多边形的面积复习教案(共13篇)
教学目标:
知识与技能:复习学过的面积计算公式,会计算图形面积。过程与方法:能灵活运用图形面积公式,解决一些简单的实际问题。情感、态度与价值观:感受运用数学知识解决问题的成功体验。教学重点:会计算图形面积,能解决一些简单的问题。教学难点:灵活运用所学知识,解决简单问题。教学准备:教学课件。教学过程:
一、导入
多边形的面积这一单元我们已经学完了,这节课我们来复习一下。请大家回忆回忆,现在我们已经学过那些图形的面积。学生答,贴图。
谁来说说这些图形的面积公式是什么,用字母怎样表示。三角形的面积为什么要除以2?
这些内容同学掌握的还不错,接下来我们一些练习。
二、练习
1、填补空位
2、判断对错
3、计算面积
4、选择合适的数据计算面积
5、仔细观察,比较比较
6、应用题
A三角形绿地,求买草坪要多少钱 B正方形去一个角,求面积 C用长方形纸做直角三角形的小旗。
一、整合——构建知识网络
对所学知识进行总结, 并将其整合到一个易于描述和应用的网络之中, 是学生数学学习过程中的重要环节。平时的每一节课由于有知识点教学的任务, 不可能让学生很快就建构起知识网络, 而复习课则有利于帮助学生建立数学知识网络。因此, “整合”是复习课的关键, 但不同年级的学生整合知识的主体不同。对于低学段的学生, 知识点必须由教师帮助进行整理、提升, 而中高学段的学生, 应逐步成为整理知识的主角, 让学生经历自主整理知识的过程, 然后通过交流、对比、补充, 构建一个条理清晰的知识网络。五年级上册“多边形面积”的复习课, 我们就可以做这样的设计。
片段一:梳理知识, 形成系统
1. 本单元我们都学习了哪些平面图形的面积计算? (随着学生的回答, 出示平行四边形、三角形、梯形。) 请同学们把这些图形的面积计算公式写在相应的图形卡片上。
2. 提出问题:这些图形的面积公式是怎么推导的?请同学们回忆它们的推导过程, 把本单元的知识进行整理, 可以用图形卡片摆, 也可以在本子上画图、列表表示。
3. 学生自主整理, 教师巡视并注意个性化的、有代表性的表达形式。
4. 学生汇报交流。教师展示学生个性化的表达形式, 让学生说明为什么这样整理 (学生解释的过程, 其实就复习了面积公式的推导过程) , 全班再进行评议、补充, 指出各种不同整理形式的优缺点。
5. 教师出示课本上的网络图, 让学生与自己整理的图进行比较。
先引导学生从右往左看, 着重强调“转化”是解决数学问题的重要方法。再让学生把这张图竖起来看, 从中感受到长方形好像是一棵大树的树干, 是学习其他平面图形的基础。
现代认知心理学告诉我们, 认知结构是知识和智力统一发展的中介和产物。如果教师提供的知识内容是零散的、杂乱无章的, 不仅不能发展学生的智力, 反而会扼杀学生的智力。片段一的教学, 可谓高屋建瓴, 学生自主回顾本单元的学习内容, 并以自己能够理解的形式构建知识网络, 通过同学间个性化表达形式的交流、碰撞, 在与课本知识网络图的比较中, 学生不断调整、完善、扩充自己的认知结构, 从而沟通了平面图形面积计算公式之间的联系, 串点成线, 促进学生把相关知识点融入知识系统中, 形成良好的认知结构, 使本单元所学知识条理化、系统化、结构化。
二、提升———发展数学思考
培养和提升学生的数学思考是数学教学的一项重要任务。复习课在学生梳理复习了主要知识点后, 练习成了重要的数学活动。复习课中的练习, 既是学生进一步巩固知识点、沟通知识间的联系的过程, 又是应用知识、发展能力、拓展思路的过程。精心设计复习课的练习是提高数学复习课效率的重要一环。一般情况下, 我们除了选择学生平时出错较多和能体现典型解题思路的习题进行专项练习外, 更多的是要注意练习的综合性, 以提高学生综合应用知识分析和解决实际问题的能力。“多边形面积的复习”一课, 我们可以设计如下两道综合练习。
片段二:综合练习, 巩固提升
1. 出示课本第96页第2题:求下面多边形的面积, 你能用几种方法解答? (单位:厘米)
(1) 学生独立完成。
(2) 全班交流。交流中应关注方法的多样化与合理性。
(3) 反思小结:同学们刚才用了多种方法解答这一问题, 在多种方法中, 有一个共同的思考方法———转化。把组合图形转化成基本图形, 也就是把复杂的图形转化成简单的组合。
2. 下面每一小方格表示1平方厘
米, 请在格子纸中分别画出面积是12平方厘米的平行四边形、三角形, 想想怎样画得又对又快。 (方格图略。)
(1) 学生独立完成。
(2) 全班交流。
(1) 引导学生进行纵向观察并交流。
A.怎样画平行四边形。在学生呈现多种答案之后, 教师追问:还能再画出面积是12平方厘米的不一样的平行四边形吗?有多少种画法?教师根据学生回答呈现整理后的表格 (如下) 。
再次追问:能用一句话表达出什么样的平行四边形面积都是12平方厘米吗?
B.怎样画三角形。在学生呈现多种答案之后, 教师追问:还能再画出面积是12平方厘米的不一样的三角形吗?有多少种画法?教师根据学生回答呈现整理后的表格 (如下) 。
再次追问:能用一句话表达出什么样的三角形面积都是12平方厘米吗?
C.怎样画梯形。在学生呈现多种答案之后, 教师再次追问:还能再画出面积是12平方厘米的不一样的梯形吗?有多少种画法?高是3厘米的梯形有几个?高是4厘米的呢?最后达成共识, 只要上下底的和与高的乘积是24平方厘米都可以, 而且, 等高、等面积的梯形都可以画无数个。比如:
(2) 引导学生进行纵向观察并交流:观察三张表格, 当高相等时, 它们底之间有什么关系?为什么会有这种关系, 由此你发现什么规律?
(3) 追问:刚才我们画出了许多面积相等但形状不同的三角形、平行四边形和梯形, 它们的周长会相等吗?
这两道题的练习起到了举一反三、触类旁通的作用。画图、计算、交流相结合, 以数学思维的形式对已学的知识进行抽象与概括, 使之上升为具有普遍意义的数学结论, 使学生真正理解和掌握数学知识, 发展了数学思维。
第一道题, 学生先要用割、补方法将组合图形转化成已学过的图形, 然后根据图形面积公式寻找所需要的条件, 最后求解。这样, 不仅加深了对图形面积公式的理解和灵活应用, 而且再一次凸显转化的思想方法在解决实际问题中的作用。同时, 让学生在多样化解法的交流、比较过程中感受到了解决问题策略的丰富性、思考问题角度的多样性, 从而培养学生思维的深刻性和敏捷性。
第二道题, 一方面让学生逆向思考面积计算方法, 通过已知面积来确定图形的相关长度。另一方面, 在引导学生进行横向比较中, 借助“能用一句话表达出什么样的平行四边形、三角形、梯形面积都是12平方厘米吗”这一追问, 让学生跳出具体数字的局限, 进行抽象、概括、提升, 使解题活动不停留于经验、模仿的层面上, 而是在更高层次上的再概括, 大大丰富了学生的数学思考, 知识的巩固也从形式、肤浅走向了实质、深刻。而在纵向比较中, 则让学生从实例中弄清了图形之间的联系与区别, 使类似“三角形的底应是等积等高平行四边形底的两倍”这一难理解的规律性知识具体化并深化了对公式的理解。而且, 在这个过程中, 教师的追问为学生提供思考、交流的时间与空间, 学生在充分观察、比较、分析和交流中, 不断修正、反思, 提升了自己的认识, 深化了对公式的理解, 实现了知识的内化, 促进了数学思维的发展。
一、正视教学教育效果,对学生保持一种积极向上的评价
面对不同层次的学生对他们学完多边形的考查结果要有乐观的态度。学生认识图形面积是一个渐进的过程,从长方形、正方形、到平行四边形、三角形、梯形、组合图形的面积,学生认识水平在不断提高,思维过程在不断的深入,解决问题的情境在复杂化。教师应把握好这一关键的过渡期,特别是处理学生计算三角形、梯形的面积时更应让学生积极参与实践操作,从具体到本质,循序渐进、做好个别辅导,突破性的发展学生的思维。在三角形、平行四边形中,做好具体教学的同时,更多的做好学生从具体到抽象的过渡,特别要注意各层次学生的分层提高,重视反复性。教师应予一种发展积极的态度评价每一个学生的成绩,对他们客观存在的问题做到心中有数。
二、在教学方法上,变被动为主动,让学生从具体、大家熟悉的经验材料上下手
首先,老师应不惜花时间,搜集学生日常生活熟悉的图形,倾听他们的诉说,感受他们解决问题的方法。特别在教学组合图形,让每一个学生把自己独特的想法告诉大家,即使他们想法具有幼稚性、错误性的存在,也要让学生真正感受生活中数学。老师要充分应用现代化的手段,把那些陌生的教学内容通过这些手段加以展示。注意保护学生的自尊心,老师在教学中应以一种朋友式谈论让他们活跃在课堂中,不要对学生的错误加以过多的批评
指责。
其次,老师和学生一起整理工作,进行自主研究性学习的培养,引导每一个学生树立科学思维,掌握解决一般问题的方法。把学生搜集的有关信息以统计表的形式呈现给每一个学生,对有价值的信息加以应用、说明,让学生积极参与到解决问题的每一个环节。
最后,老师通过全体学生共同努力,共同参与、共同交流高度发现每一个学生的优点。根据教学过程的出现积极因素,增进学生对数学的兴趣。在交流过程中,教师从与学生交流中,老师更能了解每个学生思维的特点,解决问题的采用的方式等,老师更能对准确地了解学生各个方面发展的真实水平。为在教育、教学中有针对性的因材施教,在个性发展过程更尊重他们的特殊性奠定基础真正实现学生、教师的共同发展,做到教学相长。
三、老师在知识深广度上,控制其度
首先,老师要稳步推进各层次学生的全面发展,体现各个学生学到有价值的数学知识促进全体学生个体的和谐发展。
其次,教师根据学生的学习过程全方位的反馈,针对各层次的学生,老师应采取灵活的策略,坚持面向全体抓好后进生的前提下,对有余力的学生,向纵深拓展。
最后,老师高度重视学生的思维训练。组合图形中应用割补法是解决图形面积的基础,老师教学时,保证充足的思维时间,在解决问题的每一个环节都要细化,展示解决问题的全过程,最大限度的让学生理解每一步,。在学生掌握的基础上训练学生的灵活性,促进学生的发展。
四、尊重每一个学生,平等、公正的对待每一个学生
老师要放下威严,倾听学生的交流发言,哪怕是错误的陈述,不离开学习主题,只有这样真正才了解学生的真实水平。宽容才能博得学生的尊重,才能听你教育,才能积极把精力集中课堂。赞许目光、鼓励的语言、融洽的环境,更有利于每一个学生的成长。打造良好的班级氛围,老师必须是在尊重学生的前提下,教学过程更应体现这一要求。老师在搜集材料时,调动学生的积极性,发挥每一个学生的聪明才智,重视他们的参与性;教学过程中,重视学生的主体性、师生的互动性;教学结果的多样性、发展性。
五、关注每一个学生的发展
学生的发展是全方位的,知识、技能、态度价值体系多方面的协调进步,老师不仅重视知识技能,还要注意情感、世界观的发展。只有后者得到了发展,才能更加积极调动学生自身的积极性,这样又促进了学生的和谐、全面、健康、活泼发展。老师发现基礎差,先补一补基础,再进行新课教学,事半功倍;学生积极性高,老师教学进行顺利。同时,老师和学生之间的距离也近了,师生互动就增强,老师的教学效果更好。
六、搭建平台,解开留守儿童的心结
由于留守儿童大多存在或多或少的心理问题,又无法得到家长的关注和引导,而现在的监护人往往都只关心生活,不关心心理的需求,因此容易发生心理障碍。为及时了解、排除这些心理障碍,教师在班级开设了“悄悄话信箱”,建起“心灵的驿站”,帮助留守儿童解决无人倾诉,无处倾诉的问题,与学生“结对子”,帮助解开心灵的疙瘩,还定期举办心理健康教育讲座和关爱留守学生的主题班队会,为提高心理素养搭建了良好的平台。教学过程中,老师给予他们更多的展示机会,相信他们,发展他们,使他们快乐成长。
一、【课题】多边形的面积复习课
二、【复习目标分析依据】
1、课程标准中的相关陈述:
利用方格纸或割补等方法,探索并掌握平行四边形、三角形和梯形的面积计算公式。
2、教材分析:
本节课是五年级上册第八单元多边形的面积的复习。复习的主要内容包括平行四边形、三角形、梯形的面积和组合图形的面积。教材要求要先对本单元的知识进行系统整理,然后通过练习巩固多边形面积计算。从教材上安排的习题来看,注重知识形成的过程,着重培养学生灵活解决问题的能力。
3、学情分析:
在之前学习当中,学生已经通过数方格和剪拼的方法初步探索和掌握了平行四边形、三角形和梯形的面积计算公式、并能够计算一般组合图形的面积。通过复习,知识进一步系统化,学生解决问题的能力进一步提高,空间观念进一步提升,从而达到学期目标。
三、【复习目标】
(1)通过回忆、小组合作,进一步理解和掌握多边形面积计算公式的推导过程,并构建知识网络。
(2)通过拼摆和讨论,学生对转化这一数学思想理解更加深刻。(3)通过练习,能够结合具体情景灵活解决实际问题。
四、【复习重、难点】
复习重点:多边形面积公式的推导过程。
复习难点:理解多边形面积之间的联系。
五、【评价设计】
1、在回顾整理和融会贯通环节中根据学生对多边形面积推导过程的汇报和对知识网络的构建完成对目标1的评价。
2、在回顾整理环节中根据学生拼摆、讨论和汇报对目标2进行综合评价。
3、在练习环节中观察学生能否运用所学知识解决实际问题对目标3进行评价。
六、【复习活动预案】
(一)引入课题
板书课题,这节课我们就一起来复习多边形的面积。
(二)回顾整理。
1、出示郑州地铁图,问:我们能在图上找到哪些之前学过的图形?
2、回忆公式。还记得这些图形的面积公式吗?先用文字叙述,再用字母表示。学生汇报。
通过回忆再现完成目标1。
3、梳理公式推导过程。
数学是一门很严密的学科,不但要知道是什么,还要知道为什么。你知道这些计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)
4、各小组汇报。
哪个小组讨论的是平行四边形的面积公式推导过程?(把平行四边形贴在黑板上)在学生汇报展示面积公式推导过程的时候,如果学生回答的不完整,小组成员可以补充,或者老师补充提问,如果学生回答不好而且没人补充,老师演示课件。
哪个小组愿意派代表来说说三角形的面积公式推导过程?(把三角形贴在黑板上)哪个小组愿意派代表来说说梯形的面积公式推导过程?(把梯形贴在黑板上)学生进一步掌握多边形面积公式推导过程,完成目标1。总结内化,完成目标2。
6、构建知识网络。
同学们再来想一想这三种图形的面积计算公式的推导有哪些相同之处呢? 因此我们可以用箭头来表示转化的过程。大家想想,这个箭头我应该怎么画?为什么?(在黑板上图形之间标上箭头)
如果我们想在这个结构图中加上长方形,那么应该把它放在哪里合适呢?(平行四边形的下边)教师贴上长方形,画上箭头。如果把箭头反过来又表示什么呢?(推导)这样就形成了一个完整的知识结构图。如果把这个图看成一棵大树的话,那么长方形相当于?(树根)平行四边形相当于?(树干)三角形和梯形相当于(树枝和树叶)
师在黑板上画出树的形状。
从这个图中我们可以发现转化把这几种图形紧密的联系在了一起,转化也是我们学习数学的重要方法。
构建知识网络,完成目标1。理解图形间的内在联系,完成目标2。
(三)巩固提升。
下面,我们利用刚才复习的知识来做几组练习,在这个环节中我们要充分发挥自己的聪明才智,向大家展示出最优秀的自己,有信心吗?
第一个环节,判断对错并说出理由,看谁更快。
1、(1)、把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()(2)面积相等的两个梯形,一定能拼成一个平行四边形。()(3)两个平行四边形的面积相等,那么它们的底和高都相等()(4)两个面积相等的三角形,形状一定相同。()
(5)一个三角形的底扩大2倍,高不变,它的面积也会扩大2倍。()
2、下面这块地种了三种蔬菜,茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少公顷?(把计算过程写在学习任务单1的相应位置)
在计算多边形面积的时候,你想提醒同学们注意什么?
3、如果学校空地的形状如下图所示,你能求出它的面积吗?(单位:厘米)小组内任选一种方法解答,然后学生汇报,把学生采用的不同方法展示出来。)学生把计算过程写在学习任务单2上。
4、学校想在这片空地上建一个面积是48平方米的花圃,请你设计这个花圃的形状?(鼓励学生设计不同的图形,最好是组合图形。)汇报展示。
张明同学设计了一种长方形图案,长9 米,宽7米,空白处是小路,路宽1 米。判断一下他设计的对吗?你是怎样想的?
通过练习学生解决实际问题的能力得到提升,完成对目标3。
(四)复习总结
教学内容:义务教育教科书五年级上册数学103页。教学目标:
1、熟练掌握平行四边形、三角形、梯形的面积计算公式,进一步理解图形特征、面积公式之间的内在联系,构建知识网络。
2、灵活运用公式解决一些简单的实际问题,进一步体会数学与生活的联系,感受数学的价值,增强学习兴趣。
教学重点:回顾平面图形面积公式推导过程,建构知识体系。教学难点:感悟平面图形之间的内在联系。
教学准备:课件、学生课前自主复习办手抄报、整理卡、平面图形学具和教具 教学过程:
一、创设情境,再现知识
师:漫步我们的校园,随处可见图形的身影(看大屏幕),同学们会计算它们的面积了吗?(师出示数据)
指名只列式不计算。
教师黑板上张贴长方形及公式。
小结:面积计算在生活中的应用十分广泛。
师:这节课我们一起对第六单元多边形的面积进行整理复习。这一单元我们学习了哪些图形的面积?(张贴图形:三角形、梯形、平行四边形;板书:基本图形、组合图形、不规则图形)结合课前的自主复习,你觉得我们应该复习些什么知识?(学生自主发言)(教师板书:公式、推导、联系、应用、注意……)
二、合作梳理 构建网络
1、梳理基本图形的公式和推导
师:以小组为单位,每人选择平行四边形、三角形、梯形中的任意一种图形说一说它们的面积计算公式,知其然更要知其所以然,并借助手中的学具重点交流这些计算公式的推导过程。注意:一定要说清楚是由哪个图形怎样推导出来的。
学生以小组为单位回顾,教师巡视。
学生汇报,其他同学补充或者质疑,完善表达。(学生借助教具,并张贴三个公式)
师:同学们对三个公式及推导还有疑问吗?(师在板书:公式、推导上打√)
2、讨论联系,构建网络
师:大家有没有发现,这几种平面图形面积的推导过程有什么相同的地方?(板书:转化)转化是一种重要的数学思想。
小组活动:
(1)说一说平行四边形、三角形、梯形是怎么转化的?转化成了谁?(2)根据这种转化关系,将这些图形按照一定的顺序排一排,张贴在整理卡上,同时借助一些符号或文字,把它们联系成一张网络图,表示出图形与图形的联系。
教师巡视,学生张贴自己的网络图。汇报想法。其他学生评价质疑。师小结:真是百花齐放,百家争鸣,这些思考都很好地反映了转化的数学思想。从左往右看能从前面的图形推导出后面的图形(教师顺势摆好教具),从右往左看,后面的图形能转化成前面的图形如果是直角三角形或直角梯形还可以直接转化为长方形(教师画箭头),我们可以发现长方形是这些图形的“根”。
师:这几种图形本身之间是有着紧密的联系的。(课件:梯形的上底是0时,变三角形,梯形的上底等于下底时又变成了平行四边形),正因为它们之间有着密切的联系,才能够实现相互的转化,从而解决新问题。
3、梳理组合图形面积,加强联系
师:如果我们把几个基本图形连在一起,就变成什么图形?(课件演示)怎样求组合图形的面积?(板书:分、补)无论是分或是补,其实都是转化成基本图形。(板书箭头)
4、回顾不规则图形面积,完善网络 师:不规则图形呢?
小结:估算(数方格和转化)(板书),近似地转化成基本图形求面积。(板书箭头)
三、分层练习形成技能
师:经过大家的努力,我们将这一单元的知识整理成网络图,理清了知识的来龙去脉。老师相信同学们对这部分知识一定有了更深更系统的认识。接下来老师带你们去练习园迎接挑战,锤炼本领。
(一)我过基础关(基础性题组)我会算:
1、求出下面图形的面积。只列式不计算
2、组合图形
全班交流解题思路。选择一种自己喜欢的方法计算出组合图形的面积,同桌互判(课件再订正答案)
教师小结:要先明确解题思路,并把每个基本图形的面积求对,才能确保正确。
(二)我闯变式关(形成性题组)
我会辩:判断(指名按顺序逐个完成)
(1)两个等底等高的三角形可以拼成一个平行四边形。()(2)梯形的面积等于平行四边形面积的一半。()(3)平行四边形的底越大,它的面积就越大。()我会填:填空(将答案写在练习本上,指名订正说明理由)(1)一个平行四边形的面积是24平方厘米,它的高是3厘米,它的底是()厘米。
(2)一个平行四边形和一个三角形等底等高,平行四边形的面积是30平方厘米,三角形的面积是()平方厘米。
(3)三角形的面积是14平方分米,高是4分米,底是()分米。(4)将一个长方形的框架挤压成一个平行四边形后,平行四边形的面积比长方形的面积()。
四、收获提炼 评价反思
师:孔子曰:温故而知新。相信今天的复习能给大家带来新的发现和体会。谁来交流一下自己的复习收获?学生交流复习收获。
师:你们的收获可真多呀,让我们带着这些收获再次走进生活,去发现和解决生活中更多的面积问题。
五、拓展链接 整体提升
1、走进劳动基地(提问题,并选择与面积相关的乘法解答)
师:在我们小院里,小兔和鸽子的家就是一个图形大世界!仔细观察,这里有哪些用面积计算的问题?(学生提问题)
预设:制作这样一个鸽舍(或鸽舍旁边的储物箱)要用多少木料? 如果把正面除窗户的部分重新涂油漆,涂油漆的面积是多少?需要多少千克?花多少钱?
鸽舍的玻璃面积是多少? 房顶是多少平方米?
围成的面积是多少?用多少块地砖?多少块墙砖?
师选择其中一个问题出示要求计算:储物箱前面上底0.4米,下底0.6米,高0.2米,需要多少平方米的木料?如果涂油漆,每平方米花12元,要用多少钱?
2、回归课的开始(教师提问题,解答与面积相关的除法问题)每棵花占地300平方厘米,求需要多少棵花秧?
师小结:我们在解决实际问题时,认清面积与其他数量之间的关系很重要。课下同学们可以选择自己感兴趣的问题去解决。
相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△ABC
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫
做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫
做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有(n-3)条;(n表示边数)
条对角线(n表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°(n表示边数)
(2)多边形的外角和为360°
【阶段练习】
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画
出来
5.△ABC中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?
9.三角形的一个外角与它不相邻的两个内角之间有什么关系?
二、填空题
1.三角形的外角和是内角和的_____________倍
2.四边形的外角和是内角和的____________倍
3.六边形的外角和是内角和的_______________倍
4.一个多边形的内角和是900°,则这个多边形是________边形
三、解答题
本节是小学数学五年级上册第五单元的教学内容。教材把这一内容安排在了解基本的图形概念之后学习,本单元要求将学过的知识进行系统整理,后通过整合巩固各种多边形面积计算,并有利于发展学生的空间思维能力。本节内容在授课过程中,主要是让学生感受多边形面积求解的重要性,以及培养学生的自主学习能力。这就要求出现一些创新的教学理念,即不再要求学生进行机械学习,而是通过自主探索、合作交流、发挥想象等形式学习,并要求教师秉着积极、端正的教学态度,树立学生正确的价值观。
二、说教学目标
基于对教材的分析,初步得到本节教学内容的目标:
1. 知识目标:
在自主学习的过程中,引导学生理解并整理多边形面积的计算方法,并且能熟练掌握各种计算公式,引导学生将所学知识与实际生活中的问题相联系。
2. 能力目标:通过观察以及测量等实际教学活动,培养学生的动手操作能力;在自主探索过程中,培养学生自主学习能力。
3. 在引导学生与实际生活联系时,培养学生解决实际问题的意识。
三、说教法
在教学过程中,教师充分利用多媒体的教学方法来激发学生的学习兴趣,通过使用多媒体,使教学内容一目了然,便于学生了解教学重点。在推导多边形面积的计算公式时,由学生在回忆多边形概念以及动手操作体验的过程中自主推导计算公式,学生可以对教学内容理解得更透彻。在教学过程中,教师要摒弃极端教育模式,要以积极端正的态度教学,且一切要遵循社会主义核心价值观。
四、说学法
本节内容主要是培养学生的自主探索能力,所以学生的学习方法主要是通过自主观察思考以及小组合作的形式学习。在教学过程中,将学生定位成学习的主体,教师是主导者,使学生积极主动地参与到学习中,可以有效提高学生的学习效率。
五、说教学流程
1. 设问引入
教师:我们在以前都学过哪些图形,大家可以举例吗?
学生A:三角形、平行四边形、正方形、长方形。
教师:看来大家对学过的知识掌握很好,那我们学过这些图形的哪些知识?
学生B:主要学习了他们的面积和周长。
教师:很好,那在现实生活中我们见到过这些图形的真实例子吗?
学生C:国旗是长方形、雨伞是三角形、礼品盒是正方形……
教师:看来同学们对平日里的事物观察很仔细,那么就让我们对学过的多边形面积进行整理。
通过这个环节,学生可以充分了解数学来源于生活,加上形象的多媒体演示,使学生直观认识多边形图形的形状和特征,激发学生的学习兴趣。并且,在引入过程中加入了国旗元素,从而对学生进行爱国主义教育。
2. 交流引入知识结构
教师:现在给大家展示已经学习过的多边形图形,请同学们看大屏幕,那么谁可以准确说出其中一个面积求解公式呢?
学生A:长方形的面积公式是长乘以宽,正方形的面积公式是边长乘以边长,三角形的面积公式是边长乘以高除以2……(此时学生只需对自己感兴趣的图片加以解释,若学生的公式出现错误情况,则教师给予正确的面积公式。)
教师:同学们知道,一面队旗或是魔方表面都属于平行四边形,那么平行四边形的面积公式是如何推导出来的?下面请同学们以小组合作的形式完成讨论,并选出代表进行发言。
学生B:我们组讨论出来的结果是:沿着平行四边形的顶点剪开,可以将两个三角形排成一个长方形。
学生C:我们组讨论出来的结果是:沿着平行四边形的任何一边的高剪开,将两个三角形,一个长方形,并排成一个长方形。
小组合作交流完成后,教师带领学生回顾三角形、长方形的面积公式。
教师:如果我们只能通过一个图形来推导其他图形的面积计算公式,那么我们会选长方形、正方形还是平行四边形?
学生D:正方形是一个特殊的长方形,所以首选是长方形。而且在计算三角形和梯形的面积时,最基本的图形同样是长方形。
通过提问的方式,引导学生跟随教师的思维进行思考。本环节通过引入一面队旗或是魔方来引入平行四边形,让学生亲自推导、计算多边形的面积,在动手操作过程中提高学生的实践能力和合作能力,并且下意识地对学生进行核心价值观教育。通过提问的方式,教师对学生学习情况的了解会更加深刻,突出教师心系学生,再以积极的教学态度对待教学,且在提问时,每一位学生都有机会回答,教师以实际行动践行民主思想。
3. 引导学生学以致用
利用经典的基本图形来描述和分析问题,能把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果,这就是新课标2011版新增的核心概念“几何直观”.发展学生的“几何直观”能力,能使抽象思维同形象思维结合起来,充分展现问题的本质,突破数学理解上的难点,从而帮助学生深刻理解数学的内涵.
事实上,在图1中我们可以将△DBF、△EFC看成是由△ABC分别绕点B、C按逆(顺)时针旋转得到.图形的运动和变换往往会改变一些量,在解题教学中如果我们能引导学生寻找图形中的一些不变的量,这能揭示我们数学最本质的核心内容,既能解开学生心中的疑惑,又能培养学生的观察、分析、概括、归纳等能力.
利用经典的基本图形来描述和分析问题,能把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果,这就是新课标2011版新增的核心概念“几何直观”.发展学生的“几何直观”能力,能使抽象思维同形象思维结合起来,充分展现问题的本质,突破数学理解上的难点,从而帮助学生深刻理解数学的内涵.
事实上,在图1中我们可以将△DBF、△EFC看成是由△ABC分别绕点B、C按逆(顺)时针旋转得到.图形的运动和变换往往会改变一些量,在解题教学中如果我们能引导学生寻找图形中的一些不变的量,这能揭示我们数学最本质的核心内容,既能解开学生心中的疑惑,又能培养学生的观察、分析、概括、归纳等能力.
2、在整理多边形面积计算公式推导的过程中进一步体会转化的思想,逐步形成用转化的策略解决问题的能力。
3、发展空间观念,培养自主学习的意识、解决问题后的反思意识。
教学重点:
建构科学完整的知识体系,沟通知识之间的联系,灵活解决问题。
教学难点:
理解掌握多边形面积之间的联系,整理完善知识结构。
教具准备:
ppt课件、图片、复习单、易错题单等。
教学过程:
一、创设情景,引入课题
观察南湖校区全景图,呈现土地形状,提出问题从而唤起学生记忆,引出课题。
(设计意图:利用图片为学生创设学习的情景,将数学和生活联系起来,提出问题,自然引出了本课复习的内容,为后面的复习做好铺垫。)
二、整理回忆,再现旧知
师:课前我们已经对这五种多边形的面积计算知识进行了回忆整理。请问,关于多边形的面积计算你都整理了什么?(计算公式、公式的推导等)
(一)展示收集到的学生自主整理的复习单,让学生体会整理面积计算公式的方式多样化。
(二)回忆旧知
1、忆公式。
学生根据自主整理,汇报交流多边形的面积计算公式。(文字表达、字母表达式)
2、忆推导。
(1)小组内交流公式的推导过程。
(2)小组代表全班交流。
(3)师引导学生小结:在推导上述图形的面积时,都用到了转化的方法。转化是一种学习的好方法。
(三) 理清联系,深化认识
(四) 公式延伸,进一步感受各种图形的面积计算公式的联系
课件动态演示:梯形上底长度渐变为0时,梯形演变为三角形。梯形的上底长度渐变成等于下底时,梯形演变为平行四边形。
三、纠错分享,查漏补缺
四、巩固应用,拓展提升
1、 有一块草坪,求草坪的面积。
2、有一块平行四边形菜地,DE=EF=FC,GB=GD,其中阴影部分种的小白菜,面积是8 ,求这块平行四边形菜地的面积是多少平方米?
五、全课总结,自我评价
师:通过这节课的复习,你有什么收获或者感受呢?
——复习课学案设计
宋斌才
一、学习目标
1、能自己回顾总结圆的周长与面积计算公式。
2、会利用公式进行圆的周长和面积的计算。
3、会变通使用公式解决生活中的实际问题。
二、学习过程
(一)、概念我熟知
学习方法:通过回忆、查阅书籍以及笔记自己完成填空。然后同桌交流,最后全班订正。
1、圆心到()叫圆的半径,用字母()表示。同一个圆的半径长度()。
2、通过(),两端在()的线段叫(),用字母()表示。同一个圆的直径长度()。
3、在同一个与圆内,直径与半径的关系是:()。
4、绕圆()的长度,叫圆的周长,圆的周长是一条()线。
5、圆的周长总是直径的()倍多一点。实际上,圆的周长除以()的商是一个固定的数,我们把它叫做(),用字母()表示。
6、我们用拼接的方法来探讨圆的面积的计算方法。把圆平均分成若干份,拼接的图形像()或();均分的分数越多,拼接的图形就越接近()。拼出的长方形的长相当于圆的(),宽相当于圆的()。
(二)我会小结
学习方法:自己根据条件解答问题,并根据自己的解答小结出计算公式。圆的半径扩大3倍,直径扩大()倍,周长扩大()倍;面积扩大()倍
小铁环直径6分米,大铁环直径8分米。大铁环和小铁环半径的比是();周长的比是();面积的比是()。
在一张长60厘米,宽40厘米的长方形纸上剪一个最大的圆,则圆的面积是()平方厘米。如果剪一个最大的半圆,则半圆的面积是()平方厘米。
把一个圆形纸片沿半径平均分成若干等份,拼成一个近似的长方形。则面积(),周长()。A增加 B减少C不变
(三)、我能运用
学习方法:读懂题意,根据题中的数学信息,和要解决的数学问题,选择相关的公式进行计算,计算完毕后要注意仔细检查哦!
把一个直径是10厘米的圆剪成两个半圆,则两个半圆周长的和是()厘米。
一根铁丝正好围成一个直径8分米的圆,如果改围成一个正方形,则正方形的边长为()厘米。
上面图形的周长是25.7厘米,它的面积是多少平方厘米
把半径3厘米的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长长。
()
下图中,圆的周长25.12厘米,圆的面积正好和长方形的面积相等,求涂色部分的面积和周长。
0 ·
A
(四)、课堂总结
B
1、通过这节课的学习,我记住了根据条件的不同,圆的周长可以用下面的公式进行计算。();根据条件的不同,圆的面积可以用下面的公式进行计算()。
2、我认为计算圆的周长与面积的时候要注意:
3、我对今天本堂课的学习效果评价是();同学对我的评价是();老师对我的评价是()
三、资源链接
1、其他平面图形的周长和面积计算公式。
如图1, 设四边形ABCD中, AB=a, BC=b, CD=c, DA=d, 四边形的面积为S,
则S=△ABC的面积+△ADC的面积
把 (1) 式和 (2) 式两边分别平方后相加得:
由于a, b, c, d都是定值, 所以从 (3) 式立即看出, 当cos (∠B+∠D) =-1, 即∠B+∠D=180°时, 4S2有最大值, 从而S有最大值.
这就是说, 各边长度不变的情况下, 当四边形为圆内接四边形时, 其面积最大.
一、说教材
本节课是人教版九年义务教育第九册“多边形面积”的“整理和复习”。这部分教材要求先把本单元学过的知识进行系统的整理,然后再通过混合练习复习巩固各种多边形面积的计算。在授课中我结合自己对《标准》的理解,体现出一些创新理念:不是让学生机械的背诵和默写公式,而是通过情境引入、剪切拼摆、合作学习、创造想象。算法多样、审美情趣等各环节来实现——人人学有价值的数学,人人掌握必须的数学,不同的人在数学上得到不同的发展。
二、教学目标:
1、掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,会计算组合图形的面积。
2、体验图形的平移、旋转以及转化的数学思想方法,促进空间观念得到进一步发展。
3、通过丰富的现实的数学活动,让学生获得探究学习的经历,体验学习的快乐和数学美感。
三、说教法、学法
1、尊重需要凸现主体
教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于“转化”这一重要数学思想有更深理解,从而进行学法指导。
2.激励创新加强整合精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学中能动地构建知识体系,迸发出创新的火花。充分利用多种教育资源,引起讨论、展望未来、抒发豪情,既在数学课中渗透了德育,又使课堂从单一的学科教学走向多学科、多功能的整合。
3、亲身体验培养美感
培养学生感受美、创造美的能力是小学教育的目标之一。在教学中,教师充分让学生去想象,把各种图形之间的联系构造成一编幅优美的图画,使学生在愉快的数学活动中发掘美、欣赏美、创造美。当然,通过指示学生习惯于思维定势下的机械计算在现实生活中未必就 “美”,体现出“加强数学与生活的密切联系”是新世纪数学教育改革的重要内容与发展方向。
四、说教学过程:
1、教师用启发提问的形式,让学生回顾本学期已学过的多边形的面积有那些?学生在回忆中交流,并结合对面积的推导过程的观察,进一步理解这三种面积公式的由来。
2、引导学生回答如下问题:①要求面积,必须知道什么?②三角形、梯形为什么要÷2③已知面积和高,如何求底?等问题,让学生进一步理解面积中个部分之间的关系。
3、及时练习:(多媒体出示)(1)填表,计算面积(2)明辨是非(3)求阴影部分的面(4)解决问题(2个)重在引导学生进行审题训练,使学生在进行解决问题时要认真、仔细,明确所要解决的问题,并采取恰当的方法进行解决问题。
4、进行课堂练习。让学生在独立练习中巩固所学知识,提高解决问题的能力。教师在其中进行辅导。随后进行集体订正。针对存在的问题进行点拨。
五、小结。
通过这节课的学习,你有什么收获?
1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。
2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。
3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点:整理完善知识结构。
教学难点:掌握多边形面积之间的联系。教学过程: 导入预测:
导入语:在《多边形的面积》这个单元我们都学过了哪些知识?请同学们在小组内相互说一说。(也可以翻开课本79页至93页独自回顾一遍)
板书课题:在学生讨论时教师先板出课题:多边形面积整理与复习。
指着课题引导:这节课我们一起来整理与复习《多边形面积》这个单元。今天我们上一节---?(复习课)我们一起整理和复习---?(齐读课题:多边形面积)
注:“---”的地方声音要变得缓慢,请学生说。第一层面的整理预测:整理多边形面积的计算公式
过渡:谁先来说一说这个单元我们都学过了哪些知识?(让学生自主回答)引导:我们先整理多边形面积的计算公式。(指名学生回答、老师板书)三角形面积计算公式:S=ah平行四边形面积计算公式:S=ah÷2 梯形面积计算公式:S=(a+b)h÷2 进一步引导:除了这三种图形的面积计算公式外?我们前面还学过了哪些图形面积?(还有长方形、正方形的面积)这两个图形的面积计算公式怎样用字母表示?(指名学生回答、老师板书)
第二层的整理预测:整理多边形面积的计算公式的推导过程。
引导:平行四边形、三角形、梯形的面积计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)
展开:哪位同学请先来说“平行四边形的面积计算公式”的推导过程? 把平行四边形沿着它的“高”剪下来,分成两个部分时,运用“割补”法,经过“平移”,把平行四边形“转化”成了长方形。因为长方形的宽等于平行四边形的高,长等于平行四边形的底,根据形状改变,面积不变,“推导”出平等四边形的面积计算公式。
也可以说把新的知识“转化”成已经学过的(旧的)知识来学习、研究,并通过“旧的”知识来总结、“推导”出新的知识,(板书)这是一种很好的学习方法。
师:“三角形的面积计算公式”的推导过程呢?
两个“完全一样”的三角形,先“重合”也就是“完全重合”,因为它们的形状相同,面积相等,再经过“旋转”,最后“平移”拼成一个“等底等高”的平行四边形。三角形面积是拼成的“等底等高”平行四边形的--?(一半)所以计算三角形的面积时都要除以2。
指着板书重复:概括说把三角形“转化”成了平行四边形来学习、研究,也是把新的知识“转化”成已学过的(旧的)知识,并通过“旧的”知识的总结、“推导”出新的知识,(指出板书)“转化”方法,这种思考问题的方式,在这个单元里我们已经用了两次。
师:“梯形的面积计算公式”的推导过程是也用运用了这种方式呢? 两个“完全一样”的梯形。先“重合”也就是“完全重合”,因为它们的形状相同,面积相等;再经过“旋转”,最后“平移”拼成一个的平行四边形,它们高相等、梯形的底=(上底+下底)的和。
梯形的面积是拼成的平行四边形的--?(一半)所以计算梯形的面积时都要除以2。指着板书重复:同样!也是把新的知识“转化”成已学过的(旧的)知识,并通过“旧的”知识的总结、“推导”出新的知识。
第三层的整理预测:整理多边形面积之间的关系。过渡:我们从这些图形面积计算公式的推导过程,我们发现这些图形与图形的面积之间有着密切的“联系”!(板书:联系)
第四层的整理预测:巩固、总结、引申
过渡:刚才经过同学们动手操作、动脑思考、动口说理,进一步理解和巩固了多边形面积的计算公式及推导过程。下面我们一起来完成几道练习题。
1.出示图形。(分以下步骤完成
第一步:求平形四边形的面积要具备哪些条件?出示两条底边的长度及两条高,第二步:求三角形的面积需要具备哪些条件?(底和相对应的高)出示直角三角形三条底边的长度,让学生选择条件求出面积。再让学生根据面积,求出另一条底边对应的高。
第三步:求梯形的面积要具备哪几个条件?(上底、下底或下底加上底的和、高)出示数字,要求学生用公式代入法解决。
2.看图、联想。(分以下步骤完成)
出示图⑴,条件:每小格1平方分米。
引导:观察这个图,你想到了什么?
汇报:它们面积相等,它们底相等、高相等。
引申:将一个长方形框架“拉动”变成一个平行四边形。你们又有什么发现? 出示图⑵,你又想到了什么?
引导:观察这个图,你想到了什么?
汇报:它们面积相等,它们底相等、高相等。
引申:将两个面积相等的三角形能拼成一个平行四边形吗? 三角形的面积是平行四边形面积的一半。3.你能求出下面图形的面积吗?
这块地的面积是多少? 草地的面积呢?
路面的面积呢?(你有几种办法求出路面的面积)总结:通过这节课的学习你有哪些收获)(学生自由发言)总结:图形与图形面积之间存在着紧密的联系,它们的计算公式间相同也存在着密切联系。只要我们善于观察、善于思考、分析,总会有新的收获!
1.判断题。
(1)两个底和高都分别相等的三角形面积一定相等。()
(2)两个底和高分别相等的梯形能拼成一个平行四边形。()
使学生清楚:底和高相等的梯形形状不一定相同,只有形状和面积都分别相等的梯形才能拼成一个平行四边形。
(3)平行四边形面积是三角形面积的2倍。()
使学生清楚:只有在等底等高的情况下,平行四边形的面积才是三角形面积的2倍。(4)两个三角形的高相等,它们的面积就相等。()
使学生清楚:三角形的面积等于底乘高除以2。如果两个三角形的高相等而底不相等,它们的面积也不相等。
要求学生独立判断,并说明理由。
订正:(1)√(2)×(3)×(4)×
2.计算下面图形的面积。
让学生先识别每个图形是什么图形,想好求每个图形的面积应用什么公式,再独立列式计算。
做完后让学生说说计算图形面积时应注意什么?①看清是什么图形;②选择正确的公式;③正确的计算;④注意单位名称。
订正:(1)270平方厘米,144平方厘米,3.61平方米;(2)3.41平方米,4.5平方分米,357平方米
(三)综合练习
1.根据所给条件求面积。
(1)三角形的底是5分米,高是1分米。
(2)长方形的长是2厘米,宽是3厘米。
(3)平行四边形的底是4分米,高是2分米。
(4)梯形的上底是1厘米,下底是3厘米,高是2厘米。
要求学生口头列式说出结果,并想一想应用了哪个面积公式。
订正:(1)2.5平方分米,(2)6平方厘米,(3)8平方分米,(4)4平方厘米。
2.自己测量出求下面图形的面积所需的数据,并求出图形的面积。
订正时让学生说出是怎么测量的。测量时应注意什么。
3.下图是三角形小旗。同学们要做 6面这样的小旗,一共要用纸多少平方厘米?
订正:38×38÷2×6=4332(平方厘米)
4.一块平行四边形的地,底长是280米,高是57.5米。共收油菜籽3542千克,平均每公顷产油菜籽多少千克?
订正:28×57.5=1610(平方米)
1610平方米=0.161公顷
3542÷0.161=22000(千克)
5.有一块平行四边形的地,(如图)分成三块种菜。第一块种西红柿,第二块种黄瓜,第三块种茄子。问:每种菜占地多少平方米?
【多边形的面积复习教案】推荐阅读:
多边形面积整理复习11-02
多边形面积的计算复习课教学设计03-09
多边形面积的计算教学反思10-26
多边形面积教学反思06-01
多边形面积单元反思07-05
《多边形的内角和》教案04-03
相似多边形教案09-25
多边形的内角和初中数学教案范文01-30
《画多边形》优秀教案及课后反思02-25
钉子板上的多边形教材06-28