个整体[3]。在逆向工程技术中,重构CAD模型曲面的方式有三种:第一,以NURBS或者是B-spline曲线为基础的方法;第二,以三角Bezi-er曲面为基础的方法;第三,以多面体来描述曲面物体的方法。其中,由于以NURBS曲面为基础的方法能够通过权因子和控制点改变曲面的形状,且具有较高控制局部形状的能力,所以,此种方式是当前一种比较先进的CAD模型重构法。

4、使用CAM生成曲面数控加工的刀具轨迹

该方法既是当前加工复杂曲面零件技术中最重要的一种,也是研究深度最广的一种,其加工的质量、效率和可能性主要是由是否可以形成有效刀具轨迹所决定的。就目前来看,应用范围比较广泛的CAD软件类型相对较多,但无论哪一种方法,其生产刀具轨迹的方式大致相同。其中,常用的方法有:第一,截面线加工。该加工法是采用在一种平行的平面或者是一组曲面上去掉或者是切掉被加工的表面,截出一系列需要应用到的交线,然后让被加工曲面和刀具的接触点沿着交线运动,来完成曲面加工的。但由于求取曲面和曲面的交线比较困难,所以一般都在平面上选取截面。第二,等残留高度加工。主要是通过讨论在对球头刀进行三轴加工是采用等残留高度的计算方法来计算步距,在保证相邻的两个轨迹之间残留的高度值都等于最大的残留高度的基础上,以增加加工步距的方式来缩短轨迹的长度,从而达到节约加工时间,提高复杂曲面加工效率的目的。

5、结论

作为当前产品开发设计和制造技术中的一种核心技术,逆向工程是模型设计与制造领域专业人员的一个重点研究方向。以逆向工程技术为基础,在CAD集成技术和计算机网络技术的支持下重构复杂曲面,不仅可以减少产品开发花费的时间,还能够提高产品的生产质量,有效解决产品在复杂曲面设计方面的相关问题,从而使得相关企业的生产效率和核心竞争力得到极大的提升。因此,基于逆向工程技术,对复杂曲面的数控加工技术进行研究,对于推动社会经济发展进步具有极高的现实意义。

参考文献:

[1]黄斌达,王琦,陈发威.复杂曲面零件的逆向建模及数控加工仿真的研究[J].组合机床与自动化加工技术,2010,12(12):97~100.

[2]关晓冬.浅析复杂曲面数控加工技术及其应用[J].电子世界,2014,08(10):256~257.

薄壁零件加工教学 篇5

关键词:薄壁零件;加工工艺 ;电脑编程

中图分类号:g712文献标识码:a文章编号:1005-1422(2016)06-0084-03

一、引言

零件在加工过程中由于各种因素导致变形是无法消除的,零件在加工中变形的大小除了与零件本身材质、结构有关系外,也与加工中零件的装夹方式、刀具选用、切削用量及冷却液的选择等有很大的关系。材质、结构与其用途有关,有时是无法取代的,因此,我们在零件材料一定的情况下,必须从加工过程中想办法,比如采用正确的装夹方式、合理选用刀具、切削用量、冷却液等,这些是减少零件变形的关键所在。

薄壁零件变形最大,最难控制,主要原因是薄壁零件刚性差、强度弱,在加工中极易产生变形,使零件的形位误差增大,不易保证零件的加工质量。由于薄壁零件重量轻、结构紧凑,应用极为广泛。因此,为了让学生学习加工薄壁零件,笔者特意选择了结构不容易变形、精度要求不高、表面曲面粗糙度要求较高的旋钮图案(图1)。

二、工艺分析

零件材料为铝合金。

零件结构分析:零件总体结构比较简单,但属于薄壁腔体零件,壁厚仅有1mm。加工中要去除大部分材料,会产生铣削热量,从而导致零件产生热变形,这一点是我们制定工艺方案前必须考虑的。薄壁零件加工的影响因素主要还有以下几个方面:

① 装夹时零件产生弹性变形,严重影响加工表面的几何精度和位置精度;

② 切削力作用使零件产生变形;

③ 机床、附件、夹具本身刚性不足,影响加工精度;

④ 切削振动也是造成加工误差的重要原因;

⑤ 零件的厚度要保证均匀;

⑥ 保证零件表面的粗糙度。

上述诸原因,我们在加工前就要逐一解决,制定加工的方案。

我们加工采用的数控铣床是发那科系统的华亚数控铣床,转速最高为6000r/min,进给最高f为8000mm/min,装夹工件只有平口钳,铣刀材质为高速钢,毛坯为70x70x20mm。

三、加工过程

1.选择装夹方式

由于该零件属于腔体薄壁零件,在铣削加工中不能按常规采用平口钳装夹,因为平口钳装夹使零件受力情况不理想。零件在加工中随着大部分材料的去除,其垂直受力方向有变,因而产生变形。但是工件并没有对精度要求很高,保证视觉上的完整就可以了,我们也只有平口钳可以装夹,因此,在教学过程中,选择了平口钳装夹的方式。为了避免夹坏工件,要求力度不能太大,工件用铜片包裹装夹,装上平口钳以后用手大力摇不动就行。刚开始加工由于毛坯比工件高出8mm,所以只要装夹4~6mm就可以了。

2.对刀方法

无论正反面,都是利用平口钳的平面作为z轴高度基准来对刀,比如:毛坯安装以后,最高面到平口钳平面的高度为15.7mm,对刀的时候把这个高度差定为15mm,通过机床坐标来把z轴零点设在毛坯表面,更换刀具的时候统一用这种方法,避免了加工后的毛刺妨碍z轴对刀仪的摆放,又可以迅速更换刀具,保证了对刀的精度。

3.刀具选择

数控加工对夹具的要求可以从以下两个方面考虑:尽可能做到在一次装夹后能加工出全部或大部分待加工表面,尽量减少装夹次数,以提高加工效率和保证加工精度;尽量采用组合夹具、通用夹具,避免采用专用夹具。

刀具的选择要求如下:要根据零件材料的性能、加工工序的类型、机床的加工能力以及准备选用的切削用量,来合理地选择刀具。例如,对于铣削平面零件,可采用端铣刀和立铣刀;对于模具加工中常遇到的空间曲面和铣削,通常采用球头铣刀或带小圆角的鼻型刀。立铣刀有平头刀(r=0)、球头刀(r=r)和鼻型刀(r 内壁如何加工决定了壳体的厚度和零件变形的程度。由于毛坯的厚度有20mm,而零件高度是12mm,因此,在上表面加工外形时,我们特意把深度加工为14mm,反面加工的时候装夹好,简单地对xy轴进行对刀,z轴则要利用平口钳的平面来对刀计算高度,用铣平面把多余的材料切掉,通过不断的z轴零点的调整来保证零件12mm的高度,然后再换上分中棒进行精确分中。这里的关键是在z轴的对刀上,比如:使用z轴对刀仪来对刀,对刀仪放在平口钳的平面上,对好以后的高度是50mm,而工件z轴零点距离平口钳的平面是5mm,那么刀具最低点离工件零点是50-5=45mm,只要在机床输入“z45.”就完成z轴对刀了。之后更换的刀具也是使用同一种方法去对刀,同样是输入“z45.”,这样就保证了统一的基准,缩小了零件厚度的误差,避免换刀以后对刀出现大的误差而导致工件严重报废。

对刀以后将是对内壁进行加工,切削用量图7对切削力的影响是至关重要的。精加工薄壁零件一般应降低和控制切削用量,增加切削次数,匀速切削,以便减少切削力和切削热。若切削面积相等,增加走刀量比增加切削深度的切削力小。而切削速度对切削力的影响是不断变化的,一般应采用较高的切削速度。所以选用合理的切削参数是传统加工薄壁零件时所应考虑的重要措施之一。因此,在加工内壁时无论使用何种刀具切削深度都要较少,机床的转速只有6000r/min,选择加工的层高参数是平时使用的层高的一半以下,而进给量是平时的一倍以上,加工时再根据实际加工来调整进给量。加工旋钮上表面时,底部留了3mm高,1mm的余量,在反面加工时采用双面对称去除余量方法,即在加工中交错进行薄壁两面的加工(caxa制造工程师中的等高精加工使用xy优先加工方法),但是,在这之前要先进行粗加工,余量留0.5~1mm为好,通过提高零件薄壁的刚性来减少零件的变形,最终我们就可以加工出想要的工件了(图7)。

四、结束语

复杂零件数控加工技术实习报告 篇6

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行必要的数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

下图所示零件材料为45号钢,批量20件。

大作业一:轴类零件的数控加工工艺分析

要求:1.用AutoCAD软件绘制出零件二维图纸;

2.对零件图形进行数学处理并确定编程尺寸设定值;

3.对零件进行数控加工工艺分析; 4.编制数控加工工艺规程文件;

5.以上各项均要求以A4纸打印后上交,字体为宋体小四,1.5倍行距。并附上同组人员名单以及分工明细。

复杂零件数控加工技术实习报告 篇7

随着现代制造业的发展,消费者水平的提高,生产中的产品和加工设备越来越复杂和多样化,传统的加工方法已无法满足复杂零件的加工要求。对于复杂的回转体零件,运用CAXA数控车对零件建模,根据加工条件,选择合适的加工参数,生成加工轨迹及NC程序。但仅从加工轨迹上判断有无干涉,是远远不够的。若再将NC程序导入VERICUT中,且仿真验证,就能够有效地检测出刀具与机床、工件、夹具等的碰撞干涉情况,并且进行优化。最后将优化的程序传输到数控车床中进行实体加工。此过程能降低加工成本和风险,提高生产率和缩短制造周期、具有高可靠性和安全性的优点[1]。本文选取图1所示的典型复杂零件,该零件需要进行内外轮廓粗精加工、切槽、车螺纹、钻孔等多个工步。

1 CAXA数控车建模和轨迹仿真

1.1 CAXA数控车建模

首先,在菜单区中“数控车”的子菜单区选取“刀具管理” 菜单项,系统弹出刀具库管理对话框,按实际情况添加新的刀具,对已有刀具的参数进行修改,更换使用的当前刀具。该零件加工所需刀具有轮廓车刀、切槽刀、螺纹车刀等。

其次零件建模。各种应用功能通过菜单条和工具条驱动;状态条指导用户进行操作并提示当前状态和所处位置;绘图区显示各种绘图操作的结果;同时绘图区和参数栏为用户实现各种功能提供数据的交互[2]。因内外轮廓线均可完整地生成加工轨迹和程序,则无需绘出完整的零件图,绘出零件轮廓模型即可,如图2所示。

1.2 生成加工轨迹

根据零件形状,选择合适的加工方式,在轮廓图上选定毛坯外径尺寸和钻孔尺寸。在菜单区中选择“数控车>轮廓粗车” 菜单项,系统弹出加工参数表,在填写参数表时首先要确定被加工的是外轮廓表面,还是内轮廓表面或端面,然后按加工要求填写各加工参数。同样方法确定“轮廓精车”、“切槽”、“车螺纹”等加工参数。接着拾取轮廓,先拾取零件上的轮廓再拾取毛坯轮廓。最后自动生成加工轨迹。由于该零件较复杂,分析其自身形状和特点,确定先加工零件左半部分,再加工右半部分。如图3所示为零件右半部分的加工轨迹。

1.3 生成G代码

生成代码就是按照当前机床类型的配置要求,把已经生成的加工轨迹转化生成G代码数据文件,即NC数控程序。加工零件左半部分时,选择工具栏中的“数控车>生成代码>数控系统”,然后按顺序选择刀具轨迹(依次为粗车、精车、切槽、车螺纹轨迹),点击鼠标右键,则生成NC程序,如图4所示。用同样的方法将零件右半部分的加工轨迹转化生成NC程序。

2 VERICUT仿真加工

VERICUT 软件是基于Windows 及UNIX 系统平台的专用数控加工仿真软件,可以同时进行刀具轨迹和机床仿真。它有强大的功能模块,不仅能够真实地模拟出在加工过程中刀具的切削、加工零件、夹具、工作台及机床各轴的运动情况,而且能够对NC 程序进行仿真、验证、分析及优化[3]。

配置机床模型步骤如下:

(1) 打开VERICUT 数控加工仿真软件,建立VERICUT仿真项目文件。

选择“文件>新项目>毫米”菜单命令,在图形区出现新的界面。

(2) 加载机床和控制文件。

点击“控制”,选择“打开控制系统”,选择需要的系统,进行控制系统的设置。

在VERICUT 项目树中构建机床组件树,添加虚拟机床,进行机床模拟配置加工设备,设置数控机床的初始位置、坐标轴的运动极限和碰撞检查参数。VERICUT 有两种配置机床方法,一种是该软件自带有FANUC、西门子等控制系统的机床模型,用户可以直接调用。另外一种是用户自己构建符合自身特殊要求的机床模型[4]。

(3)添加模型,调入加工工件、工装等。

点击fixture,设置夹具;点击stock,按鼠标右键,添加模型,选择圆柱;设置“机床坐标系>添加新的坐标系”,可以通过移动、旋转、装配等方法将坐标系添置到所需的位置。

(4)定义数控程序原点。

点击“G代码偏置”,在“配置新的G代码偏置”中找到“配置为程序原点”,然后添加。注意在设置“程序原点”时,一定要选择从“组件”到“坐标原点”。

(5)构建加工所需的刀具库,确定仿真使用的刀具的类型、直径、长度等参数。

刀具可以从刀具库中调用,也可以根据需要自己设置。该工件加工所需刀具数较多,最好重新设置刀具。即在项目树中点击“加工刀具”,按鼠标右键,选择刀具管理器,确定合适的刀片、刀夹,分别设计粗车、精车、螺纹刀等七把刀具。

(6)调入加工仿真所需的NC程序,进行仿真加工。

点击项目树中“数控程序”,选择配置NC程序中的“添加NC程序文件”,添加CAXA数控车的NC程序。点击“仿真到末端”,等工件左半部分仿真完毕后,再点击“单步”、“仿真到末端”,即进行工件右半部分的加工仿真,结果如图5所示。在仿真中分析过切和残留部分,再做修改、优化,直到没有过切、撞刀等干涉。

3 数控车床试验加工

将验证好的NC程序通过CAXA数控车软件传输到数控车床中准备加工实体。打开AXADNC2011_DNC,选择“发送文件”,找到NC程序后,点击“打开”。此时数控车床通过串口进行接收。等接收完毕后,在数控车床上进行零件的对刀,加工,结果如图6所示。

4 结束语

CAXA 数控车是在全新的数控加工平台上开发的数控车床加工编程和二维图形设计软件。CAXA数控车具有CAD软件的强大绘图功能和完善的外部数据接口,可以绘制任意复杂的图形,可通过DXF、IGES等数据接口与其他系统交换数据[4]。CAXA数控车具有轨迹生成及通用后置处理功能。但对于复杂零件加工时产生的过切、撞刀等干涉不容易判断,用VERICUT 软件将CAXA数控车生成的NC程序进行仿真,可有效避免加工前的过切、欠切,刀具与工件、机床、夹具碰撞等现象,对降低生产成本,提高产品质量具有重要意义。

摘要:阐述了CAXA数控车对典型复杂零件的建模,生成加工轨迹和NC程序的过程。并使用VERICUT将CAXA数控车生成的NC程序进行仿真,验证NC程序的正确性,有效地避免了加工前的过切、欠切,刀具与工件、机床、夹具碰撞等现象,最后将验证的NC程序导入数控车床进行实体加工。

关键词:CAXA数控车,VERICUT,数控加工,仿真

参考文献

[1]龚灯,等.基于VERICUT数控加工仿真与优化[J].机械工程师,2012,9:32-33.

[2]李友松,等.基于CAXA数控车的曲线零件自动编程[J].中国新技术新产品,2012,16:134.

[3]李存鹏.基于CAXA与VERICUT的虚拟数控仿真加工的研究[J].CAD/CAM与制造业信息化,2011,2:93-95.

复杂零件数控加工技术实习报告 篇8

摘要:随着国家科技的进步,航空制造业已成为衡量国家发达水平的重要因素之一。航空发动机是飞行器的核心部件,因此发动机典型零部件的加工技术与刀具应用对航空业的发展起着重要的作用。由于航空零件多为难加工材料,不但对加工技术有高的要求,对加工用的刀具要求更高。本文针对航空发动机典型零件材料及特性、加工技术的现状与刀具应用进行了分析;对航空典型零件加工用刀具材料及特性探讨,并结合刀具磨损对加工精确度的影响,对多轴高速加工刀具的磨损进行仿真分析,同时针对多轴高速铣削特点对航空航天钛合金零件的专用刀具进行设计,为今后我国航空发动机典型零件的高效、高精确度加工打下一定的基础。endprint

摘要:随着国家科技的进步,航空制造业已成为衡量国家发达水平的重要因素之一。航空发动机是飞行器的核心部件,因此发动机典型零部件的加工技术与刀具应用对航空业的发展起着重要的作用。由于航空零件多为难加工材料,不但对加工技术有高的要求,对加工用的刀具要求更高。本文针对航空发动机典型零件材料及特性、加工技术的现状与刀具应用进行了分析;对航空典型零件加工用刀具材料及特性探讨,并结合刀具磨损对加工精确度的影响,对多轴高速加工刀具的磨损进行仿真分析,同时针对多轴高速铣削特点对航空航天钛合金零件的专用刀具进行设计,为今后我国航空发动机典型零件的高效、高精确度加工打下一定的基础。endprint

摘要:随着国家科技的进步,航空制造业已成为衡量国家发达水平的重要因素之一。航空发动机是飞行器的核心部件,因此发动机典型零部件的加工技术与刀具应用对航空业的发展起着重要的作用。由于航空零件多为难加工材料,不但对加工技术有高的要求,对加工用的刀具要求更高。本文针对航空发动机典型零件材料及特性、加工技术的现状与刀具应用进行了分析;对航空典型零件加工用刀具材料及特性探讨,并结合刀具磨损对加工精确度的影响,对多轴高速加工刀具的磨损进行仿真分析,同时针对多轴高速铣削特点对航空航天钛合金零件的专用刀具进行设计,为今后我国航空发动机典型零件的高效、高精确度加工打下一定的基础。endprint

机械零件工程加工合同 篇9

甲方(加盖单位公章)

单位:

代表人:

电话:

签订地点:

签订日期:

编制:___

审核:___

批准:___

乙方

单位: 代表人: 电话:

(加盖单位公章)

北京中科信电子装备有限公司(甲方)与( )有限公司(乙方)就( )外加工事宜进行了协商,双方达成了如下协议:

一 . 供货产品明细

二.工件加工注意事项

2.1加工原材料由乙方提供。

2.2乙方所加工产品,要严格以甲方提供的工艺文件中的技术要求为准,工艺文件中未注公差尺寸按GB/T 1804-2000中等m级执行。

2.3 乙方应按甲方提供的工艺文件严格执行,甲方有权进行抽查。

2.4乙方在加工过程中有任何可能影响生产进度、产品质量的因素,必须立即通知甲方,双方协商后进行调整。

三.保密责任

甲方提供的技术文件、标准等未经允许不得转给第三方,双方签订保密协议。所有工艺文件经双方签字确认方可实施,若有变更需双方同意。乙方若将甲方委托加工的产品转给第三方代加工,必须经过甲方同意。

四.质量责任

4.1产品检验优先选用卡尺、投影仪、三坐标等通用量具,图纸中有特殊技术要求的产品需要用专用仪器测量,如真空检测仪等,同时出具检验合格报告。

4.2由于加工件未达到图纸中的技术要求或加工件出现质量问题造成甲方不能使用,由乙方承担重新加工费用、运输费用。

4.3.加工件由于运输问题造成的损失,应由乙方承担费用。

4.4.由于产品不合格而影响甲方生产进度所产生的相关费用,乙方应给予如额赔偿。

五.验收规则

5.1乙方需按时提供合格产品,乙方提供终验的产品,需要做好运输防护,保证无磕碰、损伤,表面干净,无油污,清除毛刺。

5.2乙方必须对所加工产品进行全检,并向甲方提供每批产品的检验记录。乙方应按甲方要求,检测报告与产品按1比1的比例对应,须保证检验报告的真实性。 5.3甲方对乙方提供的出厂产品进行全检,若检验不合格,未能达到图纸中的技术要求,甲方有权退回,并由乙方承担责任。

六 如供方未能按照合同要求期限供货,迟延1日按合同总价 _______%计算违约金,超过10日仍不能交货的,将扣除合同保证金的 _______%

七.本技术协议未尽事宜双方协商解决。

八. 本协议一式二份,甲乙双方各执一份。

九. 本协议未经双方认可,不得随意更改。

论机电特殊零件加工工艺分析 篇10

关键词:薄壁套零件;加工工艺;加工精度

在进行套类零件加工的时候,通常会使用旋转或者是固定的轴类零件作为支撑,这样能够更好的对轴产生的径向力进行承受。

在工业领域中,薄壁套类零件应用非常广泛,进行广泛的应用和这种零件的特点是分不开的。

薄壁套类零件在质量方面非常好,同时在重量上也非常轻,在生产过程中使用的材料也非常少,在使用过程中结构也非常紧凑。

薄壁套类零件在进行加工的时候是有一定的难度,因此,在生产过程中对零件的加工质量无法保证。

在进行零件加工的时候,要根据产品的要求和工件的装夹,在工艺工程中进行技术改进,这样能够更好的避免在薄壁套类零件加工过程中出现变形的情况,同时也能更好的保证零件在使用过程中的精度要求。

为了更好的对薄壁套类零件加工技术进行研究,可以对45号钢加工零件作为例子,在这个过程中能够更好的对加工工艺进行改进。

1 影响薄壁套零件加工精度的因素

在进行薄壁套类零件加工的时候由于壁非常薄,因此在刚性方面比较差,同时在强度方面也非常弱,在零件加工过程中非常容易出现变形的情况,出现变形的原因通常是受力过大、受热过高或者是振动导致。

在进行薄壁套类零件加工的时候由于在夹紧力的作用下,零件会出现变形的情况,这样也是会导致机械零件在尺寸上出现一定的偏差,在精度方面也会存在一定的问题。

因为工件在加工过程中,壁非常薄,因此在加工过程中,会由于受到切削力的作用导致工件出现变形的情况,这样工件在尺寸上很难保证,同时在加工过程中尺寸也非常难进行控制。

加工零件过程中,在切削力的作用下会出现振动的情况,在振动的情况下,零件也会出现变形的情况。

在不同的因素影响下,零件的尺寸和精度都无法保证,同时也无法达到设计的要求。

2 工艺分析与设计

在进行薄壁套类零件加工的时候以45号钢来作为加工的材料,在进行加工的时候通常对外圆的精度要求高于内孔,因此,在进行加工的时候一定要对加工的关键环节进行控制。

在加工过程中,对关键环节进行控制,能够更好的对影响加工的因素进行控制,同时对内孔和外圆的公差也要控制在一定的范围内,这样能够更好的保证零件的使用效果。

在对内孔和外圆之间的公差进行控制的时候也给加工过程带来一定的困难。

在进行零件加工的时候,对工件的安装、加工工艺以及刀具和砂轮都要进行必要的改进,这样能够更好的提高零件的加工技术。

在进行薄壁套类零件加工的时候,选择适合的加工机械非常重要,同时在加工过程中进行定位也非常重要,在定位方式上可以采取内外径反复轮换的定位方式,这样在零件加工过程中能够更好的对加工质量进行保证。

在零件加工过程中定位的方式有很多种,选择内外径反复定位方式,能够避免零件加工中出现变形量过大的情况,在加工过程中,要先对内孔进行加工,然后对外圆进行加工。

在对内孔进行定位的时候加工的工艺有一定的要求,加工过程中按照加工工艺来进行,能够更好地保证零件的加工质量,加工质量得到保证能够避免零件在加工过程中出现变形量过大的情况,保证零件以后的使用效果。

3 夹具的选择与设计

由于该薄套厚度仅为1.7mm,因此径向方向的刚性则很差,若用普通的三爪卡盘夹住工件外圆,零件只受到3个爪的夹紧力,夹紧力不均衡,卡爪夹紧处的外圆就会产生明显的弹性变形。

即:在三爪卡盘夹住的情况下,半精车、磨削加工后内孔的弹性变形部分被车削、磨削掉,内孔在机床上测量是圆的,但放松卡爪取下工件后,内孔的弹性变形部分则恢复,其内孔的几何形状成为三角形或多角形。

而如果将零件上每一点的夹紧力都保持均衡,结果则不一样。

经过多次试验、研究,我们根据这类工件特点,采用开缝套筒或软卡爪装夹,生产的产品达到了要求。

即把开缝式套筒套在工件的外圆上,并一起夹在三爪盘内即可。

在加工外圆时,我们又采用转移夹紧力作用点的方式来进行生产,即将径向夹紧改为轴向夹紧,减少了零件的变形度。

在最后一道工序中,我们则采用涨式心轴夹具的加工方法,即采用3个刚性瓣,其外圆尺寸公差与内孔尺寸相同,曲率半径一样。

在心轴上装有锥套,拧动螺母使其向右移动时,锥套给涨瓣一个径向力,使工件涨紧,反方向拧动时工件松开,其中橡皮圈是防止涨瓣与锥套,以及锥套与心轴之间的相对转动。

该夹具结构减少了加工误差,而且因为消除了径向间隙而提高了定位精度,所以很好地保证了工件的精度要求。

4 刀具角度的选择

加工薄壁类零件的`刀具不仅刃口要锋利,而且要掌握好刀具角度。

一般来说,车削薄壁零件时,要用高速钢刀具,前角取6°~30°;硬质合金刀具前角则取6°~20°;车削时后角大摩擦力小,切削力也相应地小,但后角过大会影响刀具的强度,所以在车削薄壁零件时,刀具后角取4°~12°为好。

另外,刀具角度的取值与工件的形状、材质以及刀具自身的材料有关,这一点必须注意。

5 砂轮的选择

磨削时应首先选择较小的切削深度,其次是砂轮也需修整得粗些,并且加注充分的切削液,最后应有一定的光磨过程,以期保证零件的圆度和直线度要求。

另外,为了提高砂轮的切削性能,磨料应选用黑色碳公硅,砂轮直径取55mm~66mm,因为砂轮直径取偏小值,可减小砂轮与孔壁的接触弧长,使磨削温度降低,有利于提高零件的形状精度。

零件磨削后,应检验零件内圆是否变形,因为薄壁零件在磨削时很容易因磨削产生热量而引起变形。

对于例子中的薄壁套零件,因为材料是45号钢,为降低零件表面粗糙度,所以选用砂轮磨料的粒度要适中,硬度可以稍小一些。

6 结束语

薄壁套类零件在加工过程中会受到很多因素的影响,影响因素的出现会导致零件在加工过程中容易出现次品或者是废品,因此,在零件加工过程中一定要保证加工质量,这样才能更好的保证零件的使用。

对薄壁套类零件加工精度进行提高可以通过对加工工艺进行改进,同时在加工过程中也要对相应的影响因素进行控制。

薄壁套类零件在工业生产中应用非常广泛,因此,一定要保证加工的质量,这样才能更好的保证工业生产不会受到影响。

在进行薄壁套类零件加工的时候对关键的加工工艺要进行必要的控制。

采用合理的防变形装夹技术,减少或避免由于装夹变形产生的尺寸精度误差和表面质量损失;减少切削力对变形的影响。

根据零件的具体结构,采取不同的工艺措施及手段可以满足同类零件的设计制造要求。

参考文献

[1]贵州工学院机械制造工艺教研室.机床夹具结构图册[M].贵阳:贵州人民出版社,1983.

[2]杨叔子.机械加工工艺手册[M].北京:机械工业出版社,.

[3]浦林祥.金属切削机床夹具设计手册[M].北京:机械工业出版社,1995.

[4]柯明扬.机械制造工艺学[M].北京:北京航空航天大学出版社,.

典型零件的机械加工工艺分析 篇11

本章要点

本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。

2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。

本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。

§4.1 机械加工工艺规程的制订原则与步骤

§4.1.1机械加工工艺规程的制订原则

机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题:

1.技术上的先进性

在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。2.经济上的合理性

在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。3.有良好的劳动条件

在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。

由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。

§4.1.2 制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。

2.对零件进行工艺分析

在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括:

(1)分析零件的作用及零件图上的技术要求。

(2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等;

(3)分析零件的材质、热处理及机械加工的工艺性。

3.确定毛坯

毛坯的种类和质量对零件加工质量、生产率、材料消耗以及加工成本都有密切关系。毛坯的选择应以生产批量的大小、零件的复杂程度、加工表面及非加工表面的技术要求等几方面综合考虑。正确选择毛坯的制造方式,可以使整个工艺过程更加经济合理,故应慎重对待。在通常情况下,主要应以生产类型来决定。4.制订零件的机械加工工艺路线

(1)确定各表面的加工方法。在了解各种加工方法特点和掌握其加工经济精度和表面粗糙度的基础上,选择保证加工质量、生产率和经济性的加工方法。

(2)选择定位基准。根据粗、精基准选择原则合理选定各工序的定位基准。(3)制订工艺路线。在对零件进行分析的基础上,划分零件粗、半精、精加工阶段,并确定工序集中与分散的程度,合理安排各表面的加工顺序,从而制订出零件的机械加工工艺路线。对于比较复杂的零件,可以先考虑几个方案,分析比较后,再从中选择比较合理的加工方案。5.确定各工序的加工余量和工序尺寸及其公差。

6.选择机床及工、夹、量、刃具。机械设备的选用应当既保证加工质量、又要经济合理。在成批生产条件下,一般应采用通用机床和专用工夹具。7.确定各主要工序的技术要求及检验方法。8.确定各工序的切削用量和时间定额。

单件小批量生产厂,切削用量多由操作者自行决定,机械加工工艺过程卡片中一般不作明确规定。在中批,特别是在大批量生产厂,为了保证生产的合理性和节奏的均衡,则要求必须规定切削用量,并不得随意改动。9.填写工艺文件

§4.2 轴类零件的加工工艺制订

轴类零件是机器中的常见零件,也是重要零件,其主要功用是用于支承传动零部件(如齿轮、带轮等),并传递扭矩。轴的基本结构是由回转体组成,其主要加工表面有内、外圆柱面、圆锥面,螺纹,花键,横向孔,沟槽等。

轴类零件的技术要求主要有以下几个方面:

(l)直径精度和几何形状精度

轴上支承轴颈和配合轴颈是轴的重要表面,其直径精度通常为IT5~IT9级,形状精度(圆度、圆柱度)控制在直径公差之内,形状精度要求较高时,应在零件图样上另行规定其允许的公差。

(2)相互位置精度

轴类零件中的配合轴颈(装配传动件的轴颈)对于支承轴颈的同轴度是其相互位置精度的普遍要求。普通精度的轴,配合轴颈对支承轴颈的径向圆跳动一般为0.01~0.03mm,高精度轴为0.001~0.005mm。此外,相互位置精度还有内外圆柱面间的同轴度,轴向定位端面与轴心线的垂直度要求等。

93(3)表面粗糙度

根据机器精密程度的高低,运转速度的大小,轴类零件表面粗糙度要求也不相同。支承轴颈的表面粗糙度Ra值一般为0.16~0.63μm,配合轴颈Ra值为0.63~2.5μm。

各类机床主轴是一种典型的轴类零件,图4-1所示为车床主轴简图。下面以该车床主轴加工为例,分析轴类零件的工艺过程。

图4-1 车床主轴简图

§4.2.1 主轴的主要技术要求分析

1.支承轴颈的技术要求 一般轴类零件的装配基准是支承轴颈,轴上的各精密表面也均以其支承轴颈为设计基准,因此轴件上支承轴颈的精度最为重要,它的精度将直接影响轴的回转精度。由图4-1见本主轴有三处支承轴颈表面,(前后带锥度的A、B面为主要支承,中间为辅助支承)其圆度和同轴度(用跳动指标限制)均有较高的精度要求。

2.螺纹的技术要求 主轴螺纹用于装配螺母,该螺母是调整安装在轴颈上的滚动轴承间隙用的,如果螺母端面相对于轴颈轴线倾斜,会使轴承内圈因受力而倾斜,轴承内圈歪斜将影响主轴的回转精度。所以主轴螺纹的牙形要正,与螺母的间隙要小。必须控制螺母端面的跳动,使其在调整轴承间隙的微量移动中,对轴承内圈的压力方向正。

3.前端锥孔的技术要求 主轴锥孔是用于安装顶尖或工具的莫氏锥炳,锥孔的轴线必须与支承轴颈的轴线同轴,否则影响顶尖或工具锥炳的安装精度,加工时使工件产生定位误差。

4.前端短圆锥和端面的技术要求 主轴的前端圆锥和端面是安装卡盘的定位面,为保证安装卡盘的定位精度其圆锥面必须与轴颈同轴,端面必须与主轴的回转轴线垂直。

5.其它配合表面的技术要求 如对轴上与齿轮装配表面的技术要求是:对A、B轴颈连线的圆跳动公差为0.015mm,以保证齿轮传动的平稳性,减少噪音。

上述的(1)、(2)项技术要求影响主轴的回转精度,而(3)、(4)项技术要求影响主轴作为装配基准时的定位精度,而第(5)项技术要求影响工作噪音,这些表面的技术要求是主轴加工的关键技术问题。

综上所述,对轴类零件,可以从回转精度、定位精度、工作噪音这三个方面分析其技术要求。

§4.2.2 主轴的材料、毛坯和热处理

1.主轴材料和热处理的选择。一般轴类零件常用材料为45钢,并根据需要进行正火、退火、调质、淬火等热处理以获得一定的强度、硬度、韧性和耐磨性。

对于中等精度而转速较高的轴类零件,可选用40Cr等牌号的合金结构钢,这类钢经调质和表面淬火处理,使其淬火层硬度均匀且具有较高的综合力学性能。精度较高的轴还可使用轴承钢GCr15和弹簧钢65Mn,它们经调质和局部淬火后,具有更高的耐磨性和耐疲劳性。

在高速重载条件下工作的轴,可以选用20CrMnTi、20Mn2B、20Cr等渗碳钢,经渗碳淬火后,表面具有很高的硬度,而心部强度和冲击韧性好。

在实际应用中可以根据轴的用途选用其材料。如车床主轴属一般轴类零件,材料选用45钢,预备热处理采用正火和调质,最后热处理采用局部高频淬火。

2.主轴的毛坯。轴类毛坯一般使用锻件和圆钢,结构复杂的轴件(如曲轴)可使用铸件。光轴和直径相差不大的阶梯轴一般以圆钢为主。外圆直径相差较大的阶梯轴或重要的轴宜选用锻件毛坯,此时采用锻件毛坯可减少切削加工量,又可以改善材料的力学性能。主轴属于重要的且直径相差大的零件,所以通常采用锻件毛坯。

§4.2.3 主轴加工的工艺过程

一般轴类零件加工简要的典型工艺路线是:毛坯及其热处理→轴件预加工→车削外圆→铣键槽等→最终热处理→磨削。

某厂生产的车床主轴如图4-1所示,其生产类型为大批生产;材料为45钢;毛坯为模锻件。该主轴的加工工艺路线如表4-1。

§4.2.4 主轴加工工艺过程分析 1.定位基准的选择

在一般轴类零件加工中,最常用的定位基准是两端中心孔。因为轴上各表面的设计基准一般都是轴的中心线,所以用中心孔定位符合基准重合原则。

同时以中心孔定位可以加工多处外圆和端面,便于在不同的工序中都使用中心孔定位,这也符合基准统一原则。

当加工表面位于轴线上时,就不能用中心孔定位,此时宜用外圆定位,例如表4-1中的第10序钻主轴上的通孔,就是采用以外圆定位方法,轴的一端用卡盘夹外圆,另一端用中心架架外圆,即夹一头,架一头。作为定位基准的外圆面应为设计基准的支承轴颈,以符合基准重合原则。如上述工艺过程中的17和23序所用的定位面。

表4-1 车床主轴加工工艺过程

此外,粗加工外圆时为提高工件的刚度,采取用三爪卡盘夹一端(外圆),用顶尖顶一端(中心孔)的定位方式,如上述工艺过程的6、8、9序中所用的定位方式。

由于主轴轴线上有通孔,在钻通孔后(第10序)原中心孔就不存在了,为仍能够用中心孔定位,一般常用的方法是采用锥堵或锥套心轴,即在主轴的后端加工一个1:20锥度的工艺锥孔,在前端莫氏锥孔和后端工艺锥孔中配装带有中心孔的锥堵,如图4-2a所示,这样锥堵上的中心孔就可作为工件的中心孔使用了。使用时在工序之间不许卸换锥堵,因为锥堵的再次安装会引起定位误差。当主轴锥孔的锥度较大时,可用锥套心轴,如图4-2b所示。

图4-2 锥堵与锥套心轴

为了保证以支承轴颈为基准的前锥孔跳动公差(控制二者的同轴度),采用互为基准的原则选择精基准,即第11、12序以外圆为基准定位车加工锥孔(配装锥堵),第16序以中心孔(通过锥堵)为基准定位粗磨外圆;第17序再一次以支承轴颈附近的外圆为基准定位磨前锥孔(配装锥堵),第21、22序,再一次以中心孔(通过锥堵)为基准定位磨外圆和支承轴颈;最后在第23序又是以轴颈为基准定位磨前锥孔。这样在前锥孔与支承轴颈之间反复转换基准,加工对方表面,提高相互位置精度(同轴度)。

2.划分加工阶段

主轴的加工工艺过程可划分为三个阶段:调质前的工序为粗加工阶段;调质后至表面淬火前的工序为半精加工阶段;表面淬火后的工序为精加工阶段。表面淬火后首先磨锥孔,重新配装锥堵,以消除淬火变形对精基准的影响,通过精修基准,为精加工做好定位基准的准备。

3.热处理工序的安排

45钢经锻造后需要正火处理,以消除锻造产生的应力,改善切削性能。粗加工阶段完成后安排调质处理,一是可以提高材料的力学性能,二是作为表面淬火的预备热处理,为表面淬火准备了良好的金相组织,确保表面淬火的质量。对于主轴上的支承轴颈、莫氏锥孔、前短圆锥和端面,这些重要且在工作中经常摩擦的表面,为提高其耐磨性均需表面淬火处理,表面淬火安排在精加工前进行,以通过精加工去除淬火过程中产生的氧化皮,修正淬火变形。

4.安排加工顺序的几个问题 1)深孔加工应安排在调质后进行

钻主轴上的通孔虽然属粗加工工序,但却宜安排在调质后进行。因为主轴经调质后径向变形大,如先加工深孔后调质处理,会使深孔变形,而得不到修正(除非增加工序),安排调质处理后

钻深孔,就避免了热处理变形对孔的形状的影响。

2)外圆表面的加工顺序

对轴上的各阶梯外圆表面,应先加工大直径的外圆,后加工小直径外圆,避免加工初始就降低工件刚度。

3)铣花键和键槽等次要表面的加工安排在精车外圆之后,否则在精车外圆时产生断续切削,影响车削精度,也易损坏刀具。主轴上的螺纹要求精度高,为保证与之配装的螺母的端面跳动公差,要求螺纹与螺母成对配车,加工后不许将螺母卸下,以避免弄混。所以车螺纹应安排在表面淬火后进行。

4)数控车削加工

数控机床的柔性好,加工适应性强,适用于中、小批生产。本主轴加工虽然属于大批生产,但是为便于产品的更新换代,提高时生产效率,保证加工精度的稳定性,在主轴工艺过程中的第15序也可采用数控机床加工,在数控加工工序中,自动的车削各阶梯外圆并自动换刀切槽,采用工序集中方式加工,既提高了加工精度,又保证了生产的高效率。由于是自动化加工,排除了人为错误的干扰,确保加工质量的稳定性。取得了良好的经济效益。同时采用数控加工设备为生产的现代化提供了基础。在大批生产时,一些关键工序也可以采用数控机床加工。

§4.3 箱体类零件的加工工艺

箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图4-3所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。

§4.3.1 箱体类零件的结构特点和技术要求分析

图4-3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。

1.平面的精度要求

箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。

2.孔系的技术要求 箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。

3.孔与平面间的位置精度

箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。

4.表面粗糙度

重要孔和主要表面的粗糙度会影响连接面的配合性质或

接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。

§4.3.4 箱体类零件的加工工艺过程分析

一、主要表面的加工方法选择

箱体的主要加工表面有平面和轴承支承孔。

箱体平面的粗加工和半精加工主要采用刨削和铣削,也可采用车削。当生产批量较大时,可采用各种组合铣床对箱体各平面进行多刀、多面同时铣削;尺寸较大的箱体,也可在多轴龙门铣床上进行组合铣削,可有效提高箱体平面加工的生产率。箱体平面的

精加工,单件小批量生产时,除一些高精度的箱体仍需手工刮研外,一般多用精刨代替传统的手工刮研;当生产批量大而精度又较高时,多采用磨削。为提高生产效率和平面间的位置精度,可采用专用磨床进行组合磨削等。

箱体上公差等级为IT 7级精度的轴承支承孔,一般需要经过3~4次加工。可采用扩一粗铰一精铰,或采用粗镗-半精镗一精镗的工艺方案进行加工(若未铸出预孔应先钻孔)。以上两种工艺方案,表面粗糙度值可达Ra0.8~1.6μm。铰的方案用于加工直径较小的孔,镗的方案用于加工直径较大的孔。当孔的加工精度超过IT 6级,表面粗糙度值Ra小于0.4μm时,还应增加一道精密加工工序,常用的方法有精细镗、滚压、珩磨、浮动镗等。

二、箱体加工定位基准的选择

1.粗基准的选择

粗基准的选择对零件主要有两个方面影响,即影响零件上加工表面与不加工表面的位置和加工表面的余量分配。为了满足上述要求,一般宜选箱体的重要孔的毛坯孔作粗基准。本箱体零件就是宜主轴孔Ⅲ和距主轴孔较远的Ⅱ轴孔作为粗基准。本箱体不加工面中,内壁面与加工面(轴孔)间位置关系重要,因为箱体中的大齿轮与不加工内壁间隙很小,若是加工出的轴承孔与内壁有较大的位置误差,会使大齿轮与内壁相碰。从这一点出发,应选择内壁为粗基准,但是夹具的定位结构不易实现以内壁定位。由于铸造时内壁和轴孔是同一个型心浇铸的,以轴孔为粗基准可同时满足上述两方的要求,因此实际生产中,一般以轴孔为粗基准。

2.精基准的选择

选择精基准主要是应能保证加工精度,所以一般优先考虑基准重合原则和基准同一原则,本零件的各孔系和平面的设计基准和装配基准为为G、H面和P盖,因此可采用G、H面和P三面作精基准定位。

三、箱体加工顺序的安排

箱体机械加工顺序的安排一般应遵循以下原则: 1.先面后孔的原则

箱体加工顺序的一般规律是先加工平面,后加工孔。先加工平面,可以为孔加工提供可靠的定位基准,再以平面为精基准定位加工孔。平面的面积大,以平面定位加工孔的夹具结构简单、可靠,反之则夹具结构复杂、定位也不可靠。由于箱体上的孔分布在平面上,先加工平面可

以去除铸件毛坯表面的凹凸不平、夹砂等缺陷,对孔加工有利,如可减小钻头的歪斜、防止刀具崩刃,同时对刀调整也方便。

2.先主后次的原则

箱体上用于紧固的螺孔、小孔等可视为次要表面,因为这些次要孔往往需要依据主要表面(轴孔)定位,所以这些螺孔的加工应在轴孔加工后进行。对于次要孔与主要孔相交的孔系,必须先完成主要孔的精加工,再加工次要孔,否则会使主要孔的精加工产生断续切削、振动,影响主要孔的加工质量。

3. 孔系的数控加工

由于箱体零件具有加工表面多,加工的孔系的精度高,加工量大的特点,生产中常使用高效自动化的加工方法。过去在大批、大量生产中,主要采用组合机床和加工自动线,现在数控加工技术,如加工中心、柔性制造系统等已逐步应用于各种不同的批量的生产中。车床主轴箱体的孔系也可选择在卧式加工中心上加工,加工中心的自动换刀系统,使得一次装夹可完成钻、扩、铰、镗、铣、攻螺纹等加工,减少了装夹次数,实行工序集中的原则,提高了生产率。

图4-3 某车床主轴箱体简图

§4.4 拨动杆零件机械加工工艺规程 §4.4.1 零件的工艺分析

图4-4所示零件是某机床变速箱体中操纵机构上的拨动杆,用作把转动变为拨动,实现操纵机构的变速功能。本零件生产类型为中批生产。下面对该零件进行精度分析。对于形状和尺寸(包括形状公差、位置公差)较复杂的零件,一般采取化整体为部分的分析方法,即把一个零件看作由若干组表面及相应的若干组尺寸组成的,然后分别分析每组表面的结构及其尺寸、精度要求,最后再分析这几组表面之间的位置关系。由图4-4零件图样中可以看出,该零件上有三组加工表面,这三组加工表面之间有相互位置要求,具体分析如下:

三组加工表面中每组的技术要求是:

1.以尺寸φ16H7mm为主的加工表面,包括φ25h8mm外圆、端面,及与之相距74±0.3mm的孔φ10H7mm。其中φ16H7mm孔中心与φ10H7mm孔中心的连线,是确定其它各表面方位的设计基准,以下简称为两孔中心连线。

2.粗糙度Ra6.3μm平面M,以及平面M上的角度为130°的槽。3.P、Q两平面,及相应的2-M8mm螺纹孔。对这三组加工表面之间主要的相互位置要求是:

第⑴组和第⑵组为零件上的主要表面。第⑴组加工表面垂直于第⑵组加工表面,平面M是设计基准。第⑵组面上的槽的位置度公差φ0.5mm,即槽的位置(槽的中心线)与B面轴线垂直且相交,偏离误差不大于φ0.5mm。槽的方向与两孔中心连线的夹角为22°47’±15’。第⑶组及其它螺孔为次要表面。第⑶组上的P、Q两平面与第⑴组的M面垂直,P面上螺孔M8mm的轴线与两孔中心连线的夹角45°。Q面上的螺孔M8mm的轴线与两孔中心连线平行。而平面P、Q位置分别与M8的轴线垂直,P、Q位置也就确定了。

§4.4.2毛坯的选择

此拨动杆形状复杂,其材料为铸铁,因此选用铸件毛坯。§4.4.3定位基准的选择

1.精基准的选择

选择基准思路的顺序是,首先考虑以什么表面为精基准定位加工工件的主要表面,然后考虑以什么面为粗基准定位加工出精基准表面,即先确定精基准,然后选出粗基准。由零件的工艺分析可以知道,此零件的设计基准是M平面和φ16mm和φ10mm两孔中心的连线,根据基准重合原则,应选设计基准为精基准,即以M平面和两孔为精基准。由于多数工序的定位基准都是一面两孔,也符合基准同一原则。

2.粗基准的选择

根据粗基准选择应合理分配加工余量的原则,应选φ25mm外圆的毛坯面为粗基准(限制四个自由度),以保证其加工余量均匀;选平面N为粗基准(限制一个自由度),以保证其有足够的余量;根据要保证零件上加工表面与不加工表面相互位置的原则,应选R14mm圆弧面为粗基准

106(限制一个自由度),以保证φ10mm孔轴线在R14mm圆心上,使R14mm处壁厚均匀。

§4.4.4工艺路线的拟定

1.各表面加工方法的选择

根据典型表面加工路线,M平面的粗糙度Ra6.3μm,采用面铣刀铣削;130°槽采用“粗刨-精刨”加工;平面P、Q用三面刃铣刀铣削;孔φ16H7mm、φ10H7mm可采用“钻-扩-铰”加工;φ25mm外圆采用“粗车-半精车-精车”,N面也采用车端面的方法加工;螺孔采用“钻底孔-攻丝加工”。

2.加工顺序的确定

虽然零件某些表面需要粗加工、半精加工、精加工,由于零件的刚度较好,不必划分加工阶段。根据基准先行、先面后孔的原则,以及先加工主要表面(M平面与φ25mm外圆和φ16mm孔),后加工次要表面(P、Q平面和各螺孔)的原则,安排机械加工路线如下所示:

①以N面和φ25mm毛坯面为粗基准,铣M平面。②以M平面定位,同时按φ25mm毛坯外圆面找正,“粗车-半精车-精车”φ25mm外圆到设计尺寸,“钻-扩-铰”φ16mm孔到设计尺寸,车端平面N到设计尺寸。

③以M面(三个自由度)、φ16mm(两个自由度)和R14mm(一个自由度)为定位基准,“钻-扩-铰”φ10mm孔到设计尺寸。

④以N平面和φ16mm、φ10mm两孔为基准,“粗刨-精刨”130°槽。⑤铣P、Q平面。(一面两孔定位)。

上一篇:中考英语试题解析下一篇:营养优秀作文

热门文章
    相关推荐