《二次函数》说课稿(共8篇)
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础
2、教学目的要求:
(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点: 重点:
(1)二次函数的概念
(2)能够表示简单变量之间的二次函数关系.
难点:
具体的分析、确定实际问题中函数关系式
二.教法、学法分析:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
温故知新—揭示课题自我尝试—探求新知
合作探究—内容深化小试身手—循序渐进
课堂回眸—归纳提高课堂检测—测评反馈
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。(课本第三页问题1、2).3、小试身手—循序渐进
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。(课本P3练习第1、2)
4、课堂回眸—归纳提高
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
四、对本节课的一点看法
关键词:新课改 教学研究 说课稿
各位专家、老师,大家好:
今天我说课的课题是《2.2函数的表示法》,下面我将从以下几个方面进行阐述。首先我对本节教材进行简要分析:
1.说教材
本节内容是人民教育出版社出版的全日制普通高级中学教科书(必修)数学第一册(上)的第二章《函数》第二节,教学用一课时,该课时主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。
本节课中掌握函数的三种方法表示的以及各自的特点并灵活运用是教学的重点,对一个实际问题如何恰当地选择适当的表示方法,并对离散型函数及分段函数的理解成为教学的难点,为了突出重点、突破难点,深刻理解函数概念中的对应法则就是关键所在。
基于以上对教材的认识,根据数学课程标准中提出的要求,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
2.说目标
(1)知识与技能:
①掌握函数的三种表示方法,明确每种方法的特点,尤其是解析法。
②通过学习函数的三种表示法及其之间的相互转化,提升对函数概念的理解。
③认识分段函数,并会初步应用。
④初步学会用数学方法分析、解决实际问题,发展应用意识。
(2)过程与方法:
①通过丰富的实例进一步体会函数是描述变量与变量之间的依赖关系的重要的数学模型,体会对应关系在刻画函数概念中的作用。
②在实际情景中,会根据不同的需要选择恰当的方法表示函数。
③通过具体的实例,了解简单的分段函数。
(3)情感、态度价值观:
①从学生熟知的实际问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲。
②把数学和实际相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
③通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养合作意识。
为突出重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈设计思路。
3.说教学方法
教法选择与教学手段:
基于本节课的特点我着重采用指导自学、讨论交流、讲练结合的教学方法,进行优化组合,发挥各种方法的长处和优点,实现教学过程的最优化。同时,采用计算机多媒体的现代教学手段,增加教学容量和直观性。在此依据的是行为主义学习理论。
学法指导:
让学生自学、质疑、尝试、归纳总结,培养学生发现问题、研究问题和解决问题的能力;让学生利用图形的直观性启迪思维,树立数形结合的思想。在此依据的是认知主义学习理论和构建主义学习理论。
最后,我来具体谈一谈本节课的教学过程。
4.说教学过程
在分析教材,确定教学目标、合理选择教法与学法的基础上,我预设的教学过程如下:
教学环节:
【复习回顾】从学生已有的知识、经验出发,回忆函数的概念,在学生原有认知的基础上,借助“最近发展区”为学习函数表示法作铺垫,注重知识之间的联系,调动学生学习的积极性和主动性。
【导入新课】以函数的三种表示方法导入,让学生自学,教师主导,明确每种表示的特点以及现实生活中的大量实例,进一步感受函数概念所描述的客观世界,体会三种表示方法所刻画的对应关系,抓住关键,突出重点。
【应用研究】
例1.学生自学,质疑,教师主导,突出函数定义的整体性,体会三种表示方法的特点以及之间的联系,感受三种方法各有所长,彼此互补,从不同的角度看待函数,渗透函数思想。
例2.模仿例1,通过实例变式,讨论交流,借助类比迁移,再次突出重点,进一步学习分段函数,初步体会分段函数也是一种刻画现实世界的数学模型,感受函数图象的多样性,借助实际问题对应的函数图象的特殊性,突破难点。
例3.引导学生分析喷水池的结构特点,以对称性为突破口,以过水池中心的截面为切入点,得到截面为两段抛物线(对称的)后,通过待定系数法列函数解析式解决实际问题的过程,培养学生分析问题、解决问题的能力,发展应用意识,培养审美情趣,感受数学的应用价值。
【反馈演练】查漏补缺,巩固提升。
【归纳小结】反思、交流、归纳总结,提高数学表达和交流能力。
【作业布置】巩固、强化,提高。
【板书设计】见课件(根据我校的多媒体安装方式设计)。
【说明反思】根据我校学生的实际状况,以课本为基础,适当拓展而设计。
各位专家、老师以上所说只是我预设的一种方案,预设效果如何,还有待于课堂教学实践的检验。
本说课结束,恳请各位专家、老师提出宝贵意见。谢谢!
二次函数课件说课
一。 教材分析
1、教材的地位及作用
函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2.教学目标
(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,
3、教学的重、难点
重点:二次函数的概念和解析式
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力
4、学情分析
①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析
1` 教法(关键词:情境、探究、分层)
基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)
根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的`主动性和积极性,使学生由“学会”变“会学”和“乐学”.
3、教学手段
采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习兴趣,参与热情,增大教学容量,提高教学效率。
三、教学过程
完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:
(一)。创设情境 温故引新
以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:
(1)你们喜欢打篮球吗?
(2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
从而引出课题〈〈二次函数〉〉,导入新课
(二)。合作学习,探索新知
为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。
学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数
(三)当堂训练 巩固提高讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。
(四)。小结归纳 拓展转化
让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。
(五)布置作业 学以致用
作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系。
四。评价分析
本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。
五。教学反思
1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。
北大附中深圳南山分校:马立明
一、教材分析-----教学内容、地位和作用本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。总课时安排为3课时,《函数的单调性》是本节中的第一课时。函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。按现行教材结构体系,该内容安排在学习了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。在学生现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。
二、学情分析教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。我所教授的班级的学生具体学情具体到我们班级学生而言有以下特点:学生多才多艺,个性张扬,但学科成绩不很理想,参差不齐;经受不住挫折,需要经常受到鼓励和安慰,否则就不能坚持不懈的学习;学习习惯不好,小动作较多,学习时注意力抗干扰能力不强,易被外界因素所影响,需要不断的引导;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。
三、教学目标:根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
三维目标1
知识与技能:(1)
使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。(2)
通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;
2过程与方法:(1)
通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。(2)
通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。3
情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。
(二)重点、难点重点:函数单调性的概念:为了突出重点,使学生理解该概念,整个过程分为:作图象并观察图象→讨论:函数图象的变化趋势是什么?→在这种变化趋势下,x与函数值y是如何相互影响的?→你能从量的角度出一个缜密的,完善的定义来吗?每个步骤都是在教师的参与下与引导下,通过学生与学生之间,师生之间的合作交流,不断反省,探索,直到完善结论,最终达到一个严密,简洁的定义。难点:函数单调性的判断与推证:突破该难点的:通过对照、分析定义,引导学生,概括出证明方法及步骤:“取量定大小,作差定符号,判断得结论”,并注意解题过程的规范性与严谨性。
四、教学方法:合作学习认为教学是师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识。视教学为师生平等参与和互动的过程,强调教师只是小组中的普通一员,起到一个引导者,管理者角色。在课堂教学中要加强知识发生过程的教学,充分调动学生的参与的积极性,有效地渗透数学思想方法,发展学生个性品质,从而达到提高学生整体的数学素养的目的。结合教学目标和学生情况我采用合作交流,探究学习相结合的教学方法。
五、内容组织形式课堂教学环节画出函数的图象,并研究出它们各自的变化趋势。认知派学习理论认为学习的积累及恰当与否取决于学习者已有的认知结构。残缺的认知结构是完成不了整个学习过程的。针对学生的实际情况,在上一节的课后布置作业让学生画一次函数,二次函数及反比例函数图象,回顾以前知识,尽而形成一个完整的认知结构,为以后的学习排除障碍。
(二)创设情景,引发兴趣师:在生活中我们经常会关注一些实际问题。如果你是市长分管防洪抗旱工作,你会对水位的涨落随时间变化的规律特别关心,如果你为一个股民的话,你心里想得就是如果能预见每天股价的走势那该是一件多么幸福的事情。实际上这些问题归根结底就是:是研究量与量之间的变化趋势,也就是研究其中两个变量如何相互影响的,这也是我们今天所要研究的主要课题。看以下实际问题:请说出气温在哪些时段是升高的,怎么样用数学语言来刻画“随时间的增大气温逐步升高”这一特征?这种在一定时间内,随着时间增大,气温逐步升高的现象反映在数学中,我们称它为函数的单调性行为学习理论者强调环境对学习产生的影响。当学习者对某种特殊的刺激做出反应时,就产生了“学习”。依据教材知识,渗透新课标理念,通过与实际问题的联系,揭示我们研究此节内容的现实意义,目的引发学生学习兴趣,有利于学生学习动力的产生。要点:短,平,快。
(三)合作交流,建构数学师生互动,引导探索建构数学,收获新知让一小组的代表上台来展示在上节课后所做的几个函数图象,并据此讨论下列问题,问题
1、并说一说所画函数的图象的变化趋势。观察得到:随着x值的增大,函数的函数图象有的呈逐渐上升的趋势,有的呈下降的趋势,有的在一个区间内呈上升趋势,在另一个区间内呈逐渐下降的趋势。问题2:你能明确的说出“图象呈逐渐上升趋势”的意思吗?此时X与函数值y如何相互影响的?讨论得到:在某一个区间内,当x值增大时,函数值y也增大图象在该区间内呈上升趋势。在某一个区间内,当x值增大时,函数值y也反而减小图象在该区间内呈下降趋势。在众多的函数中,很多函数都具有这种性质,因此我们有必要对函数的这种性质做进一步的讨论与研究。这就是我们今天这一节课的主题。函数的这种性质,我们就称为函数的单调性。
1、通过一系列的问题,引发对概念的全面思考。从具体到抽象,再从抽象到具体,并通过合作交流,增强学生对概念的理解,不断的修正、完善结论,达到建构数学的目的。
2、教学实践证明,小组内成员合作,组间成员竞争的讨论是一种有效的教学策略,使得整个评价的重心同个人之间竞争转为团体合作达标。并能使教师与学生、学生与学生之间有更多的交往、互动的机会。它也是引导学生积极参与教学过程的重要措施,是培养学生合作精神和激发学生创新意识的重要手段,也是促使每个学生得到充分发展的有效途径
3、重点:学生能否抓住定义中的关键词“给定区间”、“任意”和“都有”,是能否正确,深入透彻地理解和掌握概念的重要一环。分析定义,使学生把定义与图形结合起来,使新旧知识融为一体,加深对概念的理解,渗透数形结合的分析问题的数学思想方法问题3:我们刚才已经对函数的单调性,做了定性的分析,我们如何从量的角度来刻画这种性质。你能给出一个确切的定义来吗?请用你自己的话表达出来,并说给你的小组成员听,并与他交流后,形成集体意见,再展示给大家。最后的结论:定义:对于函数f的定义域I内某个区间A上的任意两个值⑴若当<时,都有f
(四)数学运用,巩固新知例题例1:定义在R上的函数y=f图象如图甲,所示,请说出它的单调区间,以及在每一单调区间上,是增函数还是减函数
参看所画看图乙,指出函数y=的单调区间,能不能说在定义域内是单调减函数?指出函数的单调区间,能不能说在定义域内是单调减函数?)如图丙,函数图象如图,写出单调区间让学生进一步理解一般函数单调区间的定义,区间的端点要不要?在这里一定要强调单调性只是函数的“局部性质”它与区间密不可分。-----不能把函数的单调区间写成例2判断并证明函数f=在上的单调性。证明:设,是上的任意两个实数,且<,------------------------------则f-f=-=,由,∈,得>0,又由<,得-<0,于是f-f<0,即f 归纳证明方法并加以比较说明;使学生突破本节的难点,掌握重点内容。基本步骤:“取量定大小,作差定符号,判断定结论”其中第二环节是难点“作差→变形→判断正负”。课堂练习: 1、判断下列说法是否正确 定义在R上的函数满足,则函数是R上的增函数。 定义在R上的函数满足,则函数是R上不是减函数。 定义在R上的函数在上是增函数,在上也是增函数,则函数是R上的增函数。、定义在R上的函数在上是增函数,在上也是增函数,则函数是R上的增函数。 2、判断函数f=kx+b在R上的单调性,并说明理由.3、判断并证明函数在上的单调性。练习的设定也是由浅入深层层推进的。回顾总结,加深理解理解理解请同学小结一下这节课的主要内容,有哪些是词语特别注意的? 1、函数单调性的定义,注意定义中的关键词。 2、证明函数单调性的一般步骤; 3、在写单调区间时,不要轻易用并集的符号连接;课后知识性内容总结,把课堂内容转化为学生的素质兼顾差异,分层练习必做:习题2.1:第1、4、7题选做:研究的单调性,并给出严格证明,你能求出该函数的值域吗? 1、针对学生个体的差异设置分层练习。既注重课内基础知识掌握,又兼顾了有余力的学生的能力的提高。 同心县回民中学 马万 各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。 一、教材分析 (一)教材特点、教材的地位与作用 本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 (二)重点、难点 1、本课时的教学重点是:函数的奇偶性及其几何意义。 2、本课时的教学难点是:判断函数的奇偶性的方法与格式。 (三)教学目标 1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法; 2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。 3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教法、学法分析 1.教学方法:启发引导式 结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性. 2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习. 三、教辅手段 以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学 四、教学过程 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序:温故导新,指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。 (一)温故导新,指导观察,形成概念 这节课我们首先从两类对称:轴对称和中心对称展开研究.思考:请同学们做出函数y=x2和y=|x|图象,并观察这两个函数图象的对称性如何? 给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征(通过课件展示的几个函数的图像,使学生发现图像关于y轴对称了则定义域关于原点对称)引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书:(1)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数 提出新问题: 再以学生熟悉的两个函数 y=1/x和y=x的图象让学生观察这两个函数的图像有怎样的对称性? 学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:(2)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数 强调注意点:“定义域关于原点对称”的条件必不可少.结论:什么是函数的奇偶性?并注意函数的奇偶性是函数的一个整体性质,不同于函数的单调性。 (二)通过刚才的学习让学生试着总结奇偶函数都有哪些性质,老师补充。(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。 (2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数. (3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质. (4)偶函数:f(x)f(x)f(x)f(x)0, 奇函数:f(x)f(x)f(x)f(x)0;(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。 (6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。 (三)探究函数奇偶性的判断方法: 方法一:图像法 方法二:定义法。根据前面所授知识,归纳步骤:(1)求出函数的定义域,并判断是否关于原点对称(2)验证f(-x)=f(x)或f(-x)=-f(x)3)得出结论 给出例题,加深理解: 例1:判断下列函数的奇偶性:(教师以第一个小题为例,给出具体的解题步骤 其余几个留给学生独立解决,发现问题及时纠正)通过练习:提高学生解题的熟练程度。 (四)让学生为本节课小结,老师补充完善 “指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础。指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。 说学情分析: 通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想。另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会。 说教学目标: 知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小。 说过程与方法: (1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法; (2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质。 说情感、态度与价值观: (1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣; (2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣。 说教学重点: 指数函数的图象和性质 说教学难点: 指数函数概念的引入及指数函数性质的应用 说教法研究: 本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识。 利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识 本节课使用的教学方法有:直观教学法、启发引导法、发现法 说教学过程: 一、问题情境 : 问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么? 问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗? 分析可知,函数的关系式分别是 与 问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办? 这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数。 二、数学建构 : 1]定义: 一般地,函数 叫做指数函数,其中 。 问题4:为什么规定 ? 问题5:你能举出指数函数的例子吗? 阅读材料(“放射性碳法”测定古物的年代): 在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变。经过5740年( 的半衰期),它的残余量为原来的一半。经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = 。 这种方法经常用来推算古物的年代。 练习1:判断下列函数是否为指数函数。 (1) (2) (3) (4) 说明:指数函数的解析式y= 中, 的系数是1。 有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z); 有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1 2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成 问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究? 函数的定义域,值域,单调性,奇偶性等; 利用函数图象研究函数的性质 问题7:作函数图象的一般步骤是什么? 列表,描点,作图 探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察。 引导学生分析图象并总结此时指数函数的性质(底数大于1): (1)定义域?R (2)值域?函数的值域为 (3)过哪个定点?恒过 点,即 (4)单调性? 时, 为 上的增函数 (5)何时函数值大于1?小于1? 当 时, ;当 时, 问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗? (引导学生自我分析和反思,培养学生的反思能力和解决问题的能力)。 根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较。 问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗? 酒泉中学 马长青 一.教学内容分析 1.本课定位与内容 本节课选自《普通高中课程标准实验教科书数学必修1》A版第一章第三节函数的基本性质第一小节函数的单调性与最大(小)值,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性,共2课时,本节课为第一课时。 2.教材的地位和作用 从单调性本身看,学生的学习分为三个层面,首先是在初中学习了一次函数、二次函数、反比例函数图象的基础上对函数的增减性有一个初步的感性认识,其次在高一对单调性进行严格定义,最后在高三从导数的角度再次研究单调性。本节课的学习处于对单调性学习的第二层面,通过图象归纳、抽象出单调性的准确定义,并在高中首次经历代数的严格证明,是对初中学习的一次升华。 从本节的教学看,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,从本章的教学看,本节课的学习是后续研究指数函数、对数函数内容的基础。 从函数知识网络看,单调性起着承上启下的作用,一方面,是初中学习内容的深化,使学生对函数单调性从感性认识提高到理性认识。另一方面,函数的单调性为后面学习指数函数、对数函数、三角函数及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值,导数等都有着紧密的联系。 从高中数学学习看,函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围的有力工具。3.教学目标 根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为: 知识与技能: (1)从形与数两方面理解单调性的概念 (2)初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法 (3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力 过程与方法: (1)通过对函数单调性定义的探究,渗透数形结合思想方法(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。情感态度价值观: 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法 4.教学重难点 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性的概念形成。 二.学生情况分析 知识结构 学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。 能力结构 通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。 学习心理 函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。 本班学生特点 本班为酒泉中学高一(4)班,学生数学素养较好。三.教学模式 《普通高中数学课程标准(实验)》指出:“高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的‘再创造’过程。” 因此,根据教学内容和学生的认知、能力水平,本节课作为新授课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。 五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新 四.教学设计 为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新 单调性的概念是本节课的重点,而形成过程则是本节课的难点,为了突破这一难点,让学生能够充分感受单调性概念的形成过程,经历观察发现、抽象概括,自主建构单调性概念的过程,本节课设置了前三个环节,后两个环节的设计,是为了使学生对函数单调性认识的再次深化。 (一)创设情境,引入新课 数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本节课的开始,我作了这样的情境创设,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。 提出问题1:分别作出函数y=x,二次函数y=2x,y=-2x和y=x的图象,并且观察函数变化规律? 2首先引导学生观察两个一次函数图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.二次函数的增减性要分段说明,进而提出问题:二次函数是增函数还是减函数? 进一步讨论得出:增减性是函数的局部性质 据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数? 结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。 学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导 (二)初步探索,概念形成 提出问题三:以y=x+1在(0,+∞)上单调性为例,如何用精确的数学语言来描述函数的单调性? 这是本节课的难点,因此我将概念形成设置了三个阶段 1.提问学生什么是“随着” 经讨论得出,随着是由于当x取一定的值时,y有确定值与之对应,因此x变化时,y会根据法则随着x发生变化 2.如何刻画“增大”? 要表示大小关系,学生会想到取点,比大小,学生也许会用特殊点说明问题,比如x取2、3,2<3,对应的函数值是5<10 提出质疑:这个点的变化能否说明y随着x增大而增大,进一步引导学生从特殊到一般,进入第三阶段,对“任取”的理解。 3.对“任取”的理解 针对特殊值,学生可能会举反例证明其是不充分的,那么应该如何取值呢?学生可能会多取一些,也可能会想到将取值区间任意小,进一步讨论得出“任取”二字。 用对随着的理解再次深化函数概念,用对增大的理解得到要表示大小关系,最后再强调取值的任意性,这样就实现了从“图形语言”到 “文字语言”到 “符号语言”的过渡,实现“形”到“数”的转换,形成了单调性的定义。 得到定义后,再提出如何得到f(x1) (三)概念深化,延伸拓展 通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。 2提出问题四:能否说从这个例子能得到什么结论? 在它的定义域上是减函数? 学生思考、讨论,提出自己观点 学生可能会提出反例,如x1=-1,x2=1 进一步得出结论: 函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数 教师给出例子进行说明: 进一步提问: 函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数。 学生会提出将函数图象进行变形(如x<0时图象向下平移) 性 回归定义,强调任意 在问题四的背景下解决本题,体会在运动中满足任意性。拓展探究:已知函数 是(-∞,+∞)上的增函数,求a的取值范围.这个问题有一定难度,但是学生在前面集合的学习中已经接触过在运动中求参数a的取值范围,此处可看作是对前面学习的巩固。 (四)证法探究,应用定义 在概念已经完善的基础上,提出例1 例1:证明函数 在(0,+)上是增函数 本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。 学生根据单调性定义进行证明,教师在黑板上书写证明步骤,再引导学生总结证明步骤。 提出例2判断函数在(0,+∞)上的单调性。 根据定义进行判断,体会判断可转化成证明。 课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。 进一步提问:如果把(0,+∞)条件去掉,如何解这道题?为学生提供思考空间。 (五)小结评价,作业创新 从知识、方法两个方面引导学生进行总结。学生回顾函数单调性定义的探究过程;证明、判断函数单调性的方法步骤;数学思想方法。 小结过程使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义。 作业的设计实现了分层,既巩固了基础,又给了学生充足的思考空间。 通过本节课的学习,预计学生能理解单调性的定义,绝大多数学生能按照单调性的证明步骤进行证明,能判断函数的单调性,本节课的评价方式为课堂反馈、教师评价、学生自评相结合。 各位专家、各位老师: 大家好! 今天我说课的题目是《函数的概念》,本课题是人教A版必修1中1.2的内容,计划安排两个课时,本课时的内容为:函数的概念、三要素及简单函数的定义域及值域的求法。下面我将以“学什么、怎么学、学了有何用”为思路,从教材、教法、学法、教学评价、教学过程设计、板书设计等几个方面对本节课的教学加以说明。 一、教学目标 1、课程标准 课节内容的课标要求是: (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 (2)在实际情景中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 (3)通过具体实例,了解简单的分段函数,并能简单应用。 (4)通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 (5)学会运用函数图像理解和研究函数的性质。 2、课标解读 关于函数内容的整体定位和基本要求解读: (1)把函数作为刻画现实世界中一类重要变化规律的模型来学习,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型; (2)强调对函数本质的认识和理解,因此要求在高中数学学习中多次接触、螺旋上升; (3)关注背景、应用、增加了函数模型及其应用; (4)削弱和淡化了一些内容,如函数的定义域、值域、反函数、复合函数等; (5)注重思想和联系——增加了函数与方程、用二分法求方程的近似根。 (6)合理地使用信息技术,旨在帮助学生更好地认识和理解函数及其性质。 【依据意图】 (1)教材如此要求的根本目的是希望帮助学生更好地从整体上认识和理解函数的本质,而真正理解函数概念是不容易的。因此,不要在过于细枝末节的非本质问题上作过多的训练,有了定义域和对应关系,值域自然就定了。此外,“课标”建议先讲函数再讲映射,也是为了帮助学生把注意力集中在函数的本质理解。 (2)希望通过方程根与函数零点的内在联系,加强对函数概念、函数思想及函数这一主线在高中数学中的地位作用的认识和理解。并通过用二分法求方程近似根将函数思想以及方程的根与函数零点之间的联系具体化。 (3)二分法是求方程近似根的常用方法,更为一般、简单,能很好地体现函数思想,“大纲”只是用“三个二”解决根的分布问题。 (4)现代信息技术不能替代艰苦的学习和人脑精密的思考,信息技术只是作为达到目的的一种手段,一种快速计算的工具。 3、教材分析 (1)地位作用 函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,其重要性体现在以下几个方面: 1、函数是高中数学七大主干知识之一,又是沟通代数﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础; 2、函数的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力; 3、这一节所学习的函数概念既是对初中所学函数概念的一次升华和再认识、对集合语言的一次重要应用;又是以后继续学习函数的性质、数列等等知识的必备理论基础,在函数学习中是承上启下的关键章节。 (2)内容与课时划分 本课题是高中数学人教A版必修1中1.2节,计划教学2个课时,第一课时内容包括函数的概念、函数的三要素、简单函数的定义域及值域的求法;第二课时内容为:区间表示、较复杂函数的定义域及值域的求法、分段函数、函数图象等。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。 4、学情分析 (1)学生在初中已经在初中学习过函数的概念。 (2)本班级学生个体差异较明显。 基于以上分析,我把本节课的教学目标和教学重难点制定如下: 5、教学目标 【依据意图】:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。基于以上分析作为依据,课时目标分解如下: 【课时分解目标】 1、能够列举生活中具有函数关系的实例; 2、能用集合与对应的语言描述函数的定义,能对具体函数指出定义域、对应法则、值域; 3、会求一些简单函数(带根号,分式)的定义域和值域; 4、能够从函数的三要素的角度去判定两个函数是否是同一个函数。 二、教学重难点 重点:让学生体会函数是描述变量之间的相互依赖关系的重要数学模型,正确理解形成函数的概念。 难点:引导学生从具体实例抽象出函数概念。 [意图依据]:本课时是概念课,重在概念的理解和形成,但教师应把重点放在让学生形成概念的过程中,联系旧知、突破难点、生长新知。为此通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。 三、教法 问题式教学法(实例情境、启发引导、合作交流、归纳抽象) 由于本课题是从集合与对应的角度揭示函数的本质,无论难度还是跨度都有质的飞跃。根据学生的心理特征和认知规律,我通过以问题为主线,以学生为主体,以教师为主导的教学理念。采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。 [意图依据]:函数的`概念的教学要注重以下几个方面:(1)把集合作为一种语言;(2)对函数本质的理解不能一步到位,要注重螺旋上升;(3)重视信息技术的使用。为此,教师要在课堂上搭建一个平台,通过展示实例、学生举例、典例分析、小结归纳等环节穿插若干问题,引起思考,达成教学目标。 四、学法 自主探究、合作交流 、展示互评 我们知道越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质;但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上我重视学生在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”,以此培养学生发现问题、研究问题和分析解决问题的能力;同时在预习环节有学生的自主学习、在互动环节有学生的合作交流、在课后拓展环节有学生的探究学习。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径以及思考问题的方法,使学生真正成为教学的主体。也只有这样做,才能使学生“学”有所“思”,“思”有所“获”,“获”有所“用”。也恰好能够体现我以“学什么、怎么学、学了有何用”来设计本课题的整体思路。 [意图依据]:本课时是以问题为主线的教学过程,着重让学生经过对大量实例的剖析、了解、归纳而形成概念。在这个过程中,教师的作用是引导,经过一系列问题的提出、解决让学生在思考、交流的基础上层层深入的理解函数概念。 五、教学过程设计 本节内容的教学过程我设计为以下逐层推进六个步骤: 1、课前预习、生成问题: 2、创境设问、引入课题: 3、观察分析、探索新知: 4、思考辨析、深刻理解: 5、提炼总结、分享收获: 【《二次函数》说课稿】推荐阅读: 指数函数的性质说课稿09-10 《一次函数图像与性质》说课稿06-21 二次函数学案09-08 几何画板二次函数05-26 二次函数压轴题分类06-07 高中数学二次函数12-01 一元二次函数应用教案10-03 二次函数最值应用问题05-28 初中数学二次函数基础复习06-30 《二次函数的图像与性质》教学反思10-01函数的奇偶性说课稿 篇5
指数函数的说课稿 篇6
必修1函数单调性说课稿 篇7
《函数的概念》说课稿的内容 篇8