倍数和因数教学实录(推荐9篇)
课前准备:
今天咱们认识的问题和什么有关呢?(数)对于数同学们不陌生吧,老师来举几个例子,比如说10.8和3.2,这样是数叫(小数)再比如说2分之1,3分之2,这样的数叫(分数),这些都是课堂里学的,但是有一类数,在你们刚刚出生不久以后,爸爸妈妈就开始慢慢的教了,举几个例子,像哪些数?像这样的数叫什么数?(自然数)
为什么叫自然数呢? 自然数真的简单么?
教学过程:
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形?(12)12就是一个自然数。有一个问题需要大家帮忙,能不能把12个正方形摆成一个长方形?不允许说一长句话,只允许用一道非常简单的乘法算式表达出来?
生:2×6=12
师:猜猜看,他每排摆了几个,摆了几排?
生:2个,摆了6排。
师:当然,也可以是每排摆了几个,摆了几排?
(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?
生:3×4=12
师:这一次每排摆了几个,摆了几排?或者每排摆了几个,摆了几排(屏幕显示摆
法)同样第二种摆法也可以省。还有吗?
生齐:1×12=12
师:用手比划一下可以怎么摆,还可以怎么摆。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?
生:没有了。
师:瞧,12个同样大小的正方形摆成一个长方形有3种不同的摆法,由此还得到3道不一样的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就从这里开始。
这样,咱们就以第一道乘法算式为例,3×4=12,在咱们数学上还可以说,3是1
2的因数,既然3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,同样12(也是4的倍数)。这就是我们今天将着重研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?(同桌俩悄悄说)选择一道说一说谁是谁的因数?谁是谁的倍数?
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?谁来挑战这个难题。
生:12是12的因数,12是12的倍数。
师:虽然是拗口了点,不过数学上还真是这么回事。咱们一起来说一下。
为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊?
生:自然数
师:而且谁得除外。
生:0
师:你还能找到哪两个自然数相乘等于12。除了刚才的三组外。
正因为再也找不到了,所以我们就可以说,12的因数只有这6个。他们分别是:(一起读一读,哪六个)1和12,2和6,3和4。
通过刚才的学习,我们不仅认识了什么是因数和倍数,而且找到了12所有的因数。
二、探索找因数倍数的方法
师:老师有一个任务交给大家,如果老师再给你一个数,你能不能像这样找到它所有的因数。30行么?
要找出30的一两个因数并不难,难就难在如何找的既准确又全面呢?有方法么? 学生说方法(乘法1×,2×)有没有不同的?(除法30除以1,30除以2)还有不同的么?
你觉得更喜欢哪种,就用哪种。
因为这个问题有点难度,你可以独立完成也可以同桌完成(要求1),想一想怎么怎么找更准确和全面(要求2)。如果你借助算式,别忘了填在作业纸上。找完之后,把所有因数写到横线上(要求3)
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。
A:2、4、13、12、18、36
B:1、2、4、3、6、9、12、18、36
C:1、36、2、18、3、12、4、9、6
师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了
生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?
生:没有写全,少了3、6、9。
师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?
生:36÷4,只写了4,没写9
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到
36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢?
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20
生齐:1、2、4、5、10、20
再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个
小一点的,3的倍数,谁来找一个。
生:
21、300
师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2
师:能理解吗?
生1:3+3=6、6+3=9
师:有理吗?不要小看加3了,当到数大的时候也比较方便。
生:略
师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数
学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个?
生:7、14、21、28
师:为什么不加省略号?
生:因为给了一个限制。
师:任何自然数的倍数是无限的。会寻找一个数的因数吗?
生:略
三、感受倍数和因数的神奇奥秘
师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗?
生1:27
生2:36
师:把你知道的两位数跟同桌说一说。
学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示:18、27、36、45、54、63、72、81
仔细观察9颗珠子拨的两位数,你发现了什么?
生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)
师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?
生1:1
生2:99
师:还有谁要发表的?
生3:9
师问生2:为什么认为99的因数最多?
生:9是最大的。
师:张老师公布一下答案: 60
师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60
秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的
1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律
师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?
生:1、2、3、6
师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁?
学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
关键词:因数,倍数,小学
导入新课
1.回忆学过哪些数? (自然数, 分数, 小数……)
2.哪种类型的数学起来最容易? (大部分学生肯定会说自然数学起来最容易)
其实, 在数学中, 真正有分量的题目, 难倒一代又一代数学家的题目都在自然数领域, 以至于有位数学家发出这样的感慨:“自然数, 可真不自然呀!”今天, 我们将重新感受自然数, 看看里面蕴藏着哪些奇妙的内容, 我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易, 这是一种比较普遍的观点。而这时教师话锋陡转, 适时抛出一个与之相反的观点, 并有相应的论据作为支撑, 这足以搅动学生的思维, 激发探究的欲望。更重要的是, 教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感, 与此同时, 又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话, 因数和倍数就是海面上众多的帆船之一, 它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法
找30的因数
反思:找一个数的因数是本节课的难点, 考虑到学生在认知背景、思维品质及思维方式上的差异, 学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时, 教师应该引导学生将自己的数学思考展示出来, 在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中, 彼此取长补短, 相互吸纳, 使得片面的思维趋于全面, 无序的思维走向有序, 肤浅的认识归于深刻。思维品质在沟通中获得提升, 思维方式在比照中得以修正, 思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴, 诱发学生的深层思考, 这就是一种本质的数学文化, 也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后, 教师揭示60进制中的奥秘:原来天文学规定, 1小时=60分, 1分=60秒, 与60的因数的个数有关。与24差不多大的数中, 24的因数最多, 1天=24小时;与12差不多大的数中, 12的因数最多, 1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘, 使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时, 科学的种子已悄悄地在某些学生的心田里生根, 假以时日, 这粒种子定会破土而出, 在阳光雨露的滋养下, 发芽, 开花, 最终结出累累硕果。
2.一个更有趣的规律———完美数。
(1) 拿出2号作业纸, 找出6的所有因数, 把其中最大的因数划掉, 再把剩下的因数加起来, 发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的, 去掉它的最大因数后, 剩下的因数相加的和是它本身的数叫“全数”, 也叫“完美数”。
(2) 这样的数会有第2个吗?寻找第2个完美数。
学生独立完成 (师提示:比20大, 比30小的偶数)
板书:28:1、2、14、4、7
师:找到了第1、2个完美数, 数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)
想想看, 你们刚才找28都花了将近2分钟, 那数学家要从浩如烟海的自然数中找出这些完美数, 该付出怎样的艰辛呀!几年, 几十年, 甚至一辈子。完美数对生产生活并没有什么直接的用处, 是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后, 而专门研究自然数性质的数学分支———‘数论’, 则是数学皇后头顶上的皇冠。”今天, 时间有限, 我们只是看到了皇冠上一粒小小的珠子, 但只要你沿着这条路走下去, 在数学看似抽象的百花园里, 你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”, 感受完美数的美妙结构, 领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”, 使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展, 具有重要意义和积极影响。
关键词:因数;倍数;小学
导入新课
1.回忆学过哪些数?(自然数,分数,小数……)
2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)
其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位數学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法
找30的因数
反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。
2.一个更有趣的规律——完美数。
(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。
(2)这样的数会有第2个吗?寻找第2个完美数。
学生独立完成(师提示:比20大,比30小的偶数)
板书:28:1、2、14、4、7
师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)
想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支——‘数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。
清远小学五年级数学教研组 詹小春
小学数学复习课就是把平时相对独立地进行教学的知识,以再现、整理、归纳等办法串起来,进而加深学生对知识的理解、沟通,并使之条理化、系统化。在复习过程中要体现:知识让学生梳理;规律让学生寻找;错误让学生判断。要充分发挥学生的自主性,让学生积极、主动参与复习全过程,特别是要让学生参与归纳、整理的过程,不要用教师的归纳代替学生的整理。然而,复习课作为小学数学教学的重要课型之一,长期以来存在着以下问题:一是教师以讲解作为教学的主要形式,不能调动学生学习的主动性和积极性;二是重练习而淡梳理,把复习课上成练习课,导致课外作业负担过重;三是留给学生的时间和空间不多,学生被束缚牵引。这样的复习课使得教师把主要精力集中在查阅大量参考书与收集式题上,学生时常感到疲惫不堪。如何解决这些教学问题呢?下面我就《因数和倍数》的整理复习这节课的教学谈谈我自己的一些想法。
首先,复习课的教学一定要充分发挥学生的自主性。把自主预习法,归纳整理法、讨论法灵活的应用于教学过程中,因数和倍数这一单元牵涉到的概念很多,学生在学习时概念之间的联系与区别容易产生混淆,所以构建网络前一定要让学生搞清楚每一个概念的意义,而这显然不是一节课40分 钟就能做到的,所以我让学生通过课前的回忆与看书,搜集与因数和倍数有关的知识,并用自己喜欢的方式进行整理,充分发挥学生的自主性,让学生主动地去整理复习相关的知识,为课堂进一步系统地梳理知识,构建知识网络打下坚实的基础。
接下来是课堂教学部分,转入课堂教学,教师要充分发挥好组织者的作用。课堂教学的基本环节是“创设情境,导入课题——交流汇报、评价补充——小组合作、构建网络——精设练习,拓展创新——自主评价,反思小结”。
(一)创设情境,导入课题
兴趣是数学学习中最现实、最活跃、最强烈的心理因素。而数学学科知识的最主要特点是它的抽象性,要使抽象的数学知识为学生所理解和接受,我们在具体教学中,除了应遵循由浅入深,由近及远、由具体到抽象的基本规律以外,还必须千方百计地增强教学的趣味性,要充分使用多媒体课件、教具、学具等有利的课程资源,创设一系列能调动学生积极性的情境应用于教学,激发学习动机,让学生愿学、乐学,正是基于上述原因,我利用学生喜闻乐见的童话人物柯南创设了破译电话号码的教学情境,激发了学生的学习的兴趣。使枯燥的复习课变得有趣,变得让学生乐学。
(二)交流汇报、评价补充
导入课题后,根据学生课前复习的因数倍数的信息,引导学生通过自我交流、展示进行逐步消化。各小组交流本小 组的整理成果,师生听取汇报并互相评价补充。全面复习并完善知识点,巩固学生对概念意义的理解,也为下一步构建知识网络奠定基础。在这一环节中,教师既要引导鼓励学生大胆地展示自己的整理成果,更要鼓励其他同学大胆地对汇报的小组做出评价和补充,要让“师生”互动起来。交流过程中,教师是组织者、参与者,尤其是学生遇上困难时,一定要及时给予引导、鼓励、并帮助解决。
(三)小组合作、构建网络
传统复习课,教师往往把目标定位在“查缺补漏”上,因而呈现给学生的是支离破碎的题目。乌申斯基有句名言:“智慧不是别的,只是组织得很好的知识体系。”因此,要把复习课定位在“促进知识系统化”目标的实现上。
在全班汇报交流、评价补充,全面复习知识点的基础上,教学就可以进入一个更深层次的环节——构建知识网络。本环节是教学的重点,也是难点,学生要在充分理解各个知识点的基础上才能找出它们之间的联系,从而构建知识网络图,这对中下层次的学生来说就比较困难,所以,为了突破这一难点,作为教学的组织者、引导者,教师要为学生准备相应的材料——如:多媒体课件、单元知识卡片等,并为他们营造一个合作学习的氛围,让学生通过小组合作,交流探讨,展示汇报等学习活动内化知识,升华认识,最后在交流评价中引导学生整理构建起知识网络图。在本节课的教学 中,当学生汇报交流了“因数”、“倍数”、“2的倍数的特征”“3的倍数的特征”、“5的倍数的特征”、“质数与合数”、“偶数与奇数”等十几个知识点,弄清了各个概念的意义后,接着教师可以提出要求,小组合作,根据这些知识点之间的联系,用你喜欢的方式进行整理构建知识网,使复杂、凌乱的知识系统化。
(四)巧设练习,拓展创新
练习是复习课必不可少的重要内容,也是提高复习效率的重要手段。复习课练习要“巧”。不能盲目练习,否则只会陷入效益不高的怪圈。这就要求教师对每一道给学生做的练习都要精心挑选,设计某一个知识点的例题时,要兼顾其他相关的知识,达到“一例牵一串”的目的。让学生通过练习得到全面的训练,进一步提高灵活运用知识解决问题的能力。在因数倍数的整理复习中,找出一个与众不同的数这道题,重点是让学生体会到同样一组数,由于看的角度不一样,它就有不同的选法。这对于帮助学生系统理解这个单元的概念非常有效。“破译电话号码”的活动更能每个学生学得都很积极主动,全然没有复习课的单调枯燥之感。
(五)自主评价、反思小结。
最后,学生通过自主整理,小组讨论等活动构建起了单元知识网络图,再通过一系列有针对性的练习,达成了教学目标。为帮助学生总结得失,整理思路,在课堂结束时,教 师要设计一些问题,比如通过这节课的复习,你你对本单元知识有哪些新的认识?你学会了哪些复习方法?你最大的收获是什么?引导学生进行个体反思。
以上是我对因数与倍数的整理和复习教学的设计理念和想法,有不足之处,望各位老师批评指正,谢谢!
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅仅能够调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,透过讨论,认为用省略号表示比较恰当,用语文中的一个标点符号解决了数学问题,自我发现问题自我解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、渗透学法,构成学习的技能。
由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,能够很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时光,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、学练结合,及时把握学生学情。
在学生透过具体例子初步认识了倍数和因数以后,透过超多的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。
课尾,我设计了四道达标检测练习,将整堂课的资料进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。
《因数和倍数》这一内容,学生初次接触。在导入中我创设有效的数学学习情境,数形结合,变抽象为直观。让学生把12个小正方形摆成不同的长方形,并用不同的乘法算式来表示自己脑中所想,借助乘法算式引出因数和倍数的意义。这样,学生已有的数学知识引出了新知识,减缓难度,效果较好。
二.自主探究,合作学习
放手让每个同学找出36的所有因数,学生围绕教师提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
三.在游戏中体验学习的快乐
在最后的环节中我设计了“找朋友”的游戏,层次是先找因数朋友,再找倍数朋友,最后为两个数找到共同的朋友。
苏教版国标本四年级 (下册) 第70~72页
教学目标:
1.让学生理解倍数和因数的意义, 掌握找一个数的倍数和因数的方法, 发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
2.让学生初步意识到可以从一个数的角度来研究非零自然数的特征及其相互关系, 培养学生的观察、分析和抽象概括的能力。
3.体会数学内容的奇妙、有趣, 产生对数学的好奇心。
教学重点和难点:
掌握找一个数的倍数和因数的方法, 发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学准备:
了解学生在班级的学号。
课前和学生谈话:某某同学, 你好, 请问你叫什么名字?班级里谁是你的好朋友, 他 (她) 叫什么名字?
教学过程:
一、谈话引入
师:刚才课间的时候, 我通过了解记住了四 (3) 班一些同学的名字, 你叫菖菖菖, 我还知道你和某某同学是好朋友, 对吧?我还知道你叫菖菖菖, 你是好朋友? (学生哄堂大笑) , 你们笑什么?哦, 对了, 我应该说你和谁是好朋友, 那就对了, 我们不能说一个人是好朋友。今天我们就来学习研究自然数之间的一些朋友关系。 (板书:自然数) 哪位同学告诉我, 你知道的自然数有哪些呢? (指名回答)
【设计意图:通过轻松、愉快的谈话引入, 说明“一个人是好朋友”这样的关系不能成立, 从而为说清楚“倍数”和“因数”这两个好朋友之间的关系打下基础, 而且明确交代了研究“倍数”和“因数”是在自然数的范围之内。】
二、教学“倍数”及探究找一个数的倍数的方法
1. 教学“倍数”
师:好, 下面我们先来看一组非常熟悉的画面。屏幕出示3朵红花, 6朵黄花。红花几朵?黄花呢?你能告诉大家黄花的朵数是红花的几倍吗? (2倍)
师:说得真好, 再看下一题:屏幕出示3朵红花, 12朵蓝花。红花几朵?蓝花呢?你知道蓝花的朵数是红花的几倍吗?知道的同学一起说。 (4倍)
师:通过刚才的两幅图我们知道了:6是3的 () 倍;12是3的 () 倍。
那我们先来看看第一句话“6是3的 () 倍”, 在这句话中, “6”“3”这两个数都是自然数, 那么6和3之间就有一种关系, 是什么关系呢?是“倍数”关系, (板书:倍数那谁是谁的倍数呢? (6是3的倍数)
师:说得真好。
师:再看下面“12是3的 () 倍”这句话, 12和3也是自然数, 那么12和3之间也有这种“倍数”关系了, 我们也可以说12是3的倍数。好的, 你还知道哪个数也是3的倍数?你说, 你说, 你接着说, 你再说! (让学生说清楚谁是3的倍数)
我能说30是倍数吗?不行, 这就像我刚才说菖菖菖一个人是朋友, 那就不对了, 一定要说清楚哪个数是哪个数的倍数!
【设计意图:为了联系学生的生活实际, 先让学生由熟悉的概念“倍”唤醒了对已有知识的记忆, 再通过引导让学生知道了“倍数”的概念, 而且着重训练了“哪个数是3的倍数”这样科学、完整的说法, 和前面“好朋友”的说法自然而然联系到了一起, 学生印象更加深刻。】
师:哦, 真的太多了, 那你能不能从小到大不重复、不遗漏地写出3的倍数呢?
生:能。
师:好, 那就开始写。
学生在练习纸上写。
师:停!我想如果我不说停的话, 大家就会这么一直写下去了, 我想找位同学说说, 你写的数有哪些?
生报出写的3的倍数 (多请几位学生说说) 能够在这儿讨论得出3也是3的倍数。
师:我想听听你是怎么找的。
(从3的1倍数开始找起3×1, 然后2倍就是3×2、3倍是3×3、4倍是3×4……)
师:这样可以按照从小到大的顺序而且不重复、不遗漏地找到了3的倍数了, 你会了吗?
师:我看同学们都信心十足, 那我们来试一试。
请你口答:2的倍数有
5的倍数有
师:同学们已经学会了找一个数的倍数了, 那么你看看屏幕, 师读出 (3的倍数、2的倍数和5的倍数) 观察一下, 你有什么发现?
比一比, 一个数最小的倍数, 你有什么发现?
找一找, 一个数最大的倍数, 你有什么发现?
数一数, 一个数倍数的个数, 你有什么发现?
同桌讨论讨论后, 得出结论:
板书:最小本身、最大没有, 个数无限个
三、认识倍数和因数之间的关系
1. 引出倍数和因数的概念
师:我们已经认识了自然数中两个数之间的一种关系———倍数关系, 还有和倍数紧密相连的知识。我们先来研究一道题:这里有12个完全一样的正方形。把它们拼成一个长方形, 想一想, 每排摆几个?可以摆几排?
师:如果请你用一道乘法算式, 来把你所要摆的长方形的形状表示出来, 行吗?
生回答出一个算式。
师:你是这样摆的吗? (课件出示图形)
师:还可以怎样摆?
师:还有吗?
师:用12个完全一样的小正方形摆成长方形, 可以有三种基本摆法, 由此得到三个不同的乘法算式。这三道乘法算式, 看起来是多么简单, 多么熟悉。我们就看这个算式, 3×4=12, 从3、4、12这三个数中, 你可以知道哪个数是哪个数的倍数吗?倍数关系有了, 那么12和4之间、12和3之间还有什么样的关系呢?请打开课本第70页, 自己阅读。学生阅读课本后, 问学生:你通过自学知道了哪些知识? (因数)
师:很好, 那什么是因数呢?你能结合这个算式说一说吗? (板书:因数) 学生说完后, 出示课本一段话:“4×3=12, 12是4的倍数, 12也是3的倍数, 4和3都是12的因数。
师:看来这位同学看书看得很认真。那么请你根据2×6=12也来说说, 谁是谁的倍数, 谁是谁的因数? (指名说)
那么1×12=12, 这个算式谁来说说。
师:说得真好, 我刚才听到这位同学在说的时候有两句特别有趣, 是哪两句啊? (12是12的因数, 12是12的倍数。)
师:在数学上还真是这么回事, 12的确是12的因数, 12也是12的倍数。
师:还有问题吗?你们有没有注意到书上有一行小字:“为了方便, 我们在研究倍数和因数时, 所说的数一般指不是0的自然数。”就是我们刚才所说的, 我们今天研究的好朋友是不包括0的自然数。
【设计意图:通过设疑, 存在着“倍数”关系的两个数之间还有另外一种怎样的关系呢?让学生带着疑问去自学课本, 了解“因数”的概念, 培养了学生的自学能力, 在师生的问答之间完成了学习任务。学生更加明确了“倍数”和“因数”两者之间的关系。】
2. 练习倍数和因数
师:下面有几道算式, 请同学们说说哪个数是哪个数的倍数, 哪个数是哪个数的因数, 可以吗?
屏幕出示:11×4=44 12×5=6024÷4=6
四、探究找因数的方法
师:我们已经会找一个数的倍数了, 现在来学学如何找一个数的因数。
屏幕出现请你说出12的所有因数。 (不重复、不遗漏) 同桌讨论后汇报结果。
师:你真棒, 你能说说是怎么找到的吗?
师总结:原来你是想 () × () =12, 那么这两个数就都是12的因数, 而且一下子就可以找到几个啊? (2个)
为了不重复、不遗漏, 我们可以从1开始想起, 有了1就有12;然后看看用2再试试有了2就有6, 然后用3试试, 有了3就有4。
师:那为什么不继续往下找呢?
【设计意图:以找“12的所有因数”为例题, 引导学生找一个数的所有因数。这样做, 一是结合学生在自学时的已有知识, 他们会很容易地找出12的所有因数;二是降低了课本上找“36的所有因数”的难度, 有助于学生提高学习的自信心。】
师:你会找一个数的所有因数了吗?还有没有问题?没有问题的话, 让我们试一试下面的题目, 屏幕出示:
请你找出16的因数有____36的因数有_____
(师:4为什么不是一对啊?)
生自己完成在作业纸上
师提问:我们也能像刚才一样, 从最小、最大和个数三个方面来看一个数的因数, 你有什么发现?教师板书出一个数的因数的特点:最小是谁啊? (1) , 最大的因数有吗? (是它本身) , 个数虽然不一样, 但是 (有限) 。
五、课题小结及巩固练习
师:我们今天这节课主要学习了倍数和因数, 还学会了如何找一个数的倍数和因数。下面我们一起来检验一下你今天学得怎么样, 好不好?
1. 小侦探, 巧填数字
(1) 7的因数有。
(2) 从小到大写出5个10的倍数。
(3) 5最小的倍数是, 9最大的因数是。
(4) 在6, 10, 14, 18这四个数中, 是的倍数, 是的因数。
2. 小法官, 明辨是非 (用手势表示)
(1) 因为2×3=6, 所以2是因数, 6是倍数。 ()
(2) 17的最小倍数是34。 ()
(3) 8是8的倍数, 8也是8的因数。 ()
(4) 因为18÷3=6, 所以18是6的倍数。 ()
(5) 所有不是0的自然数都是1的倍数。 ()
3. 师:同学们的表现都不错, 下面我们来做个简单的游戏, 好吗?大家请听好:
请学号是2的倍数的同学起立;请学号是40的因数的同学起立;请学号是1的倍数的同学起立。
4. 头脑风暴
8是 () 的倍数师: () 填的其实是8的因数
8是 () 的因数师: () 填的其实是8的倍数
8是 () 的因数, 也是 () 的倍数。师:你能填上同样的数吗?
25的因数的个数一定比15的多!是这样吗?
【关键词】因数 倍数 教学设计 评价
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2016)32-0145-02
引言
数学从古至今一直不断地延展,在人类历史发展和社会生活中发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具,而此文所讲的因数和倍数是数学基础中很小的一部分,但是只有将基础打好才能更进一步地学习其他数学知识。通过对因数和倍数的学习,掌握学习数学的正确、科学的方法,并培养对数学的乐趣,激发潜能,让学生多思考、多自主探索数学的奥秘,锻炼处理问题的能力,为生活增添乐趣。
1.课前思考
对概念的阐述以“活动构建”代替“概念讲解”。在传统数学教材中,知识点是按照数学知识的逻辑系统编排,如果按照传统施教,虽然科学但是枯燥无味,难免让学生对数学产生排斥心理,这就大大降低了学生学习数学的兴趣,对他们后面的学习极为不利。概念本就比较抽象,如果课堂上依旧直接进行理论讲解,学生听不懂还可以多加解释,但是其中花费的时间却比用“活动构建”方式教学所用时间多出一大截,对于理解能力稍差的同学来说,很有可能会越听越乱,使他们渐渐的不愿再听课。学生在学习中应当亲身感受学习过程,将抽象的概念形象化,根据学生的操作能力和丰富的想象力,让他们通过活动的方式来了解因数和倍数的实质以及它们的关系,并将冰冷的概念活化。通过活动构建的方式培养学生对数学的乐趣,激发他们的数学意识。
解决问题时以“互动互学”的方式,而不是“直接结果”。学习过程中,遇到问题是无法避免的。比如说求一个数的所有因数,对于初步接触因数的学生来说,找出几个因数还算易事,但难点就在于要找出所有因数,而且要做到不重复不遗漏。要想培养学生的探索能力和自我思考能力,将答案直接告诉他们的方法不值得采取,因为这就像“直接结果”,不让他们自行思索一番,又如何培养他们学习数学的乐趣呢?所以可以让学生采取互动互学的方式,比如进行生生交流、师生交流,还可以在班级内畅谈自己对因数倍数的看法或与同学分享自己求得答案的过程。这不仅锻炼了学生的表达能力,还能与同学们共进步。
教学目的不是纯粹的“教授知识”,还是“挖掘智慧”。知识是智慧的基础,但知识只有转换为智慧才能显示其真正的价值!将“将因数和倍数”的知识教给学生并不够,还应帮他们将其内涵深入挖掘,最后达到“挖掘智慧”的目的。一个人的潜能是无限的,而一个有知识又有智慧的人能够将自己的潜能挖掘出来,而这样的人方能成为生活的主宰者。这便是关于《因数和倍数》的教学思考。
2.教学内容
《义务教育课程标准实验教科书数学(五年级下册)》第5~6页
3.教学目标
(1)结合整数的乘、除运算法则让学生了解因数和倍数的含义,学习和掌握求一个数的因数和倍数的方法,以及因数倍数各自的特色。
(2)在学习因数和倍数的过程中,了解并掌握因数和倍数的关系与区别,并对以前所学知识进行巩固,提高解决数学问题的思维水平。
(3)增强学生对学习数学的乐趣,激发他们的潜在能力,挖掘智慧,深化思想,提高个人能力。
4.教学过程
4.1谈话导入
4.1.1我们之前已经对自然数有了一个大概的了解,自然数可用来表示物体的多少。但自然数的奥秘并不局限于此,这节课我们要探索的是它的另一个神奇之处:除0以外的自然数之间的联系,以及他们的特征。(显示“因数和倍数”)
4.1.2学习因数和倍数时应当达到以下目标。(显示教学目标,学生了解)
4.1.3接下来就是进入因数和倍数的学习,让我们目标明确地开始探索奥秘。[以学生熟知的自然数为开端,利用教学课件让学生明确本堂课所要学习的主要内容,显示教学目标是为了让学生了解学习本章节的原因并让他们知道在接下来的学习中可能遇到的问题,让他们能够有一个正确的学习目标,形成良好的学习习惯,这才有利于确定一个正确的数学知识点,培养积极向上的良好心态,除此之外,也是为了让学生了解老师采取的教学方法。]
4.2集体探究
4.2.1研究自然数中数与数之间的关系。请同学拿出准备好的材料:12个小正方形。
让学生用这12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
学生操作完以后,让他们相互交流,然后在班级上分享各自所得,如:找到几种拼法?怎么拼?用的是乘法还是除法表示?
4.2.2将学生的结果板书在黑板上,等学生们发言结束后,打开教学课件显示所有摆法和算式(4×3=12,2×6=12,1×12=12),再让学生反思自己答案。
4.2.3根据学生的答案引入因数和倍数,让他们先看看教课书第12页在进行讲解。
4.2.4结合算式2×6=12进行举例说明。还可以在结合其他题让学生进一步了解因数和倍数。比如让学生写出20的乘法算式:1×20=20,2×10=20,4×5=20……因为4乘5等20,所有20的因数可以是4和5,同理,1,2,10,20都是20的因数。那么谁又是谁的倍数呢?因数和倍数到底又是怎样的关系呢?通过1×20=20这个等式可知,我们不能只说1是因数或者20是倍数。
4.2.5在同学掌握好因数和倍数之后,运用教学课件显示:倍数(或因数)的表达及其之间的关系,表达:谁是谁的倍数(或因数)。关系:倍数和因数不能单独存在,两者相互依存。
4.2.6给同学自己探索的时间,可以让他们进行一次小比赛,看谁能将一个数的因数和倍数完整准确的说出来,让老师或者同学作为评委。[注意:本节课中所说的数是指除0以外自然数。]
4.2.7让学生课后练习,巩固知识。
4.3小组合作
4.3.1分组讨论有关24的所有因数。要求:不重复,不遗漏。
4.3.2结果所要知道的内容:怎样找的?找到多少?还可以如何表示因数和倍数?
4.3.3小组之间相互交流,分享所得所想。
4.3.4总结
[在教学中应让学生先自主学习,让他们自己去求解所需的答案,当他们没有及时发现自己的问题时,应让他们自己去发现自己的问题,并独立寻找解决办法,在发现问题、解决问题的过程中能够培养他们积极主动、独立思考的能力,在必要的时候给予适当的帮助,不仅维持了他们的学习热情,还让他们的能力有所提升,也让他们对因数和倍数有了更好的掌握。]
4.4集体讨论
给定一个数字,让学生找它的因数或倍数,如找2的倍数。要让学生自主探索并寻找解决方法然后集体讨论交流。
5.整理与反思评价
回顾本节课学习的知识点,进行归纳总结,然后进行复习巩固。除此,学生要学会知识迁移,数学丰富多彩,它每一个知识点都相互关联。找一个数的因数的方法也可以“变形”用在寻找一个数的倍数上。
课堂是一个发展思维、拓展知识面、开发智力的平台。学生在学习因数和倍数的过程中不断积累知识与经验,他们需要更多的自主学习空间,并不断提升个人能力。
参考文献:
[1]DOI:10.16728/j.cnki.kxdz.2015.11.072
[2]张国东《因数和倍数的认识》教学设计,《科学大众(科学教育)》2015-11-20
一、数
提问:认识吗?念——
师:这个字还能念shǔ,数数,会吗?我们一起来数一数。出示12个小正方形(道具展示)
刚才我们数数用的1、2、3、4……这样的数我们称为自然数,从今天这节课开始,我们将从一个特定的角度对这些自然数进行研究,探索它们的特征及其相互关系,但不包括0。
二、数形结合,揭示概念 导入新课
1.我们今天的研究就从这12个小正方形开始。请大家用自己准备的12个小正方形拼成一个长方形。拼一拼、想一想,每排摆几个,摆了几排?
学生动手操作,教师巡视、指名到黑板上摆放。2.引导分析
问:还有其他的情况吗?这三种情况你能不能按照一定的顺序进行排列?
(学生思考,指名回答)
师:我们考虑问题一定要有序(板书:有序)师:还有其他的摆法吗?
师:我们考虑问题还要做到(完整)。有序而完整是我们数学中重要的思考习惯。
(指图形)师:你能用算式表示自己的这三种摆法吗?
学生回答,教师板书 3.揭示概念 研究4×3=12 说明:我们先来看4×3=12。根据4×3=12,我们就可以说:4和3是12的因数,反过来,12是4的倍数,12也是3的倍数。
师:哪位同学模仿老师的说法来说说。教师指名2位学生说说。
师:你能根据2×6=12,来说说,这三个数之间的关系吗?学生独立思考,指名2位学生说说,集体齐说。
研究1×12=12,指名学生说说。指名学生指一指哪个12是12的因数,哪个12是12的倍数。
好,同学们,根据乘法算式,我们找到了这三个数之间存在着因数和倍数的关系,那如果是除法算式呢?
出示:18÷3=6,你能根据这道除法算式,说说,谁是谁的因数,谁是谁的倍数。指名2位学生说说。
如果只说18是倍数,3是因数,可不可以?为什么?
(因数和倍数是根据乘法和除法算式确定的,表示数与数之间的关系,一定要说清楚哪个数是哪个数的倍数,哪个数是哪个数的因数。)
你还能再说一道不一样的算式吗?说一说它们之间的因数和倍数的关系。(补充说明:研究因数和倍数时,我们所说的数一般指不是0的自然数。)揭示“互为”关系
先出示 2 4,指名学生说说谁是谁的因数,谁是谁的倍数。出示:36,追问:你能说出4和36之间的关系吗?
引导对比,总结:不能单独说某个数是倍数或是因数,因数和倍数是相互依存的关系(板书)
那么2,4,36呢?总结:2、4、36都是36的因数。那么36的因数还有吗?你能不能有序而完整地将36的因数找全呢? 4.教学因数找法。
学生尝试写出36的所有因数。教师巡视,指名汇报想法。根据学生回答,教师相机出示两种找寻的模型。()×()=36;36÷()=()想一想:怎样找一个数的因数可以做到不重复、不遗漏?
(可以按从小到大的顺序想哪两个数的积是36,一对一对的找,我们一起看一下。先找1和36,写在因数的两端。。5可以吗?6和6,相同的只要写一个)这样从小到大、成对出现,使得我们的结果有序而完整。请大家用同样的方法找15、16的因数 教师巡视,学生独立完成。
展示36、15、16的所有因数。并引导观察总结:一个数的因数最小是1,最大是它本身。
那因数的个数有什么特点?(个数是有限的)5.研究倍数的找法。
我们已经学会了找一个数的因数,那怎样找一个数的倍数呢? 写在请你找出3的倍数,学生独立完成,教师巡视。你找到的3的倍数有哪些?说说是怎么找的?
3的倍数是3和一个数相乘的积,我们可以从3的1倍开始按次序列举出来。有多少个?(无数个)那么我们怎么表示?
(说明:在倍数写不完的情况下,我们可以按照一定的顺序,写出5—6个,之后的用省略号代替。)
尝试写出2、5的倍数。学生尝试练习。
对比2、3、5的倍数,揭示:一个数的最小的倍数是它本身。5.对比因数和倍数的数量,揭示有限和无限。
三、练习。
1.玩一玩 出示:
(1)每次飞3格,在飞到的格上画“○”。
学生试画,教师选取作品展示,追问:这些画“○”的数有什么特点?(2)每次飞4格,在飞到的格上画“△”。
学生试画,教师选取作品展示,追问:这些画“△”的数有什么特点?(3)对比刚才我们玩了两次,最后都落到了数字12上。如果让你来设计规则,最终也要飞到12,你会怎么设计,你所选的数都有什么特点? 2.猜一猜。(猜电话号码)3.读一读。
四、总结
【倍数和因数教学实录】推荐阅读:
倍数与因数教学实录01-24
教学设计因数和倍数07-19
因数和倍数的教学设计10-06
《因数与倍数》整理和复习教学设计09-25
因数和倍数题09-19
数学《因数和倍数》教案设计12-15
倍数和因数知识点12-23
倍数与因数教学随笔11-10
《公倍数和公因数》提高练习10-20