电站锅炉工作原理(共10篇)
2009-03-24 10:32
电厂锅炉是发电厂三大主要设备中重要的能量转换设备。它的作用是将燃料的化学能转变为热能,并利用热能加热锅内的水使之成为具有足够数量和一定质量(汽温、汽压)的过热蒸汽,供汽轮机使用。现在火力发电厂的锅炉容量大、参数高、技术复杂、机械化和自动化水平高,所以燃料主要是煤,并且煤在燃烧之前先制成煤粉,然后送入锅炉在炉膛中燃烧放热。概括地说,锅炉是主要工作过程就燃料的燃烧、热量的传递、水的加热与汽化和蒸汽的过热等。
整个锅炉由锅炉本体和辅助设备两部分组成。
锅炉本体:
锅炉本体是锅炉设备的主要部分,是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定参数的过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。
(1)省煤器。位于锅炉尾部垂直烟道,利用烟气余热加热锅炉给水,降低排烟温度,提高锅炉效率,节约燃料。
(2)汽包。位于锅炉顶部,是一个圆筒形的承压容器,其下是水,上部是汽,它接受省煤器的来水,同时又与下降管、联箱、水冷壁共同组成水循环回路。水在水冷壁中吸热而生成的汽水混合物汇集于汽包,经汽水分离后向过热器输送饱和蒸汽。
(3)下降管。是水冷壁的供水管道,其作用是把汽包中的水引入下联箱再分配到各个水冷管中。分小直径分散下降管和大直径集中下降管两种。小直径下降管管径小,对水循环不利。
(4)水冷壁下联箱。联箱主要作用是将质汇集起来,或将工质通过联箱通过联箱重新分配到其它管道中。水冷壁下联箱是一根较粗两端封闭的管子,其作用是把下降管与水冷壁连接在一起,以便起到汇集、混合、再分配工质的作用。
(5)水冷壁。位于炉膛四周,其主要任务是吸收炉内的辐射热,使水蒸发,它是现代锅炉的主要受热面,同时还可以保护炉墙。
(6)过热器。其作用是将汽包来的饱和蒸汽加热上成具有一定温度的过热蒸汽。
(7)再热器。其作用是将汽轮机中做过部分功的蒸汽再次进行加热升温,然后再送到汽轮机中继续做功。
“炉”是燃烧系统,它的任务是使燃料在炉内良好的燃烧,放出热量。它由炉膛、燃烧器、点火装置、空气预热器、烟风道及炉墙、构架等组成。
(1)炉膛。是由炉墙和水冷壁转成的供燃料燃烧的,燃料在该空间内呈悬浮状燃烧,释放出大量的热量。
(2)燃烧器。位于炉膛四角或墙壁上,其作用是把燃料和空气以一定速度喷入炉内,使其在炉内能进行良好的混合以保证燃料及时着火和迅速完全地燃烧。分直流燃烧器和旋流燃烧器两种基本类型。
(3)空气预热器。位于锅炉尾部烟道,其作用是利用烟气余热加热燃料燃烧所需要的空气,不仅可以进一步降低排烟温度,而且对于强化炉内燃烧、提高燃烧的经济性、干燥和输送煤粉都是有利的。锅炉效率可提高2%左右。分管式和回转式两种。
(4)烟风道。是由炉墙、部分受热面管道及包墙管等组成的管道,用以引导烟气的流动,并经各个受热面进行热量交换,分为水平烟道和尾部烟道。
辅助设备
辅助设备包括通风设备(送、引风机)、燃料运输设备、制粉系统、除灰渣及除尘设备、脱硫设备等。
三、电厂锅炉的工作过程
由原煤仓落下的原煤经给煤机送入磨煤机磨制成煤粉。在原煤磨制过程中,需要热空气对煤进行加热和干燥,因此外界冷空气通过送风机送入锅炉尾部烟道的空气预热器中,被烟气加热成为热空气进入热风管道。其中一部分热空气经排粉机送入磨煤机中,对煤进行加热和干燥,同时这部分空气也是输送煤粉的介质;另一部分热空气直接经燃烧器进入炉膛参与煤粉的燃烧。从磨煤机排出的煤粉和空气的混合物经燃烧器进入炉膛内燃烧。
煤粉在炉膛内迅速燃烧后放出大量的热量,使炉膛火焰中心的温度具有1500度或更高的温度。炉膛四周内壁布置有许多的水冷壁管,炉膛顶部布置着顶棚过热器及炉膛上方布置着屏式过热器等受热面。水冷壁和顶棚过热器等是炉膛的辐射受热面,其内部的工质在吸引炉膛的辐射热的同时,使火焰温度降低,保护炉墙不致被烧坏。为了防止熔化的灰渣黏结在烟道内的受热面上,烟气向上流动到达炉膛上部出口处时,其温度要低于煤灰的熔点。
高温烟气经炉膛上部出口离开炉膛进入水平烟道,与布置在水平烟道的过热器进行热量交换,然后进入尾部烟道,并与再热器、省煤器、和空气预热器等受热面进行热量交换,使烟气不断放出热量而逐渐冷却下来,使得离开空气预热器的烟气温度通常在110-160度之间。低温烟气再经过除尘器除去大量的飞灰,最后只有少量的细微灰粒随烟气由引风机送入烟囱排入大气。
煤粉在炉膛中燃烧后所生成的较大灰粒沉降到炉膛底部的冷灰斗中,被冷却凝固落入排渣装置中,形成固定排渣。
由给水泵送向锅炉的给水,经过高压加热器加热后进入省煤器,吸收锅炉尾部烟气的热量后进入汽包,并通过下降管引入水冷壁下联箱再分配给各个水冷壁管。水在水冷壁中吸收炉膛高温火焰和烟气的辐射热,使部分水蒸发变成饱和蒸汽,从而在水冷壁内形成了汽水混合物。汽水混合物向上流动并进入汽包,通过汽包中的汽水分离装置进行汽水分离,分离出来的水继续循环。而分离出来的饱和蒸汽经汽包上部的饱和蒸汽引出管送入过热器进行加热。最后达到要求的过热蒸汽通过主蒸汽管道引入汽轮机做功。
1 电站锅炉的工作原理
电站锅炉也称为蒸汽发生器, 是一种利用燃料等能源的热能或者工业生产中的余热, 将工质加热到一定温度和压力的换热设备。形象概括其工作原理即是锅炉里的水被燃料燃烧释放的热量加热转变成蒸汽后, 送至汽轮机做功, 汽轮机再推动发电机发电。做功后的蒸汽则送至冷凝器, 由水 (海水) 将其冷却成水, 再送至锅炉重复使用。
2 电站锅炉的结构组成
通俗地讲, 锅炉就是由“锅”和“炉”两部分组成。“锅”是用于盛载水和汽的容器和管子, 水和汽在其中吸收外部传递的热量;“炉”则是燃料燃烧、释放热能的空间, 燃料和烟气都在其中流动。锅炉的结构组成如下:
2.1 钢结构:
用于支撑或悬吊锅炉的所有荷载。钢结构包含主结构、平台、楼梯、刚性梁、紧身封闭、外护板、外配设备。外配设备有单轨吊及其它检修吊车、高强螺栓、高强螺栓扳手、油漆、电梯及联络平台。
2.2 受压元件:
2.2.1水冷壁及包墙系统。水冷壁作为蒸发受热面, 吸收炉膛内高温火焰的辐射热量, 同时其与顶棚和包墙过热器共同形成的密闭的烟气空间和通道。2.2.2过热器系统:将饱和蒸汽加热到具有一定温度的过热蒸汽以提高电站效率。因其金属温度比蒸发受热面高, 因此所采用的材料均为低合金钢及以上等级的材料。2.2.3再热器系统:加热在汽轮机高压缸做完功的中压力的蒸汽, 达到额定参数后再送到汽轮机的中压缸做功, 采用再热循环可以提高电厂的热效率。2.2.4省煤器系统:利用尾部烟气的热量加热给水, 以降低排烟温度提高锅炉效率。2.2.5杂项部分:杂项管路、吹灰管路、安全阀排放管路等。
2.3 燃烧系统:2.3.1燃烧器本体及摆动机构、挡板、流量测量装置。2.3.2煤粉管道弯头、管道等。2.3.3炉墙附件。2.3.4油系统管路。2.3.5水封插板。2.3.6油枪、点火墙及伸缩机构。
2.4 空气预热器。
2.4.1回转式空气预热器:由预热器本体、驱动装置、保护装置组成。2.4.2管式空气预热器。2.4.3烟风道:烟风道本体、挡板及执行机构。
2.5 自控部分:部分保护开关、火检等
2.6 SCR系统。
2.7 主要外配设备:
炉水循环泵或启动循环泵。2.7.1执行机构:预热器驱动装置、轴承、变频装置等。2.7.2油枪、点火枪、火检及冷却风系统。2.7.3水位计、水位电视、火焰电视、吹灰系统、炉管泄露检测系统、流量测量装置等。2.7.4各种进口和国产阀门:锅炉汽水系统、锅炉燃烧系统
3 电站锅炉的分类
3.1 按照锅炉所使用的燃料。
分为固体燃料、液体燃料和气体燃料锅炉。每一种燃料又可分为天然燃料、人造燃料或副产品燃料。
天然燃料主要为煤、原油和天然气, 这些都是化石燃料。由于煤的储量大, 分布广, 因此煤是电站锅炉最主要的燃料。电站锅炉用煤主要根据煤的燃烧特性, 从挥发分、灰分、水分、硫分和煤灰熔融特性作为主要分类指标, 并辅以煤的热量作为辅助分类指标。
3.2 按照炉型。
大容量电站锅炉常用的炉型有π型、塔式和W型火焰炉等。炉型根据燃料种类和特性、燃烧方式、锅炉容量、循环方式和厂房布置条件来选取。各种炉型比较如表1所示。
3.3 按照水冷壁的循环方式。
分为自然循环锅炉、控制循环锅炉和直流锅炉。
自然循环锅炉炉膛水冷壁循环系统简单, 工质流动是依靠下降管中的水和炉膛内上升管中汽水混合物之间的密度差进行循环。随着锅炉运行压力的提高、蒸汽和水之间的密度差减小, 下降管和上升管之间的流动压头就有可能保证不了循环的可靠性。目前, 我国将此压力限制提高到20.5MPa (常规为19.0 MPa) 。过热蒸汽压力达到18.55MPa (17.5 MPa) 。
控制循环锅炉是在自然循环锅炉的基础上发展起来的, 随着压力的提高, 锅炉蒸汽和水的密度差减小, 影响循环的可靠性。为了提高循环的流动压头, 在下降管和上升管之间加装循环泵, 这使得水冷壁系统布置比较自由, 炉膛高度可以降低。
直流锅炉蒸发受热面中工质流动完全依赖于给水泵的压头来完成, 锅炉在给水泵的压头下一次通过加热、蒸发和过热各受热面, 给水全部蒸发, 成为过热蒸汽, 循环倍率K=1。
3.4 按照燃烧器布置
有四角切圆燃烧方式, 墙式对冲燃烧方式, W型火焰燃烧方式。其适用情况如表2所示。
随着锅炉技术的发展, 我国超临界、超超临界技术早已引进, 电站锅炉在我国的发电领域起着不可替代的作用。
参考文献
[1]胡荫平.电站锅炉手册[M].北京:中国电力出版社.
关键词:余热发电 锅炉 工作原理 焊接处理方法
1、余热锅炉的构成和工作原理
热发电是利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备为余热锅炉,余热锅炉一般是利用生产中的热废气作为热源,生产蒸汽用于发电。而锅炉的烟风管道则承担着热废气的输入输出的重要任务。
余热锅炉由锅筒、活动烟罩、炉口段烟道、斜1段烟道、斜2段烟道、末1段烟道、末2段烟道、加料管(下料溜)槽、氧枪口、氮封装置及氮封塞、人孔、微差压取压装置、烟道的支座和吊架等组成。 余热锅炉共分为六个循环回路,每个循环回路由下降管和上升管组成,各段烟道给水从锅筒通过下降管引入到各个烟道的下集箱后进入各受热面,水通过受热面后产生蒸汽进入进口集箱,再由上升管引入锅筒。 各个烟道之间均用法兰连接。
燃烧设备出来的高温烟气经烟道输送至余热锅炉入口,再流经过热器、蒸发器和省煤器,最后经烟囱排入大气,排烟温度一般为 150~180℃,烟气温度从高温降到排烟温度所释放出的热量用来使水变成蒸汽。锅炉给水首先进入省煤器,水在省煤器内吸收热量升温到略低于汽包压力下的饱和温度进入锅筒。进入锅筒的水与锅筒内的饱和水混合后,沿锅筒下方的下降管进入蒸发器吸收热量开始产汽,通常是只用一部分水变成汽,所以在蒸汽器内流动的是汽水混合物。汽水混合物离开蒸发器进入上部锅筒通过汽水分离设备分离,水落到锅筒内水空间进入下降管继续吸热产汽,而蒸汽从锅筒上部进入过热器,吸收热量使饱和蒸汽变成过热蒸汽。根据产汽过程的三个阶段对应三个受热面,即省煤器、蒸发器和过热器,如果不需要过热蒸汽,只需要饱和蒸汽,可以不装过热器。当有再热蒸汽时,则可加设再热器。
2、余热锅炉烟风管道的焊接的特点
由于很多余热发电为老线改造,从热废气源取风至锅炉的途中常会有设备或建筑物的阻隔,管道走势较为复杂;由于工质(热废气)温度不是非常高,故锅炉体积大,进出风口的位置会很高,部分水泥线窑尾SP锅炉管道接口会高达40m;由于取风量和风速的要求,烟风管道的管径一般较大,通常为2m 以上,一些万吨水泥线项目则达到5m 左右; 除部分可以预制的直管段、弯头等,很大一部分的焊接工作如阀门、补偿器、法兰等连接将会在现场安装时施行。铁质杂质在矿渣中不仅仅以金属原态存在,更多的是以熔融态包裹在矿渣中,如何尽可能多的除去矿渣中的铁质杂质,以达到尽可能延长矿渣立磨的关键粉磨部件-磨辊辊套和磨盘衬板的使用寿命的目的, 是一个非常重要和最为基本的技术要求。
3、烟风管道的焊接缺陷类型以及一般处理方法
焊接缺陷的种类很多,在不同的标准中也有不同的分类方法。考虑到与余热锅炉烟风管道施工方式紧密结合,本文主要讨论焊缝的成型缺陷。常见焊缝成型缺陷有咬边、夹渣、未熔合、未焊透、烧穿和烧融、气孔、焊瘤、裂纹等缺陷。其中对管道使用寿命影响最大的就是未焊透和裂纹等开口性缺陷,有时甚至会直接导致管道的断裂、坍塌,酿成工程事故。
3.1 咬边
咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。烟风管道焊接施工中产生咬边的主要原因是电流过大,焊条进给速度过慢所造成的。焊接操作时焊条与工件间角度不正确,摆动不合理,电弧拉得过长,焊接次序不合理等都会造成咬边。由于烟风管道的形状限制,需要进行很多现场空间对接,在焊接横、立、仰位置时会加剧咬边。咬边减小了母材焊接连接的有效截面积,降低管道的承载能力, 在一些悬臂结构的管道上尤其要注意。咬边同时还会造成应力集中,发展为裂纹源,产生事故隐患。选用合理的焊接规范,矫正操作姿势,采用正确的焊接顺序,以及采用良好的焊条的运条方式都会有利于消除咬边。焊条运条摆动时可以在坡口边缘稍作停留,稍慢一些而中间焊缝可以略快一些。对焊接过程中出现的焊缝咬边,非承载管段上的轻微的或较浅的可不做处理,承载管段上或较严重的咬邊需要用电弧将焊道进行修整,必要时进行补焊。
3.2 夹渣
夹渣是指焊缝中存在的熔渣、铁锈或其他物质。在焊道根部、层间均有可能存在,最常见的就是层间夹渣。由于烟风管道对接时采用多层焊接,焊接过程中焊条产生的焊渣没有清理干净是夹渣产生的重要原因。其次焊接的坡口角度不合理、坡口太小,或上层焊道与坡口间形成了夹角,导致熔渣不能充分融化浮出熔池。另外焊接电流过小也会导致熔渣不能充分融化浮出熔池。夹渣形状不同,大小不一,其中危害最大的就是呈尖锐形的夹渣,影响焊道的塑性,尤其是在垂直管道上焊道受拉应力时产生严重的应力集中,发展为裂纹源,甚至导致管道的断裂,脱落。清除干净焊接管道坡口以及附近表面上的油污、铁锈、水分以及其他杂物,多层焊缝时彻底清除每一层焊道焊接时产生的焊渣, 选用合理的焊接规范,选用合适的焊条,坡口选择合理的尺寸均可以有效的避免夹渣的出现,另外焊前进行预热,延缓冷却时间也可以利于焊渣浮出熔池,进行清理。出现夹渣的焊缝,需要用机械的方式清除夹渣处的金属,进行补焊,继续焊接时,首先修整前段焊道的弧坑,再焊接后段焊道。
3.3 未熔合
未熔合是指焊接时焊道与母材坡口或上层焊道与下层焊道之间没有完全熔化结合形成的缺陷。焊接电流过小,焊接速度过快,使母材或前一层焊缝金属未得到充分熔化就被填充金属敷盖从而造成未熔合。操作时焊条偏向于坡口的一边或焊条偏芯,造成偏弧导致电弧偏于一侧,也容易造成未熔合。烟风管道多层焊接时,前一层焊道表面的铁锈,污物没有得到彻底清理,焊接时温度不够,未能将其熔化浮出熔池,就直接敷盖填充金属,造成了层间未熔合。未熔合是一种面积型缺陷,任何位置的未熔合都
将会明显减少焊缝的承载截面积, 应力集中比较严重,其危害性仅次于裂纹。适当调整焊接电流,使熔池达到一定温度,让熔渣充分浮出,采用工艺性能良好的焊条,仔细清理母材上的污物或前一层焊道上的焊渣,密切注意坡口两侧的熔合情况,均是避免焊缝未熔合的有效方法。对管道焊接未熔合的焊缝必须进行采用机械的方式清除,修整焊道后重新焊接,必要时需适当调整焊机参数。
3.4 未焊透
未焊透是母材金属未熔化,焊缝金属没有进入接头根部的现象,一般情况下指根部未熔合。
焊接电流过小,熔深较浅;对接管段之间间隙尺寸不合理;坡口尺寸不合理,钝边太大;层间及焊根清理不良,均会导致未焊透。未焊透对焊道的危害很大,它使焊道的有效截面积减少,同时由于属于开口性缺陷,又能造成严重的应力集中。在烟风管道进行空中吊装作业或承压很高的情况时,如果未焊透深度很深,会出现焊道沿未焊透处撕裂现象,直接导致事故的发生。使用较大的电流来焊接是防止未焊透的基本方法;合理设计坡口并加强清理;使用短弧焊等措施也可以有效防止未焊透的产生。对管道非承载管段上的未焊透的焊缝可在焊缝背面直接补焊, 对于不能直接补焊的重要承载管段,应采用机械的方式去除未焊透的焊缝金属,修整焊道后重新焊接,必要时需适当调整焊机参数。
4、结语
经过将近两个多星期的学习,我们小组终于完成了锅炉课程设计,锅炉课程设计对我们专业的学生来说好比吃饭的筷子一样!同时通过这次的课程设计我也认识到了自己的不足,对我未来的道路起到了极大的更正作用!
通过对课程设计的学习,我的知识得到了进一步的升华,课本上角落里的知识也被带入我的理解中,此次我们主要进行校核计算,但进行锅炉的辅助计算时还好,不需要校核,但进行到锅炉受热面校核计算时感觉计算量巨大,对原理的掌握不够透彻,导致很多计算不知缘由,不知此公式如何得来,从何处得来,这是万万不行的,每次校核失败后,都要重新估计出口烟气温度,以计算出新的对流吸热量,然后结合传热方程式进行校核,此过程进行时间较长,涉及数据较多,但也是最锻炼能力的地方。通过的课程设计的学习,我具体了解到了某些受热面大致的漏风系数,了解到了如何计算炉膛表面积,如何计算炉膛的体积,记得在查表是不知道如何计算壁面温度,还好及时请教了老师,得到了老师的悉心指导,在此,再次表达感谢!
由于我们用的是徐州烟煤,此煤种含碳量高,导致了着火推迟,所需着火热过大,所以炉膛出口温度会比其他煤种高一些,对于高温辐射受热面和高温对流受热面的挑战极大,最终通过合理分配减温水流量叫问题化解。
通过这次的学习,我只想说,我知道的太少了,我了解的太少了,我的能力还太差了,在锅炉学习的漫漫长路中,我连大门都没打开
通过锅炉课程设计,不仅对我学习上有很大的帮助,对我对待问题的态度上也有很大的帮助,无论什么时候都要学习,我在知识上永远都是只走出一小步,永远不要认为任何问题的简单。任何的问题都要细致的分析,任何问题都要精确!
冲床工作原理:
冲床的原来也就是以曲柄连杆机构.*由电机带动飞轮、飞轮通过轴与小齿轮带动大齿轮、大齿轮通过离合器带动曲轴,曲轴带动连杆使滑块工作。滑块每分钟行程次数及滑块的运动曲线都是固定不变的。
*压力机基本可分为床身部分、工作部分、操纵部分及传动部分,各部分所有构件均安装于床身上。
*车间压力机均属板料冲压的通用压力机,可实现各种冷冲压工艺,如冲、弯曲、浅拉伸等。这基本上就是一个简单工作原理。冲床主要部件、床身部分:床身与工作台铸成一体的铸铁件。
离合器:压力机不进行工作时,操纵器的凸轮推挡着转键的尾部,使其工作部分的月牙形狐完全陷入曲轴半圆槽内。此时,曲轴空转,滑块停于上死点;压力机工作时,操纵器的凸轮转过一个角度,让开转键尾部,由弹簧作用,转键转动45°,工作部分背部进入中套三个圆槽中的任意一个,离合器处于结合位置,飞轮带动曲轴转动,滑块作上下运动。
滑块:在滑块中,与调节螺杆球头接触的球碗下面有压踏式保险器,保证了在超载时不会损坏压力机。打开正面的方盖,可以换保险器。
制动带:曲轴左端装有一个偏心式制动带,当离合器脱开,克服滑块往复运动的惯性,保证曲轴停在上死点。
操纵器:操纵器时控制离合器结合与分离的机构。转换操纵器拉杆的连接位置,可获得单次行程和连续行程两种动作。压力机每日保养工作:
(一)工作开始前:
1)收拾工作地点,从压力机上将与工作无关的的物件收拾干净,工具妥善保管。无关人员应离开压力机工作地点。
2)检查压力机摩擦部分润滑情况。
3)检查冲模安装是否正确可靠,刀刃上有无裂纹、凹痕或崩裂。4)一定在离合器脱开的情况下,才可以开机。
5)实验制动带、离合器、操纵器的工作情况,做几次行程。6)准备工作中所需工具
(二)工作时间内:
1)定时用油枪给各润滑点注油。
2)如工件“卡住”在冲模上应停止压力机,及时研究处理。3)工作时英随时将工作台面上的飞边除去,清除时不要直接用手去取要用钩子或相关工具。4)做浅拉伸工作时,要注意板料的清洁,并加油润滑之。
5)不要把脚经常放于操纵器的踏板上,以免不注意踩下发生事故。
6)在压力机工作时,不要将手插到模具中去,不要再变动冲模上毛坯的位置。
7)发生压力机工作不正常时(如滑块自由下落,发生不正常的敲击声或噪音、成品油毛刺质量不好等)应立即停机进行研究。
由流体力学可知,P(功率)=Q(流量)╳
H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%.变频水泵的功率因数补偿节能
无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式
P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。
变频水泵的软启动节能
由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。浅谈水泵选型及调速引言根据gbj13-86室外给水设计规范,取水泵站选泵设计时应考虑供水保证率达到90~99%[1]的最低原水水位和泵站供水规模的最大出水量。然而由于自然界的规律,我国冬季12~3月为河流的枯水期,届时江河水位最低,水泵所需的静扬程高,泵站供水量小,如图1、2中a点所示;7~9月夏季高峰供水时,江河水位由于丰水期的来临而上升,虽然泵站供水量增大了不少,但水泵的静扬程有所下降,如图1、2中b点所示。室外给水设计规范依据的最大供水量和最低水位这两个因素存在着明显的季节差异,同时出现的概率很小,照搬教条按规范设计的取水泵站的扬程和流量参数选择会非常不合理,造成泵站绝大部分时间的实际运行工况与设计参数存在较大的差别,运行能耗和基建投资的浪费较大[2]。但若只考虑正常年份的水位水量变化而不按规范要求设计,万一在夏季高峰供水时出现干旱,江河水位下降至最低,而此时供水量又要求最大;或冬季枯水期时由于某种特殊情况而需要最大供水量,如图1、2中c点所示,那么投资巨大的取水泵站将不能发挥应有的作用。水位、水量的变化以及存在问题以南京地区的长江水位变化为例,夏季丰水期平均高水位为9.50m(吴淞标高,下同)。冬季枯水期平均低水位为2.50m,而设计时考虑的极限低水位
1.42m,几乎很难出现。一年中供水量较大的时间集中在7、8、9月份,此时江河的水位较高,而低水位时的12、1、2、3月份需水量比较少。在很多场合,设计人员往往偏重考虑安全供水因素,一般都按规范要求进行选泵设计,即按供水保证率达到90~99%[1]的最低取水水位和泵站供水规模的最大出水量(图1、2中c点工况)设计。水厂反应池标高是恒定的,但江河水位随季节更迭而变化且幅度比较大时,水泵的静扬程也发生较大的变化。理想状态的设计认为可以做到仅靠调节水泵并联运行台数来适应实际运行中的流量、扬程的变化,如图1、2中a、b、c点所示。但据笔者调查大多数的取水泵站需要调节管路阀门的开度配合水泵并联运行台数的增减来适应流量及扬程的变化.如图3中a1,b1点所示,那么a1-a,b1-b之间剩余扬程的能量消耗在阀门上,长年累月能量的浪费是十分惊人的。
图1 江河枯/丰水期水位变化及冬/夏季源水泵站供水量变化1图2 江河枯/丰水期水位变化及冬/夏源水泵站供水量变化2图3 大多数泵站的实际工况曲线
因此按百年一遇(即供水保证率90~99%)的极限低水位和最大供水量来选择水泵的取水泵站肯定会出现闲置的水泵台数较多,水泵绝大部分时间不在工况点运行而需依靠关小阀门开度来调节。大量闲置的固定资产和日常运行的高能耗使取水泵站的经济性无从谈起。经济性水泵选型和调速设计的原则水泵额定数据是对应于水泵效率最高点的各项参数,在该点左右两侧不低于最高效率10%的一定范围内,都属于效率较高的区段[3]。最理想的设计方案应该是泵站的流量、扬程变化范围在所选水泵的高效区内,但实际上不一定能选择到满足理想条件的水泵。而且在工程实际中,经常遇到单台水泵的高效区无法覆盖泵站流量、扬程变化范围的情况,这时就需要依靠多台水泵并联运行来完成。水泵并联时按扬程不变,流量叠加的原理工作(如图4所示)。水泵q-h曲线变得越来越平缓,因而更适应流量变化比较大而扬程变化比较小的泵站。
图4 水泵并联工况图图5 水泵调速的特性变化与江河水位变化之管道特性曲线变化
江河水位的升高,表现在水泵静扬程的减少,管道特性曲线平行下移。此时工况点往往会移出水泵的高效区。如果能同时改变水泵转速,水泵特性曲线q-h同时平行下移,那么水泵特性曲线q-h和管路特性曲线这两族曲线就能在abcd(如图5所示)的区域内相交,在这块区域内的各个工况点上,无论是流量还是扬程,水泵都能适应它们的变化。从而充分利用了水位的势能,节省电耗。按水泵相似工况定律, 有:qn/ q0= nn/n0(1)hn/ h0=(nn/n0)2(2)pn/ p0=(nn/n0)3(3)式中:n0,q0,h0,p0分别为全速泵之转速,流量、扬程、功率。nn,qn,hn,pn分别为变速泵之转速,流量、扬程、功率。所以调速恰恰能弥补水泵并联运行时q-h曲线变得平缓而不能适应原水水位变化大但流量变化小的短处。从图1、2的两种情况可以看出,取水泵站的常规运行是在夏季高水位低扬程大水量的b点和冬季低水位高扬程小水量的a点及其区间里。则经济性选泵和调速原则的出发点可以分为两种1)以图1中b点为选泵的基准点,且水泵在b点运行适应位于其相应高效区的右侧,若b点水量是单台水泵是可以满足的,而a点及a-b之间区域的经济运行可以依靠降低水泵机组运行速度来解决;若b点水量必须数台泵并联运行才能达到时,则a点及a-b之间区域的经济运行可以用减少并联水泵台数[2]、降低水泵机组速度的组合方法来解决。(2)以图2中a点作为选泵的基准点,且水泵在a点运行适应位于其相应高效区的左侧,若a点水量是单台水泵可以满足的,则b点及a-b之间区域的经济运行可以依靠降低水泵机组运行速度来解决;若a点水量必须数台泵并联运行才能达到时,则b点及a-b之间区域的经济运行可以用减少并联水泵台数[2]、降低水泵机组速度的组合方法来解决。可靠性水泵选型和调速设计的对策根据gbj13-86的设计规范,取水泵站选泵设计时应考虑供水保证率达到90~99%的最低水位和泵站供水规模最大时的出水量,即图1、2中c点的要求。但正如本文前面分析所述,取水泵站由于自然界的规律而经常运行于a-b之间的区
域内,只有在夏季高温干旱或冬季出现特大供水量需求的特殊条件下,才会出现c点的情况,这就是源水泵站选泵设计的可靠性所在。水泵机组采用变频调速技术,并且在a-b之间正常运行区域内时均采用低于50hz的变频运行状态,按实际情况需要时将运行频率上调至55hz甚至更高一点的超工频运行状态,则根据式(1)、(2)、(3)的规律,可以满足c点的运行工况。需要注意的事项(1)电动机功率的匹配由于式(3)的关系,在采用调高频率进行超过额定转速运行时,必须对水泵和电动机的功率进行校核。因为水泵的轴功率是随着流量、扬程的变化而变化,水泵配置的电动机功率均按水泵单机运行的最大轴功率选择。由图4可见,两台水泵并联运行时的工况点f,其流量为q1+2,扬程为h2。折算到单台水泵时的扬程仍为h2,流量为q1,2。该流量小于单台水泵工作时的流量q1;其轴功率p1,2也小于单泵工作时的轴功率p1。多台水泵在并联运行时的功率更小于单泵运行时的功率[3]。所以在选配电动机时,其功率按常规配置就足够了。但应校核水泵在并联且调速运行时,其电动机的输出功率一般不小于75%的额定值。以保证调速状态下的电动机也处于高效区内。在多台水泵并联运行还不能满足最大流量最高扬程(即c点)的工况,而需要将频率调至55hz时按式
(3)pp=(55/50)3 p1=1.13 p1=1.331 p1(4)反之,p1=0.751 pp(5)所以当水泵并联运行时,可在电动机功率不超载的前提下,实现前述超速的安全运行。(2)水泵汽蚀余量的校核由于水泵的npsh(必需的汽蚀余量)在实行超速运行工况时,会随着转速的上升而上升,但水泵的安装高度是恒定的,c点的工况条件是最低水位时的最大流量,所以在为满足c点要求采取的对策时,npsh的校核是保证泵站安全运行的必备条件。(3)电动机功率因数当水泵并联运行时电动机处于轻载状态,其功率因数cosф有一定的下降,这可以通过电容补偿的方法来解决。在为实现c点运行要求而进行超速运行时,电动机功率会随着负载的加重而逐渐向满载甚至轻微超载的状态靠拢,功率因数也逐渐上升,就有可能出现功率因数过补偿而不经济的状况。但因为c点是非正常的极端情况,发生的机会很少,即使功率因数不经济也同样作为小概率事件可以忽略不计。(4)机械强度的考虑目前国内水泵、电动机的机械强度能满足上述小范围超速运行的需要。因为在为50hz的工况条件下生产水泵及电动机时,制造者仅需改变工艺参数设计而保持原有的机械结构不变。结束语当江河水位变化较大时,水泵静扬程变化也较大。冬季低水位时供水量小,夏季高水位时供水量大,这是自然界的规律。取水泵站选泵设计应分别根据实际情况按正常年份冬季水位水量和夏季水位水量来选取合适的泵型再配以变频调速,以确保泵站的高效运行,这才符合选泵和调速设计的经济性的要求;同时还应校核设计规范要求的在最低水位情况下,泵站能否满足最大供水量的要求,这是选泵和调速设计的可靠性所要求的。
选择性催化还原系统 (Selective Catalytic Reduction, 简称SCR) 是指在催化剂的作用下, 有选择性的与烟气中的NOX (氮氧化物) 反应, 将锅炉烟气中的氮氧化物还原成氮气和水。SCR催化剂最佳的活性范围在380~420℃。SCR烟气脱硝技术最高可达到90%以上的脱硝效率[1,2]。
1 工作原理
SCR技术原理为:在催化剂 (V2O5) 作用下, 向温度约380~420℃的烟气中喷入氨, 将NOX还原成N2和H2O, 其反应原理如下:4NO+4NH3+O2→4N2+6H2O;6NO+4NH3→5N2+6H2O;6NO2+8NH3→7NO2+12H2O;2NO2+4NH3+O2→3N2+6H2O。经过一系列化学反应, 形成了氮气和水。
2 锅炉本体改造的设计
为配合低氮燃烧和S C R脱硝改造, 对锅炉尾部受热面进行改造, 以满足S C R入口烟温3 8 0±5℃ (S C R催化剂最佳活性温度) 的要求。在S C R烟道的底部布置一级省煤器, 受限于SCR烟道空间结构, 一级省煤器采用H型鳍片管代替原光管省煤器;同时减少二级省煤器受热面的纵向排数, 通过减少二级省煤器受热面达到提高SCR入口烟温的目的。
2.1 资料分析
本例为山东茌平某铝业自备电厂的锅炉脱硝工程改造。该锅炉为武汉锅炉股份有限公司生产的WGZ410/9.8-20型高温、高压、自然循环单锅筒、固态排渣、四角喷燃、Π型布置、全钢架悬吊结构锅炉。额定蒸发量410T/h;过热蒸汽压力9.8 M P a;过热蒸汽温度5 4 0℃;给水温度215℃;冷风温度0℃;热风温度44.8℃。根据业主提供的煤质、运行记录、热力计算、图纸及改造要求[3]。对尾部受热面进行局部传热核算。同时考虑低氮燃烧以及脱硝改造后的烟气量、烟温变化, 需要满足《中国电站锅炉技术标准规范汇编 (第二卷) :锅炉设计标准》中对烟温、烟气阻力以及烟气流速的设计要求[4]。改造后尽量保证锅炉整体性能, 二级省煤器入口烟温按590.4℃进行设计。
烟气特性整理如下:烟气量5 1.7×1 0 4N m 3/h;屏过出口烟温9 4 3.9℃, 高过冷段出口烟温7 4 3.1℃, 低过进口烟温6 3 4.4℃;二级省煤器进口烟温 (转向室) 590.4℃, 二级省煤器出口烟温4 5 2.7℃;上级空预器出口烟温344.8℃;下级省煤器出口烟温284.8℃;排烟温度137℃。
2.2 省煤器几何尺寸表
二级省煤器改造前横向节距1 5 0 m m, 纵向节距6 0 m m, 横向排数3 9.5, 纵向排数3 2, 受热面积1185.6m2;改造后横向节距150mm, 纵向节距6 0 m m, 横向排数3 9.5, 纵向排数1 6, 受热面积5 9 3 m2。一级省煤器改造前横向节距1 4 0 m m, 纵向节距6 0 m m, 横向排数3 3, 纵向排数48, 受热面积1555.8m2;改造后横向节距9 0 m m, 纵向节距8 7 m m, 横向排数5 0, 纵向排数20, 受热面积2880m2。
综上所述:二级省煤器横向排数不变, 沿烟气流程方向纵向排数减少一半 (16排) , 受热面积减少一半至593m2。一级省煤器由光管错列布置改为H型鳍片管顺列布置, 受热面积增加1324m2至2880m2。
2.3 传热计算
由于电厂使用的煤种与原校核煤种很接近。本次改造基于原校核煤种, 利用热力计算软件 (苏标7 3) 对省煤器进行1 0 0%B R L工况下热力核算, 数据汇总如表1所示。
综合分析:空预器整体吸热量增加, 热风温度提升15~25℃;排烟温度原设计137℃, 改造后因一级省煤器受热面积的增加 (约1324 m2) 保证了排烟温度基本不变。二级省煤器出口烟温升高49℃, 相应的二级空预器出口烟温升高34℃, 保证了SCR脱硝装置的入口烟温在375~380℃之间。酸露点、汽水阻力及烟风阻力的计算限于篇幅, 本文略。末级空预器通过增加管径来防止堵灰, 管壁内搪瓷来防止烟气低温腐蚀。通过在空预器入口段加装防磨套管来增加防磨性能。
2.4 H型鳍片管一级省煤器布置
一级省煤器采用顺列逆流布置方式, 横向节距90mm, 纵向节距87mm, 横向排数50, 纵向排数24;基管受热面积1008m2, 全面积5028 m2。改造后布置如图1所示。
3 性能保证
锅炉改造后锅炉性能得到保证[5], 具体指标如下:
(1) 锅炉效率不降低;
(2) SCR入口烟气温度380±5℃;
(3) 排烟温度不升高;
(4) 锅炉尾部系统阻力增加不超过200Pa。
进入除尘器的烟气中的氮氧化物含量大幅度降低, 技术性能得到满足。
4 结束语
该锅炉经脱硝改造后, 在实际投入运行中, 锅炉性能得到保证, 脱硝效率显著提高, 电厂反映良好。本设计方案具有一定的参考性、可行性和实用性。
摘要:为了降低烟气中氮氧化物的含量, 基于武汉锅炉股份有限公司某WGZ410t/h煤粉炉脱硝改造工程为例, 对锅炉脱硝工程改造的原理及本体设计进行了分析, 提出了省煤器优化结构, 以配合低氮燃烧。技术改造工程得到较好结果, 为类似改造工程设计提供了参考。
关键词:脱硝,传热计算,低氮燃烧,H型鳍片管,省煤器
参考文献
[1]《锅炉机组热力计算标准方法》[苏], 1973.
[2]《JB/Z 201-83电站锅炉水动力计算方法》上海发电设备成套设备设计研究所编.
[3]《锅炉原理及计算》清华大学电力工程系锅炉教研组编科学出版社, 1979:1.
[4]《锅炉设备空气动力计算 (标准方法) 》[苏]C.H.莫强主编电力工业出版社, 第三版.
圣诞老人住在芬兰拉普兰地区的罗瓦涅米的圣诞老人村(Santa Claus’s House),在那里,你还能看到美丽的极光。
如果你没有时间去拜访他的话,可以给他写信,信箱地址是:Santa’s Post Office FIN – 96930 Arctic Circle, Finland.
说到圣诞老人,他的原型是一位土耳其历史上真实存在的主教,叫做圣·尼古拉斯(Saint Nicholas)。公元3世纪末,圣·尼古拉斯出生在地中海沿岸的潘特拉。他虽出身于一个富裕家庭,但从小心地善良,乐善好施,喜欢以匿名的方式赠送给当地穷人各种礼物。在公元346年去世后,他被尊称为圣人,他的生前事迹后来就逐渐演变成今天的圣诞老人传说了。
18亿份礼物
据统计,全世界人口总数约为70亿,15岁以下儿童的人口总数约为18亿,占到了世界总人口的26.8%。这么看来,圣诞老人每年就要准备18亿份礼物,他可真是大手笔!
要把18亿份礼摆放起来,可是非常占空间。假设每份礼物为边长20厘米的立方体,若是将它们叠成金字塔一样的礼物山,最终可是会堆出边长350米,高350米的巨大金字塔!比世界上最大的胡夫金字塔更大!
当然,除了数量和面积感人之外,这些礼物的重量也是非比寻常的重!假设每份礼物仅有500克(比如一瓶矿泉水,或十个鸡蛋的重量),计算一下的话,就是:
时间问题
现在最重要的问题来了——时间!虽然说越早开始送越好,但是再怎么也要等到晚上十点之后,不然孩子们根本没睡着。如果拖得太慢的话,有些等不及的小朋友第二天一大早又起床了。综合所有因素,圣诞老人最科学的工作时间,应该是12月24日晚上10点到25日早上5点这个区间啦。
这样看一下,其实也只有7个小时而已!不过好在世界各地都是有时差的,只要圣诞老人一直不停地从东向西前进,就能追上时差。当位于国际日期变更线西侧的莱恩群岛在12月24日晚上10点时,国际日期变更线东侧的库克群岛还是23日的晚上9点呢,而等到库克群岛来到25日早上5点,可是在32个小时之后。所以,虽然看上去只有7个小时,实际上圣诞老人可是有长达32个小时的时间可以用来派送礼物。
超音速驯鹿
虽然看上去时间很充裕,但是要在32个小时内送完18亿份礼物,那就意味着每小时要送5600万人!那每分钟就要送94万人!那每一秒就得送一万六千人!
让我们再来算一下,全世界的陆地面积大约为一亿万千万平方千米,除开沙漠、森林、农业用地和工业用地等等,那么就算成是陆地上大约有5%是有人住的地方。如果假设平均每一个家庭有2个15岁以下的小孩,圣诞老人就要拜访9亿户人家。如果我们把这些人家平均散布在地面上,每一个家庭的平均间隔距离也会有81米。这样一来,驯鹿要跑的全部路径约为7200万千米,如果要在32个小时里跑完,驯鹿的速度就必须是音速的1900倍!真的是超音速驯鹿!
送礼物?不,是扔礼物才对
不过以上的思考只是圣诞老人单纯绕着全世界跑了一圈所花的时间,还没有考虑送礼物的时间呢。试想一下,每次向前跑个81米就停下来,那么最高速度就必须达到音速的3800倍才能完成任务!
既然时间这么紧张,圣诞老人一定会抛弃爬烟囱这样浪费时间体力的活动。他一定是——穿墙而过!听起来似乎觉得是在搞笑,但是这种现象在自然界真的是会发生的!圣诞老人一定配备了“中微子”这样神奇的“穿越”技术!
当圣诞老人穿墙而过,直接在小朋友的房间里留下礼物时,又会产生另一个问题,如果礼物也是跟他以音速1900倍的速度运动,那么根据惯性定律,这份礼物就会以音速1900倍的礼物砸在墙上,而它的破坏力相当于24吨的炸药!
不过别担心啦,圣诞老人只需要将礼物朝后方以音速1900倍的速度丢出去!投出的速度与运动的速度互相抵消,礼物也能以速度为0的方式留下来了。
你看,就算是传说中的圣诞老人,光靠幻想与神力也完不成那么多的工作量,必须依靠精密的计算与先进的高科技,才能在圣诞节这天,顺利地给全世界的人带去幸福与快乐。
空调家里应该都有吧,空调最常用的功能就是制热,制冷,空调的这些功能都是很神奇的,只是大家不怎么了解,对空调工作原理更是没有意识了,如果大家了解了空调的工作原理,也能够帮助我们更好的选择和维修。
家用空调器一般都是采用机械压缩式的制冷装置,其基本的元件共有四件:压缩机、蒸发器、冷凝器和节流装置,四者是相通的,其中充灌着制冷剂(又称制冷工质)。压缩机象一颗奔腾的心脏使得制冷剂如血液一样在空调器中连续不断的流动,实现对房间温度进行调节。
制冷剂通常以几种形态存在:液态、气态和气液混合物。在这几种状态互相转化中,会造成热量的吸收和散发,从而引起外界环境温度的变化。在从气态向液态转化的过程,称为液化,会放出热量;反之,从液态向气态转化的过程,叫做汽化(包括蒸发和沸腾)要从外界吸收热量。
首先,低压的气态制冷剂被吸入压缩机,被压缩成高温高压的气体;而后,气态制冷剂流到室外的冷凝器,在向室外散热过程中,逐渐冷凝成高压液体;接着,通过节流装置降压(同时也降温)又变成低温低压的气液混合物。此时,气液混合的制冷剂就可以发挥空调制冷的“威力”了:它进入室内的蒸发器,通过吸收室内空气中的热量而不断汽化,这样,房间的温度降低了,它也又变成了低压气体,重新进入了压缩机。如此循环往复,空调就可以连续不断的运转工作了。
制冷剂真是神奇!它是怎样在高温下冷凝向外界散发热量又在低温下蒸发从外界吸收热量呢?这与制冷剂本身的性质有关,大家知道,在山顶上煮鸡蛋很难煮熟,而用高压锅做饭时,鱼和肉等食品很快就能做熟,这是因为随着压力的升高,水的饱和温度(通常叫做沸点)也升高。所以,在大气压低于标准大气压的情况下,水的沸点低于100oC,反之则高于100oC。同理,高温高压气态制冷剂从压缩机出来时饱和温度要高于室外气温。通过不断散热并开始液化后,其温度依然很高,甚至在其完全变成液态后,仍继续向室外空气散热;而在室内,情况则相反,由于经过节流装置,制冷剂的压力和温度都降低很多,它的饱和温度也比室内气温低,这才能够连续不断的从室内空气中吸收热量。
压电传感器:基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。配套仪表和低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。它广泛应用于工程力学、生物医学、电声学等技术领域。
应变传感器:应变传感器是国内外应用较广泛的一种,它是以电阻应变计为转换元件,将非电量如:力、压力、位移、加速度、扭矩等参数转换为电量。
光电传感器:将光信号转换成电信号的传感器
热电传感器:将热信号转换成电信号的传感器
电容式传感器原理
电容式传感器原理
电容式压力传感器简介
科学技术的不断发展极大地丰富了压力测量产品的种类,现在,压力传感器的敏感原理不仅有电容式、压阻式、金属应变式、霍尔式、振筒式等等但仍以电容式、压阻式和金属应变式传感器最为多见。
金属应变式压力传感器是一种历史较长的压力传感器,但由于它存在迟滞、蠕变及温度性能差等缺点,其应用场合受到了很大的限制。
压阻式传感器是利用半导体压阻效应制造的一种新型的传感器,它具有制造方便,成本低廉等特点,但由于半导体材料对温度极为敏感,所以其性能受温度影响较大,产品的一致性较差。
电容式传感器是应用最广泛的一种压力传感器,其原理十分简单。一个无限大平行平板电容器的电容值可表示为:
C= ε s/d(ε 为平行平板间介质的介电常数,d 为极板的间距,s 为极板的覆盖面积)
改变其中某个参数,即可改变电容量。由于结构简单,几乎所有电容式压力传感器均采用改变间隙的方法来获得可变电容。电容式传感器的初始电容值较小,一般为几十皮法,它极易受到导线电容和电路的分布电容的影响,因而必须采用先进的电子线路才能检测出电容的微小变化。可以说,一个好的电容式传感器应该是可变电容设计和信号处理电路的完美结合机械磅秤是利用杠杆位移原理秤量被测物体的质量,它是一种模拟测量,所以显示值误差很大。电子衡器是利用传感器测量原理,它是把外部的压力通过传感器的弹性梁变形使之贴在上面的应变片发生阻值变化,在激励电压的作用下,输出与被测物成正比的模拟的电信号,给AD电路。
电子衡器的AD电路,它把传感器送来的模拟信号进行调制、放大、滤波、取样、积分,输出稳定高效的数字信号,送给中央微处理器(CPU),由CPU控制内部的工作程序通过显示电路,显示出被测物重量值。
秤量的标定,是由国家标准量值(法定砝码)的质量,输出的数字码(BCD码)与CPU内部程序存储器所编制的程序校准码一致时,便可完成秤量标定。模拟衡器是靠标准砝码直接标定,技术含量低,容易作假(取决于标准砝码的质量)。电子衡器的秤量标定需要标准砝码,但还需要标定密码。标定密码由衡器生产厂家掌握,它是严格保密的。
电子衡器的非法标定是利用标准砝码的质量值与校准程序的校准码值的允许范围来进行的,因为校准数码值是有一定范围空间的(例如最大秤量150kg的电子秤,它的50kg内码值是在12000~18000范围内都可以标定为50kg显示值。如果标定砝码实际质量是49kg标定出的显示值是50kg,那么该电子秤显示150kg时它的实际重量是147kg。这种秤在市场贸易中就会造成什么后果,不言而喻。这就是法制计量在国民经济中的重要性。
第一部分 电子秤的原理方框图:
程式 K/B(按键)↑ Fx → 传感器 → OP放大 → A/D转换 → CPU → 显示驱动 → 显示屏 ↓ 记忆体工作流程说明: 当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。
第二部分 秤的分类: 1.按原理分:电子秤 机械秤 机电结合秤 2.按功能分:计数秤 计价秤 计重秤 3.按用途分:工业秤 商业秤 特种秤
第三部分 秤的种类: 1.桌面秤 指全称量在30Kg以下的电子秤 2.台秤 指全称量在30-300Kg以内的电子秤 3.地磅 指全称量在300Kg以上的电子秤 4.精密天平
第四部分 按精确度分类: I级: 特种天平精密度≥1/10万 II级: 高精度天平1/1万≤精密度<1/10万 III级: 中精度天平1/1000≤精密度<1/1万 IV级: 普通秤 1/100≤精密度<1/1000
第五部分 专业术语: 1.最大称量: 一台电子秤不计皮重,所能称量的最大的载荷;2.最小称量: 一台电子秤在低于该值时会出现的一个相对误差;3.安全载荷: 120%正常称量范围;4.额定载荷: 正常称量范围;5.允许误差: 等级检定时允许的最大偏差;6.感量: 一台电子秤所能显示的最小刻度;通常用“d”来表示;7.解析量: 一台具有计数功能的电子秤,所能分辩的最小刻度;8.解析度: 一台具有计数功能的电子秤,内部具有分辩能力的一个参数;9.预热时间: 一台秤达到各项指标所用的时间;10.精度: 感量与全称量的比值;11.电子秤使用环境温度为:-10摄氏度 到 40摄氏度 12.台秤的台面规格: 25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm 45cm X 60cm
第六部分 电子秤的特点: 1.实现远距离操作;2.实现自动化控制;3.数字显示直观、减小人为误差;4.准确度高、分辩率强;5.称量范围广;6.特有功能:扣重、预扣重、归零、累计、警示等;7.维护简单;8.体积小;9.安装、校正简单;10.特种行业,可接打印机或电脑驱动;11.智能化电子秤,反应快,效率高;
第七部分 电子秤检查过程: 1.首先整体检查:有无磨损和损坏;2.能否开机:开机后是否从0到9依次显示、数字是否模糊、能否归零;3.有无背光;4.用砝码测试能否称重;5.充电器是否完好,能否使用;6.配件是否齐全;
第八部分 传感器类型: 1.电阻式:价格适中、精度高、使用广泛;2.电容式:体积小、精度低;3.磁浮式:特高精度、造价高;4.油压式:现市场上已淘汰;显示器种类: 1.LCD(液晶显示):免插电、省电、附带背光;2.LED:免插电、耗电、很亮;3.灯管:插电、耗电、很高;K/B(按键)类型: 1.薄膜按键:触点式;2.机械按键:由许多单独按键组合在一起;传感器的特性: 1.额定载荷;2.输出灵敏度;3.非线性;4.滞后;5.重复性;6.蠕变;7.零点输出影响;8.额定输出温度影响;9.零点输入;10.输入阻抗;11.输出阻抗;12.绝缘阻抗;13.容许激励电压;(5-18V)
第九部分 传感器损坏后现象: 1.称量不准;2.显示不归零;3.显示的数字乱跳 判断传感器的+E、-E、+S、-S 1.先用电阻档测4条线两两这间的电阻值,共有6组。如为400-450欧 则为+E、-E;如果为350欧,则为+S、-S;为290欧,则为R桥臂;2.在+E、-E端接上+_5V电压,传感器正确施加一个压力,如输出+_S增大,则红表笔为+S,反之-S;
第十部分 高精度计数秤特点: 1.Kg/Ib单位转换功能;2.零点显示范围、调整功能(GLH系列没有)3.取样速度调节功能;4.有10组单重记忆功能;5.可同时进行重量、数量、累计功能(GLH只有数量累计)6.可设定重量、数量上限警示功能;7.自动零点追踪、温度线性校正;8.扣重及预扣重功能;9.待机功能;10.有零点显示范围和零点跟踪范围;11.有电池电压管制限制功能;
压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
传感器的灵敏度
灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
传感器常用术语
1.传感器
能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。
① 敏感元件是指传感器中能直接(或响应)被测量的部分。
② 转换元件指传感器中能较敏感元件感受(或响应)的北侧量转换成是与传输和(或)测量的电信号部分。
③ 当输出为规定的标准信号时,则称为变送器。
2.测量范围
在允许误差限内被测量值的范围。
3.量程
测量范围上限值和下限值的代数差。
4.精确度
被测量的测量结果与真值间的一致程度。
5.从复性
在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度:相同测量方法:
相同观测者:
相同测量仪器:
相同地点:
相同使用条件:
在短时期内的重复。
6.分辨力
传感器在规定测量范围圆可能检测出的被测量的最小变化量。
7.阈值
能使传感器输出端产生可测变化量的被测量的最小变化量。
8.零位
使输出的绝对值为最小的状态,例如平衡状态。
9.激励
为使传感器正常工作而施加的外部能量(电压或电流)。
10.最大激励
在市内条件下,能够施加到传感器上的激励电压或电流的最大值。
11.输入阻抗
在输出端短路时,传感器输入的端测得的阻抗。
12.输出
有传感器产生的与外加被测量成函数关系的电量。13.输出阻抗 在输入端短路时,传感器输出端测得的阻抗。14.零点输出 在市内条件下,所加被测量为零时传感器的输出。15.滞后 在规定的范围内,当被测量值增加和减少时,输出中出现的最大差值。16.迟后 输出信号变化相对于输入信号变化的时间延迟。17.漂移 在一定的时间间隔内,传感器输出终于被测量无关的不需要的变化量。18.零点漂移 在规定的时间间隔及室内条件下零点输出时的变化。19.灵敏度 传感器输出量的增量与相应的输入量增量之比。20.灵敏度漂移 由于灵敏度的变化而引起的校准曲线斜率的变化。21.热灵敏度漂移 由于灵敏度的变化而引起的灵敏度漂移。22.热零点漂移 由于周围温度变化而引起的零点漂移。23.线性度 校准曲线与某一规定直线一致的程度。24.非线性度 校准曲线与某一规定直线偏离的程度。25.长期稳定性 传感器在规定的时间内仍能保持不超过允许误差的能力。26.固有凭率 在无阻力时,传感器的自由(不加外力)振荡凭率。27.响应 输出时被测量变化的特性。28.补偿温度范围 使传感器保持量程和规定极限内的零平衡所补偿的温度范围。29.蠕变 当被测量机器多有环境条件保持恒定时,在规定时间内输出量的变化。30.绝缘电阻
【电站锅炉工作原理】推荐阅读:
电站锅炉事故应急救援预案07-21
(论文)电站锅炉稳定燃烧的措施11-10
电站防洪防汛工作方案10-20
光伏电站的日常维护工作10-04
锅炉工工作职责06-03
分厂锅炉吹管工作总结06-07
电站值班员工作总结09-09
2024年锅炉运行工作计划07-11
锅炉运行班长工作岗位责任09-20
变电站员工年终工作总结06-13