北师大八年级数学下3.3分式的加减法

2024-11-07 版权声明 我要投稿

北师大八年级数学下3.3分式的加减法(精选6篇)

北师大八年级数学下3.3分式的加减法 篇1

3.3分式的加减法

创新训练12:

1,请你先阅读下列计算过程,再回答所提出的问题:

ABCD

x33x33x33(x1)x33(x1)2x621x(x1)(x1)x1(x1)(x1)(x1)(x1)x1

(1)上述计算过程中,从哪一步开始出现错误:

(2)从B到C是否正确。若不正确,错误的原因是

(3)请你正确解答。

2,(1)观察下列各式:

***1,,,,.......62323123434204545305656

1由此可推导出42

(2)请猜想出能表示(1)的特点的一般规律,用含字母m的等式表示出来,并说明理

由(m表示整数):

(3)请直接用(2)中的规律计算:

111的结果。(x2)(x3)(x1)(x3)(x1)(x2)

答案:1,(1)A(2)不正确把分母无端地去掉了

(3)x33x33x33(x1)4x.2(x1)(x1)(x1)(x1)x11x(x1)(x1)x1

2,(1)

(3)

111111;(2) 4267m(m1)mm1

121111111()()()(x2)(x3)(x1)(x3)(x1)(x2)x3x2x3x1x2x11111110x3x2x3x1x2x1

北师大八年级数学下3.3分式的加减法 篇2

“平行四边形的判别”是九年义务教育北师大版数学教材八年级上册第四章第二节的内容。是本章重点内容之一, 也是历年中考必考内容, 是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识, 并且具备初步的观察、操作等活动经验基础上讲授的。它是平行四边形性质的继续, 又是后面学习菱形、矩形、正方形等知识的基础。因此本节课具有承上启下的作用。

二、教学目标

(1) 知识与技能目标。探索并掌握平行四边形的判别条件, 能根据判别条件进行实际应用。

(2) 过程与方法目标。经历平行四边形的判别条件的探索过程, 在有关活动中发展学生的合情推理意识、主动探究的习惯, 使学生逐步掌握说理的基本方法。

(3) 情感态度与价值观目标。培养学生动手实践能力及丰富的想象力, 发展学生有条理的思考, 体验到探究的甘苦, 更能领会到成功的喜悦。体验数学活动来源于生活更能服务于生活, 提高学生的学习兴趣, 培养学生的创新能力。

三、重点和难点

重点:掌握平行四边形的判别方法。

难点:平行四边形的判别方法的灵活应用。

四、教材处理

(1) 学生状况分析及对策。根据初三学生年龄的特点, 学生年龄比较小, 逻辑思维能力较差, 归纳推理能力较低, 灵活运用知识能力也较差, 针对这种情况我采取因材施教的原则, 通过判别方法的推理, 培养学生合情推理意识, 通过练习强化对基础知识的掌握。

(2) 教学内容的组织与安排。为了完成本节的教学目标, 突出重点、分散难点, 根据教材内容和学生实际情况, 我对本节教材进行了重新组织和安排, 创设更为有效探索活动和更为合理的探索顺序。

五、教学方法

在教学过程中引导学生通过观察、思考、探究、交流获得知识, 形成技能。在教学过程中注意创设思维情境, 坚持以学生为主体, 以教师为主导的方针, 帮助学生学会运用观察、分析、比较、归纳、概括等方法, 得出解决问题的方法, 使传授知识和培养能力融为一体。

六、教学手段

自制课件利用多媒体教学。

七、教学设计

(一) 说设计理念

想改变教学过于注重知识传授的倾向, 强调形成积极主动的学习态度。关注学生的兴趣和经验, 让学生主动参与学习活动, 让数学教学成为数学活动的教学, 为学生敢创新、能创新提供充足的时间和空间。

(二) 说教学过程

1. 创设情境

(1) 让同学们一起来看生活中美丽的图案 (大屏幕演示) 。

设计意图:从实际问题引入新课, 让学生感受到数学来源于生活又应用于生活。

(2) 复习平行四边形的定义和性质。

设计意图:一方面巩固学生旧知, 另一方面使学生知道平行四边形的定义既是性质又是判别方法, 从而引进新课。

2. 讲授新课

(1) 动手实践:让学生每人拿出两根牙签或火柴 (长短不定) , 自制平行四边形框架。

设计意图: (1) 让学生在摆拼平行四边形的过程中, 积累数学活动经验并培养动手实践能力。 (2) 增强学生的创新意识, 培养学生团结协作的精神, 并满足他们的好胜心。 (3) 同时组织组与组之间的评比, 培养竞争意识, 然后由学生代表发言, 让学生的个性得到充分的展示, 从而总结平行四边形的判别方法。

(2) 教师演示钉制平行四边形这一过程。

方法一:将两根木棒AC, BD的中点重叠, 并钉子固定, 则四边形ABCD就是平行四边形。

方法二:将两根同样长的木条AB, CD平行放置, 再用木条AD, BC加固, 得到四边形ABCD就是平行四边形。

设计意图:便于学生发现和探索平行四边形的常用判别条件, 并利用平行四边形的判别条件解决问题。

(1) 实际生活:有一块平行四边形的玻璃片, 李大爷不小心碰碎了一部分, 同学们想想看, 有没有办法把原来的平行四边形重新画出来?

(2) 通过活动, 让学生进一步探索平行四边形的判别方法。

设计意图:让学生熟悉平行四边形的判别方法并学以致用, 确保学生的主体作用得到充分发挥, 突出本节课的重点内容让学生体验到人人学有用的数学, 人人获得必需的数学。

(3) 例题精析。

设计意图:让学生通过观察思考的活动, 解决问题。通过探索式证明法, 开拓学生的思路, 发展学生的思维能力。

(三) 随堂练习

在平行四边形ABCD中, AC, BD相交于点O, 点E, F在对角线AC上, 且OE=OF。

(1) OA与OC, OB与OD是否相等? (2) 四边形BFDE是平行四边形吗?

设计了习题组有层次的教学, 在探索活动中鼓励学生力求寻找多种方法解决问题。

设计意图:为了进一步巩固重点、突出难点。培养学生综合应用能力、解决问题的能力, 使学生知道不同的人在数学上有不同的发展, 体现了数形结合的教学思想方法, 使学生的知识水平得到恰当的巩固和提高。

(四) 小结

(1) 谈谈你今天的收获;

(2) 平行四边形判别的条件。

(五) 布置作业

(1) 课本P104习题1, 2, 3; (2) 《资源与评价》P70。

设计意图:进一步巩固重点、突破难点。培养学生独立完成作业的习惯。

八、评价分析

本节课教学过程通过问题设置, 引发学生学习的兴趣, 引导学生主动探索, 通过对平行四边形判别方法的讨论发现新知, 归纳总结得出结论。通过强化练习, 巩固新知, 通过小结归纳总结新知。

本节内容逻辑性较强, 对学生的逻辑思维能力要求较高, 学生在说理上存在一定困难是正常的。但在问题讨论、引导发现、巩固训练的过程中, 师生的信息交流畅通, 反馈评价及时, 学生与学生积极交流讨论思维活跃, 教学活动始终处于期盼控制中。

九、教后要进行教学反思, 使自己不断成长与进步。我说课结束, 谢谢各位评委!

北师大八年级数学下3.3分式的加减法 篇3

(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点

1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析

1. P21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入

1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解

解:(x2x14x) 22xx2xx4x4x2x1x=[ ]x(x2)(x2)2(x4)=[(x2)(x2)x(x1)x ]22(x4)x(x2)x(x2)x24x2xx= (x4)x(x2)2=1

x24x42xyx4yx2(2)xyxyx4y4x2y2[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.xyx4yx2解: 4242xyxyxyxyxyx4yx2y2= 22222xyxy(xy)(xy)xxy2x2y= 22(xy)(xy)xy=22xy(yx)

(xy)(xy)=xy xy

六、随堂练习计算

ab11x24x2)())(1)((2)(abbaabx22x2x312212)()(3)(a2a4a2a2

七、课后练习1.计算(1)(1(2)(yx)(1)xyxya2a1a24a)2 22aa2aa4a4a111xy(3)()

xyzxyyzzx2.计算(114)2,并求出当a-1的值.a2a2aab(3)3 ab

八、答案:

六、(1)2x(2)

111a2xy

七、1.(1)2(2)(3)2.,-22a2z3a4xy

北师大八年级数学下3.3分式的加减法 篇4

一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点

1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析

1. P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入 计算(1)yx(y)(2)3x(3x)(1)

xyx4yy2x

五、例题讲解

(P17)例4.计算

[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)3ab322xy2(8xy9ab)2)3x(4b)

=3ab32xy3ab32(8xy9ab24b3x(先把除法统一成乘法运算)=2xy9ab3x8xy24b(判断运算的符号)

=16b9ax23(约分到最简分式)

2x6(x3)(x2)3x(2)44x4x2x62(x3)1

=44x4x2x3(x3)(x2)3x(先把除法统一成乘法运算)=2(x3)(2x)21x31x3(x3)(x2)3x(x3)(x2)(x3)(分子、分母中的多项式分解因式)

2x2=2(x3)(x2)2 =2ab

5c2ab22

4六、随堂练习计算(1)3(xy)(yx)23b216a4bc2a2()(2)(6abc)226220c331030ab

(3)3(xy)9yx(4)(xyx)x2xyyxyxyx2

七、课后练习

计算(1)8xyy4y42y62243x4y6(xy6z2)(2)

a6a94bxyyxy2223a2b3a9a2

(3)1y3126y9y2(4)

xxyxxy22(xy)

16.2.1分式的乘除(三)

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点

1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析

1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入 计算下列各题:

(1)()=ba2abab=()(2)()=

bana3ababab=()(3)()=

ba4abababab=()

[提问]由以上计算的结果你能推出()(n为正整数)的结果吗?

b

五、例题讲解

(P17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习

1.判断下列各式是否成立,并改正.(1)(b32a)=2b522a(2)(3b2a)=

29b4a22(3)(2y3x)=

38y9x33(4)(3xxb)=

29x222xb

2.计算(1)(5x23y2)(2)(23ab2c32)(3)(xyy3a323xy)(2ay2x2)

3(4)(xyz2)(3xz32)5)(2ba22)(2x)(xy)(6)(4y2x)(23x2y)(33x2ay)

2七、课后练习c3计算(1)(c43)3(2)(ab22)n1(3)(ab2)(2ab2a3a4222()()(ab))()(4)3abbacab16.2.2分式的加减

(一)一、教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析

1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的1n1n3.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;

第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, „, Rn的关系为

111111.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出1,下面的计算就是RR1R2RnRR1R150异分母的分式加法的运算了,得到1R2R150R1(R150),再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入

1.出示P18问题

3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?

4.请同学们说出12xy23,13xy42,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?

五、例题讲解

(P20)例6.计算

[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算

(1)x3yxy22x2yxy222x3yxy22

[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x3yxy22x2yxy1x62x222x3yxy6x9222 =

(x3y)(x2y)(2x3y)xy22=

2x2yxy22=

2(xy)(xy)(xy)=

2xy

(2)1x3

[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:1x31x62x6x92=1x31x2(x3)6(x3)(x3)=

2(x3)(1x)(x3)122(x3)(x3)

=(x6x9)2(x3)(x3)2=(x3)22(x3)(x3)3a2b5ab2=x32x6ba5ab2

m2nnmnmn2mnm1a36a2六随堂练习计算(1)ab5ab

2(2)

7a8bab

(3)9

(4)3a6bab5a6bab4a5bab

3baab22

七、课后练习计算(1)b25a6b3abc23b4a3bac2a3b3cba2(2)

1a2bab223a4bba22

(3)

aba2baab1(4)

16x4y6x4y3x4y6x22

16.2.2分式的加减

(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点

1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析

1. P21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入

1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解

(P21)例8.计算

[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算

(1)(x2x2x2x1x4x42)4xx

[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:(x2x2x2x1x4x42)4xx=[xx2x(x2)2x1(x2)22]x(x4)x

1x4x42=[(x2)(x2)x(x2)22x(x1)x(x2)2](x4)=

x4xxx(x2)2(x4)=

(2)xxyyxyxyxy444x222xy

[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:xxyy2xyxyxy444x222xy=

xxyy2xyxy(xy)(xy)22224xyx222

=xy2(xy)(xy)xyxy222=xy(yx)(xy)(xy)=xyxy

六、随堂练习计算(1)(x2x242x)x22x(2)(aabbba)(1a1b)(3)(3a212a4a12)(2a21a2)

七、课后练习1.计算(1)(11x1y1zxyxyyzzxyxy)(11xxy)(2)(1a24a2a2a2a2a4a42)a2a4aa2

(3)() 2.计算(a2),并求出当a-1的值.16.2.3整数指数幂

一、教学目标:1.知道负整数指数幂an=

1an(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析

1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P24观察是为了引出同底数的幂的乘法:amanamn,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的数,运用了负整数指数幂的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入

1.回忆正整数指数幂的运算性质:

mnmn(1)同底数的幂的乘法:aaa(m,n是正整数);

(2)幂的乘方:(a)anmnmnn(m,n是正整数);

n(3)积的乘方:(ab)ab(n是正整数);(4)同底数的幂的除法:aanmanamn(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n(n是正整数);

bb2.回忆0指数幂的规定,即当a≠0时,a1.3.你还记得1纳米=10-9米,即1纳米=4.计算当a≠0时,aa=350an11029米吗?

1a2aa35=

a33aa=

3,再假设正整数指数幂的运算性质a535manamn(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么aa=a=a2.于是得到a2=

1a2(a≠0),就规定负整数指数幂的

运算性质:当n是正整数时,an=1an(a≠0).五、例题讲解

(P24)例9.计算 [分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10.判断下列等式是否正确? [分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空

(1)-22=(2)(-2)2=(3)(-2)0=(4)20=(5)2-3=(6)(-2)-3= 2.计算(1)(xy)(2)xy ·(xy)3-222-

2-2

(3)(3xy)÷(xy)

2-2 2-2

3七、课后练习1.用科学计数法表示下列各数:

0.000 04,-0.034, 0.000 000 45, 0.003 009 2.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)3

16.3分式方程(一)

一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析

1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3. P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?

5. 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入

1.回忆一元一次方程的解法,并且解方程

x242x361

2.提出本章引言的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程

10020v6020v.像这样分母中含未知数的方程叫做分式方程.五、例题讲解

(P34)例1.解方程 [分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根

这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程 [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程

(1)3x2x6(2)2x13x16x12(3)

x1x14x121(4)

2x2x1xx22

七、课后练习1.解方程

(1)25x11x0(2)63x82x9x3114x783x2x(3)

2xx23xx24x120(4)

1x152x234

2.X为何值时,代数式x3的值等于2?

16.3分式方程(二)

一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析

本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解

P35例3 分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1

路程P36例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系

时间是:提速前所用的时间=提速后所用的时间

五、随堂练习

1.学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天? 3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习

1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午

451时到达,求原计划行军的速度。

2.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天?

北师大八年级数学下3.3分式的加减法 篇5

小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!

一、填空。

(共4题;共8分)

1.(1分)不计算,直接写出积是几位小数。

①7.23×14的积是_______位小数。

②67×0.078的积是_______位小数。

③5.31×0.75的积是_______位小数。

④2×0.03的积是_______位小数。

⑤7.9×115的积是_______位小数。

2.(1分)30×50=_______

第一个因数缩小到原来的,第二个因数不变,积是_______。

第一个因数缩小到原来的,第二个因数也缩小到原来的,积是_______。

第一个因数不变,第二个因数缩小到原来的,积是_______。

第一个因数缩小到原来的,第二个因数也缩小到原来的,积是_______。

3.(5分)算一算。

0.2×0.3=

0.3×1.2=

0.3×0.7=

0.2×0.1=

0.9×6=

1.3×4=

0.08×0.2=

3.1×3=

6×1.2=

4.(1分)根据123×45=5535很快写出下面各题的得数。

12.3×45=_______              1.23×45=_______

0.123×4.5=_______             12.3×0.45=_______

123×0.045=_______           12.3×4.5=_______

二、选一选。

(共3题;共4分)

5.(2分)下列算式中,结果最大的是()。

A

.3.8÷0.1

B

.3.8÷1

C

.0.38÷0.1

D

.3.8×0.1

6.(1分)下面各式中积最大的是_______,最小的是_______。

A.291×1.9

B.2.91×1900

C.291×0.19

7.(1分)8.6×0.94的积是一个_______位小数;0.56×3.78的积是一个_______位小数。

A.三

B.四

C.二

三、不计算,把乘积相等的算式用线连起来。

(共1题;共5分)

8.(5分)不计算,把乘积相等的算式用线连起来

四、在积里点上小数点,使等式成立。

(共1题;共5分)

9.(5分)在积里点上小数点,使等式成立

6.54×10.1=66054

65.4×0.101=66054

0.654×1.01=66054

6.54×0.0101=66054

6.54×1010=66054

65.4×10100=66054

五、在乘数的不同位置上点上小数点,使算式成立。

(共1题;共5分)

10.(5分)308×25=7700

在乘数的不同位置上点上小数点,使下列算式成立

308×25=7.7

308×25=7.7

308×25=7.7

308×25=7.7

六、解决问题。

(共3题;共15分)

11.(5分)一个正方形的边长是0.7米,这个正方形的面积是多少平方米?

12.(5分)买2本书需要多少元?

13.(5分)花坛中有8棵玫瑰花,月季花的数量是玫瑰花的1.1倍,月季花有多少棵?

参考答案

一、填空。

(共4题;共8分)

1-1、2-1、3-1、4-1、二、选一选。

(共3题;共4分)

5-1、6-1、7-1、三、不计算,把乘积相等的算式用线连起来。

(共1题;共5分)

8-1、四、在积里点上小数点,使等式成立。

(共1题;共5分)

9-1、五、在乘数的不同位置上点上小数点,使算式成立。

(共1题;共5分)

10-1、六、解决问题。

(共3题;共15分)

北师大八年级数学下3.3分式的加减法 篇6

一、教材分析

1、教材的地位和作用

角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证 明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL 定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。

2、重点与难点分析

本节内容的重点是角平分线的性质定理,逆定理及它们的应用。

本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区 别;c、学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。

3、教学目标

(一)知识目标:

(1)掌握角平分线的画法;

(2)掌握角平分线的性质定理和逆定理;

(3)能够运用性质定理和逆定理证明两个角相等或两条线段相等;

(二)能力目标:

(1)通过定理的推导,培养学生的归纳能力

(2)通过定理的初步应用,培养学生的逻辑推理能力及创新的能力.(三)情感目标:

(1)通过学生的主动探索让学生体验获取数学知识的成就感;

(2)通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。

二、教法学法

学生是学习的主体,只的学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。这节课,我主要采用学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,通过观察,让学生在观察中发现,在发现中探索,在探索中创新。充分发挥他们的主观能动性,最大限度的发挥他们的创造力。让学生成为课堂的主人。教师只是在学生的思维受阻的情况下进行适时的引导。

三、教学过程

1、通过生活中的实例,创设情境

通过实例1的思考与探索,让学生复习了点到直线的距离这一概念。通过实例2,给学生对角平分线有了一个初步的认识。这一阶段的学习起到承上启下的作用,这两个例题的结合,为学生探索发现角平分线打下基础。

2、试一试(1)作一个具体画图的练习:已知角画出它的角平分线。

这样做让学生在动手画图的过程中对角平分线有一个很直观的认识(2)折纸练习。

让学生在动手实践的过程中发现规律,体验获取知识的成就感

3、观察

这一环节特别要注意的是,学生观察得出结论并不难,但要用准确的文字叙述出来比较难。教师一定要引导学生自己探索得出结论,要让每一个学生都能参与进来,都有收获。教师在讲解这一节知识时,一定要向学生渗透互逆的思想。

强调说明:角平分线的性质定理是用来证线段的相等,逆定理是用来证角相等即角平分线的。

4、例题

进行例题的讲解,引导学生分析,让学生熟悉定理的运用,在此过程中,要注意的是一定要严格要求学生的做证明题的书写格式。

5、阶梯性的例题

要注意引导学生分析问题、解决问题的思考方法,要让他们习惯于直接运用定理解决问题,而不是又回到运用全等来解决问题。

6、小结

教师引导学生对本节课的知识进行回顾,可以让学生站在一个新的高度来体会性质和判定的作用。

四、板书设计

性质定理

角平分线上的点到这个角两边的距离相等

逆定理

在一个角的内部,到角的两边的距离相等的点

在这个角的角平分线上。

例题1

上一篇:2008-2009第一学年度少先队工作计划下一篇:2024年辽宁公务员面试真题与答案