超声波讲稿

2024-05-27 版权声明 我要投稿

超声波讲稿(精选4篇)

超声波讲稿 篇1

超声波检查是利用声能反射物理特性形成图像,观察人体正常与异常组织解剖结构差异的一种物理检查方法。随着计算机电子技术的飞速发展,超声波仪器不断改进与完善。眼科对超声医学认识的不断加深,而且超声波检查对人体无害、操作简单,现以成为眼科临床上非光学检查的一种常规检查,在科研领域中也是不可缺少的仪器。

第一节 超声波成像基本原理

弹性物体振动带动周围介质引发波动并向远方传播,这种传播称为声波。声源每秒钟振动的次数为频率,以赫兹(HZ)来表示。人能听到20~20000 HZ,大于20000 HZ称为超声波。声能是由经过特殊处理的压电陶瓷片产生,而且电脉冲与声脉冲可以相互转换,因而称为换能器。

换能器产生超声波后,它以声波形式向前传播。一个波动周期的间距称为波长,1/2波长为超声波分辨介质最小差异能力的极限。声波交替产生并向远方不断的传送,声波在途径不同介质时声速是有区别的。声速在不同介质中传播的速度是不同的,在空气中333米/秒、在水中1500米/秒、在钢材中6000米/秒、在角膜中1550米/秒、在房水与玻璃体中1532米/秒、在晶状体中1641米/秒、在巩膜中1630米/秒、在眼外肌中1631米/秒、在视神经中1615米/秒、在眼眶脂肪中1476米/秒。

超声在传播过程中,介质对它有一定阻力叫声阻。介质密度越大、声速越快、声阻也越大,所以声阻的大小与介质密度有直接关系。眼 眶骨声阻值最大,房水与玻璃体声阻值最小。

超声反射是超声成像的基础,超声从第一个介质向第二个介质传播时,如果两者声阻差达到一定程度时便发生反射,一部分声能被反射回来称为回声,一部分声能继续向前传播。超声图像便是这些回声的再现,相邻介质声阻差异越大、反射的能量越大,回声也越强。

应用声反射回声时间差所产生的波峰间距可精确测量眼部组织的各种生物参数:眼轴长度、角膜厚度、前房深度、房角开放度、小梁网睫状体距离、晶状体厚度、巩膜厚度、眼外肌厚度、视神经宽度等多种组织的生物参数。

应用声反射回声振幅的高低,评估所探测组织的性质。因为两个相邻组织结构是有差异的,而超声波在进行组织探测时其组织结构差异在超声波分辨率之内就会产生反射与回声,在时间基线上出现高低不等的回声振幅。

超声频率的大小,决定着超声的分辨力,其比例关系为正比。分辨力分为纵向与横向分辨力,前者为主。纵向分辨力与脉冲宽度有关,脉冲宽度=脉冲时间×声速。最大纵向分辨力=1/2脉冲宽度,超声频率越高、脉冲时间越短、声衰减越大、声穿透力越差。这是超声最为基础的物理特性,也叫超声物理特性。

眼科在全身组织器官中属体表器官,组织结构精细,内部多为液体,声衰减小。眼科超声仪器使用的频率,根据检查的部位与临床疾病诊断的要求所需要的频率分别:8MHZ、10 MHZ、20 MHZ、50 MHZ,仪器类型:A型、B型、D型,图像显示:一维、二维、三维。

一、A型超声

A型超声为一维超声图像,声波向前传播遇一个界面发生一次反射回声。回声按反回时间顺序以波峰形式排列在时间基线上,波峰高度代表回声强度、回声越强、波峰越高,波峰与波峰的间距代表介质与介质间的距离。

A型超声在临床与科研上多用于两个方面。一方面用于眼部组织生物参数测量,如眼轴长度测量。他的变化是眼内病变程度评估的一项指标,同时也是植入人工晶体度数计算的主要部分。他还可以测量角膜厚度,为角膜屈光手术的实施提供手术保证。另一方面A型超声的作用是应用标准化超声中的标准化A型超声,利用声波的垂直与折射反射原理。测量眼外肌、视神经厚度、泪腺直径。以巩膜回声强度作为基础生物参照数,对眼内纤维血管膜与视网膜进行组织定性检查。

以上是A型超声探查组织时获取的两个主要内容,回声振幅间的距离是生物测量的基础,回声振幅的高低落差是组织定量或定性的基础。

二、B型超声

B型超声为二维图像,以回声光点组成图像,光点亮度代表回声强度。由于眼睛的组织解剖结构与声学物理特性决定,眼科专用B型超声仪器多为扇形扫描的实时图像。主要特点是探头小、频率高、分辨力高,适于眼部组织结构的清晰显示。

三、D型超声 D型超声又称为多普勒超声(Doppler ultrasound),是利用超声波的反射原理和多普勒效应获取运动器官信息一种物理诊断方法。当声源发射超声波时,被探测的介质向着声源运动,遇到介质的反射声波波长被压缩,频率增加。反之,被探测的介质背离声源运动,遇到介质的反射声波波长变长,频率变低。接收到的频率与发射的频率之间有一个频率移动即为频移。频移的程度与介质的运动速度成正比,与介质中的速度成反比。以色彩显示血流方向,朝向探头流动的血液为红色,背离探头流动的血液为蓝色。正向速度越快,红色的亮度越亮:反向速度越高,蓝色的亮度越亮。彩色多普勒用于眼科检查,主要是显示眼部各种病变时血管分布情况或血液流速变化情况。

第二节 眼科超声检查方法

超声波用于眼科的检查有几种方法,因检查的部位与临床对病变诊断的需要不同,而检查的方法各异。目前临床常用的检查方法基本上有两种方法:“直接检查法”、间接检查法。

一、A型超声

A型超声检查方法在临床均为直接检查法,不论是组织生物参数测量还是组织定量或定性的探测。检查过程:被检者取仰卧位,结膜囊内滴入表面麻醉剂1-2分钟后。一只手持A型超声探头,另一手分开上下眼睑,但不能对眼球施压。探头垂直放于角膜正中央上,如果操作过程符合仪器内生物模块的条件要求。仪器会报出每次测量完成的提示音,在检查结果的平均数值中,一般会由6-10次的测试结果组成。以上是生物测量检查的过程。对于组织定量或定性的A型超 声检测,同样是在表面麻醉后探头置于眼球表面上。根据眼内病变的位置选者检查位置,如果病变在鼻上方周边部,探头应放置于眼球颞下方的位置上。检查过程中对于取何种波形冻结,应根据仪器内各种病变生物模块的要求去做,它是一个较为复杂的检查过程。

二、B型超声

B型超声检查方法,无论是10MHZ还是20 MHZ频率的超声检查,均使用直接与间接检查法。

10MHZ超声检查时均使用直接检查方法。一种方法为病人轻闭双眼,双眼睑皮肤涂接触剂或导声胶,以排出皮肤纹理间的空气。探头底部置于上眼睑外上方,探头标记指向鼻侧,因为眼睑闭合后眼球会向外上方转动,这是一生理现象。而此时探头放置的位置为水平位扫描,他可以同时显示视盘与黄斑的形态学图像。

探头可以在此基础上进行移动完成其他部位的扫描。当探头标记指向上方时,垂直位的扫描可以观察到视乳头、黄斑部上下方的情况。在不同位置的眼扫描过程中,可以观察到眼内与眼眶内的组织结构的情况。关键是发现正常组织结构与病变组织结构的异常差异,确定病变位置、范围、形状、边界、内回声及声衰减与回声强度的变化。在全部检查过程中应充分利用超声在眼科上的物理特性:低增益高反射、高增益低反射。在眼内病变中星样玻璃体变性、视网膜脱离、眼球内异物、脉络膜骨瘤、视盘下埋藏玻璃疣、玻璃体内陈旧性出血并形成纤维机化物等病变均为低增益高反射,玻璃体后脱离、玻璃体内新鲜出血、玻璃体内细小的膜样病变等病变均为高增益低反射。在有 的眼内病变中一些特异性图像同时具备了高增益低反射与低增益高反射的超声物理特性。在眼部扫描过程中应尽量去发现病变图像的形态学特征,他是超声诊断病变的特异性指标。

另一种检查方法是结膜囊内滴入表面麻醉剂,探头表面涂少量接触剂。分开上下眼睑探头直接放入于结膜囊内与角膜或结膜接触,他的最大优势是可以克服眼睑与晶状体对声能的消耗。使传播到病变组织的声能更加强大,对病变的探测更加准确与细腻,在有限的超声能量中最大程度上发现病变的细小变化。MHZ超声检查也称之为高频超声检查,根据固定的焦长数值通过变化探头与被探测组织的距离,用于临床检查的部位可分为眼前节与眼后节。眼前节检查过程:结膜囊内滴入表面麻醉剂,根据被检者睑裂大小选择适宜的眼杯放入于结膜囊内。眼杯内注入导声介质于杯溶积的4/5,导声介质一般使用0.9%生理眼水即可。然后将探头放入眼杯内导声介质中,进行水平与垂直位或根据病变检查的需要进行任意位置上的探测,该种检查方法称之为间接检查法。眼后节检查方法与10 MHZ直接检查方法相同。

三、超声生物显微镜的检查过程另述。

第三节

正常眼部超声图像

一、A型超声

经A型超声检查后获取得一维超声波形。以眼轴长度为例,在时间基线上左端为始波,始波后到视网膜表面会出现4个单高波,分别是角膜、晶状体前囊与后囊、视网膜。假设眼轴长度是23毫米时,分别由角膜厚度1毫米、前房深度3毫米、晶状体厚度4毫米、玻璃体腔深度15毫米组成,前房与玻璃体为液平段。视网膜波峰后面是高低不等的波峰,表示眼球后软组织回声,最后高波峰为眼眶内骨回声。

经标准化A型超声探测时所获取的波形,因病变的不同呈现各种不同的波形。眼内病变波形变化由仪器内相应的生物模块进行评估。特别是眼内纤维血管膜与视网膜组织性质的超声鉴别,他可以提供诊断信息报告。而他们均以巩膜回声强度作为基础生物参数进行比较,得出不同眼内膜样物性质的结果,他主要通过分析回声波峰的高低而确定。

二、B型超声图像

B型超声图像为二维图像,因使用的超声频率不同而显示的部位也不同。用50 MHZ探头时显示的是眼前节组织结构:角膜、虹膜、睫状体、晶状体前囊。用20 MHZ探头时显示眼前节组织的角膜与虹膜和晶状体的全景图像,显示眼后节视盘、黄斑及视网膜表面与巩膜后表面与周围正常和异常组织的关系。用10 MHZ探头探测眼部组织结构正常与异常的情况,是眼科临床上非光学物理的常规检查。做水平位扫描时可见到晶状体后囊,声像图表现为一半弧形强回声光带,有时会出现尾影因多次反射所致。因玻璃体声阻低或限于超声探测的频率低,不能分辨玻璃体内胶原纤维与透明质酸的结构差异,所以声像图显示为透声区或无回声区。在当今仪器的发展中特别注意到了这一符合超声物理特性的区域,所以在仪器的研制开发过程中应用多种 技术,主要目的是增加玻璃体内细小信号的显示。玻璃体的右侧为弧形反光带,由视网膜、脉络膜、巩膜组成,其后由眼球后脂肪、视神经、眼外肌等组织构成了眼眶的回声图像,眶脂肪回声较强、眼外肌回声为中等强度、视神经回声较弱。做水平位探测时可呈现W形的回声图像。垂直位探测时眼球后回声呈三角形。眼球转动时可查到眼外肌的附着点,眼上静脉在视神经与上直肌之间,正常情况时多不能显示。

第四节

异常眼部超声图像

眼部超声扫描范围基本包括眼球与眼眶,眼球内超声扫描它借助于眼球内含有大量液体的解剖结构特点,充分发挥声阻小的超声物理特性,显示在二维图像上是透声区或液性暗区。玻璃体组织结构变化又分为玻璃体自身组织结构变化与继发玻璃体周围组织结构变化而引起的玻璃体组织结构变化。

1、玻璃体自身组织结构变化病变:玻璃体混浊、玻璃体内细

薄膜样病变、高度近视、玻璃体后脱离、星样玻璃体变性。

一、玻璃体混浊

玻璃体为透明胶体,体积约为眼球总容量的4/5。玻璃体胶体结构由胶原细纤维及填充其间的大分子透明质酸组成,胶原细纤维随意排列成网状,构成玻璃体支架。透明质酸含水量达98%,他赋予了玻璃体粘性和弹性。胶原细纤维在玻璃体基底部密度最高,透明质酸浓度在玻璃体中央部最低。随着年龄增长胶样玻璃体逐渐减少,液化玻璃体逐渐增多,主要是透明质酸解聚析出结合的水分子,形 成多个小液化腔。玻璃体混浊出现最早的位置是玻璃体中央部,在二维超声图像上表现为中等强度的回声光点。在眼部超声检查过程中嘱患者上下或左右方向转动眼球后突然停止,立即进行超声扫描探测会发现玻璃体混浊光点的移动。其移动程度与玻璃体液化程度有直接关系,在一维图像上可看到波峰跳跃现象。玻璃体混浊回声光点的沉降速度,也是玻璃体液化出现的一个体征。随着病变的发展玻璃体混浊回声光点会增加,基本上出现在玻璃体中央附近。

二、玻璃体内细薄膜样病变

玻璃体内很薄的膜样回声光带形状与眼球壁弧度走形相同步,多数出现在玻璃体后极部或周边部。回声强度为弱回声,是低增益高反射的回声物理特性。检查时仪器的增益应使用高增益,便于发现膜样回声的全貌,起端与终端均与视网膜无联接。检查时眼球转动,他活动明显。

三、高度近视眼

近视性玻璃体混浊病变,主要发生在轴性近视眼中,其中主要变化为玻璃体中央部胶原细纤维减少与透明质酸的浓度降低。此时病人会出现飞蚊症,眼前有漂浮的点状或发丝样混浊物。持续一段时间后会隐没消失,以后还会出现该症状。在二维图像上会出现回声光点或细薄线状的回声光带,回声强度为低中等回声强度。在轴性近视的变化中巩膜也会发生变化,表现为后极部的全面及局部的扩张,出现轴性近视与后巩膜葡萄肿。在B型超声图像上显示是清楚的,特别是在活体眼上可以见到这一明显的声学图像特征。

四、玻璃体后脱离

玻璃体后脱离是指玻璃体基底部以后的玻璃体与视网膜的相互分离。在玻璃体液化基础上,液化小腔逐渐扩大并与相邻的小腔合并成大腔,同时胶原细纤维变性浓缩合成纤维束。最后腔中的液体经过视盘前方的皮质孔洞进入玻璃体后方,使玻璃体与视网膜分离。临床上用直接检眼镜可发现视盘前环行混浊物既Weiss环,他是从视盘撕下的视乳头周围胶质组织附着在后玻璃体皮质上所致。超声检查时只要是相邻组织结构差异在超声分辨率之中均可发现不完全性与完全性玻璃体后脱离,特别是最近高频超声应用于临床,其玻璃体后脱离显示的更加清楚。

玻璃体后脱离的声像图特征在B型图像显示为,位于玻璃体后极的线状回声光带与视盘相连或不相连。前者为不全性脱离、后者为完全性脱离。玻璃体后脱离的线状回声光带较为光滑、而且很薄,呈现低反射。提高增益后能清楚显示,该病变的声学物理特性是高增益低反射的特征。在完全性玻璃体后脱离中,提高增益后视盘前或后玻璃体腔内可见到一呈中等回声强度的反射光斑与两侧线状回声光带相连,该回声光斑为玻璃体后脱离时从视乳头周围撕拉下胶质组织附着在后玻璃体皮质上所致,即为Weiss环。在不完全性玻璃体后脱离中是看不到Weiss环的,只能看到回声光带。此时光学检查设备发现不完全性玻璃体后脱离是困难的,而超声探测是很容易发现不完全性玻璃体后脱离。

玻璃体后脱离的线状回声光带后运动是活跃的,降低增益后线状 回声光带会消失。在A型超声上表现为一单波峰,呈现低回声波形,仅为巩膜或始波的10%左右。当在眼球转动突然停止后进行超声探测,由于膜的惯性运动,回声光带沿基线自由的摆动或跳跃。

五、星样玻璃体变性

星样玻璃体变性为一种良性的玻璃体变性,好发于老年人,80%单眼发病。眼底检查时在玻璃体内可见到无数个白色圆球或盘状混浊。其变性的性质一般认为由钙灶组成。在B型超声图像上显示为中等或强回声的光点或光斑,光点与光点之间有一定间隙,分布于玻璃体腔内,前部排列疏松、后部排列密集,与视网膜表面有一定距离,整体形状特别是后部呈一弧形界面与眼球壁同步。视力有一定程度的下降。

2、继发于玻璃体周围组织结构变化而引起的玻璃体变化:玻璃体

出血、视网膜脱离、脉络膜脱离、视网膜囊肿、眼球内异物、视盘下埋藏性玻璃疣、晶体脱位等病变。

一、玻璃体出血

玻璃体出血是眼外伤或眼内血管疾病造成视力下降的一种并发症。出血不仅使屈光介质混浊妨碍光线到达视网膜,而且能对眼部组织产生严重破坏作用。

玻璃体本身无血管,不发生出血。玻璃体出血系眼部或全身疾病所致,常见的眼部疾病有增殖性糖尿病视网膜病变、视网膜中央或分支静脉阻塞、视网膜周围炎、视网膜裂孔、视网膜脱离、眼外伤、慢性白血病等病变均可继发玻璃体出血。血液聚积在玻璃体腔内,会对 玻璃体和视网膜产生损害,而机体的反应将逐渐清除血液其分解产物。

B型超声扫描图像形态学特征:新鲜玻璃体出血表现为弱的沙丘样点状回声,回声光点与回声光点之间有间隙。出血的前表面以弱点状回声排列为不规则形状表面,出血后表面与视网膜表面之间无间隙。随着出血时间的延长,有一部分病例会出现出血与视网膜表面之间有一定的间隙,可能与血液的吸收和玻璃体细胶原纤维聚缩有关。在出血的后表面上可见到与视网膜表面相连接的强回声光斑,为血管破裂处既出血源。新鲜玻璃体出血的声学物理特征为高增益低反射,所以行超声探测时应把仪器增益放置到最大。便于玻璃体出血弱回声光点全部清晰显示,充分了解出血的大小范围。

随着玻璃体出血时间的延长,陈旧玻璃体积血易沉积在下方,但是沉积的部位与玻璃体中液化位置及液化程度有直接关系。在出血回声区域中有时会出现一个或数个低回声区,也与该处玻璃体的液化程度和细胶原纤维聚缩有关。当陈旧性玻璃体出血有机化物形成时,声像图上会显示带状或膜样回声。此时回声强度由弱回声变成中等强度回声,特别是有纤维血管膜形成时回声强度会向强回声变化。

在陈旧与新鲜的玻璃体出血中,陈旧性玻璃体出血为中等强度回声。回声光点或光斑排列不规则、疏密程度也不同。新鲜玻璃体出血为弱的点状回声,回声光点排列规则、疏密程度不均匀。超声扫描探测时应先使用高增益的检查条件,同时显示陈旧与新鲜的出血范围。二者之间界线是明显可见的,降低增益检查条件后,新鲜出血会消失,而陈旧性出血范围仍可见到。通过出血面积的测量评,可评估出陈旧与新鲜玻璃体出血的程度。

二、视网膜脱离

视网膜脱离是视网膜本身组织中的神经上皮层与色素上皮层的分离。在胚胎发育中视杯外层形成单一的色素上皮层,视杯内层分化为视网膜的内九层即神经上皮层。两者之间存在着潜在间隙,因此视网膜脱离是色素上皮与其余九层的分离。

眼底检查视网膜脱离呈灰白色隆起,局限在某一区域或很大的区域,其上面可见血管爬行。临床上视网膜脱离分为若干种类型,但是当眼屈光间质不清,眼底不能窥视时。无论是那种类型的视网膜脱离,超声扫描探测将为首选检查、其结果十分准确与可靠。

(一)孔源性视网膜脱离

孔源性视网膜脱离又称为原发性视网膜脱离。由于液化玻璃体经视网膜裂孔进入视网膜下,形成视网膜脱离,是视网膜脱离中最常见的一种类型。

B型超声扫描图像形态学特征,视网膜脱离时玻璃体液性暗区可见到一弧形强回声光带与视盘或眼球壁相连。走形与眼球壁弧度基本相同,凹面向前,回声光带后壁的低回声或无回声暗区为视网膜下液。新鲜的视网膜脱离回声光带规则、纤细光滑。眼球转动后进行检查,由于惯性作用回声光带后运动明显。视网膜脱离回声光带的声学物理特性是低增益高反射,在检查过程中当降低增益条件时,回声光带的声衰减几乎同眼球壁回声同时消失。视网膜裂孔的超声探测,当眼底镜检查受限时,超声探测对确定或发现视网膜裂孔有一定帮助。在检查发现视网膜脱离回声光带中,要作水平与垂直位的详细扫描,注意观察回声光带的连续完整性。当发现回声光带有细小的不连接处,可适当降低检查时增益的条件,清楚显示视网膜裂孔处的回声图像特征即一条回声光带某个局部离断处为透声区。如果使用高频超声探测视网膜裂孔图像形学特征回更加明显,基本上可以准确确定裂孔位置。以上检查过程最好使用结膜囊内的直接检查法,其优点是检查过程中可以克服眼睑与晶状体对声能的衰减作用,对病变检查的更加细腻与位置确定的更加准确。

视网膜脱离回声光带呈波浪或S形时,表明视网膜脱离隆起高度高低不等或有皱褶。光带较厚有皱褶时提示早期增殖性玻璃体视网膜病变,陈旧性视网膜脱离光带宽窄不一,病情进一步加重时回声光带呈V字形,临床上称为漏斗型视网膜脱离。回声光带形态进一步变化为Y字形或T字形,临床上称为完全闭合型视网膜脱离。

孔源性视网膜脱离伴有睫状体、脉络膜脱离称为脉络膜视网膜脱离。脉络膜上面的视网膜有许多皱褶,视网膜裂孔不容易查到。声像图上显示玻璃体透声区内出现双光带,视网膜脱离回声光带下可见到半球形或扁平隆起的脉络膜回声光带,两者回声光带形态学特征明显,一个凹面向前、一个凹面向后容易区别。通过超声生物显微镜检查可见到睫状体脱离,睫状上腔渗液是明显的。

(二)牵拉性视网膜脱离

眼底血管疾患、眼外伤等病变均可引起增殖性玻璃体视网膜病 变。纤维膜或纤维血管膜出现在玻璃体内,在玻璃体视网膜间增殖。各种膜的皱缩与眼球运动会牵拉导致视网膜脱离。

B型超声扫描图像形态学特征,视网膜脱离回声光带上任何一处均会出现膜状、带状、分枝状等形态各异的增殖膜回声,形成对视网膜回声光带的牵拉。这些纤维膜除纤维血管膜外,回声强度均低于视网膜脱离的回声光带。前者属高增益低反射,后者属低增益高反射。在检查过程中降低增益条件纤维膜回声亮度会变暗或消失,而视网膜脱离回声光带亮度会轻度变暗。纤维血管膜与视网膜脱离回声强度差别的二维图像显示,限于仪器的分辨力与灵敏度和人眼视觉对灰节的分辨力,有时很难作出准确的判断。即使视网膜脱离的回声光带显示一成角状态,他是代表牵拉性视网膜脱离的形态学特征,仅仅适于一些早期的或单一的纤维血管膜牵拉性视网膜脱离的情况,对多个纤维血管膜牵拉形成的视网膜脱离的判断有一定困难。进一步的确定需要使用标准化超声中的标准化A型超声。

(三)继发性视网膜脱离

继发性视网膜脱离主要是源于视网膜下方的病变,导致视网膜脱离。在视网膜脱离回声光带下面,可见到隆起或扁平隆起的实体反射的肿物。视网膜脱离的程度与肿物大小有直接关系,根据不同肿物的形态特征及肿物内回声、声衰减特点,对肿物性质可进行鉴别。

(四)标准化A型超声对视网膜脱离与纤维血管膜的鉴别诊断

标准化A型超声的特点,它主要是应用Ossoinig的回波原理。对A型超声回声振幅的高低进行评估,因为回声振幅的高低主要取 决于被探测组织的声速、声阻抗与密度,所以振幅的高低可反应组织的性质。对仪器有严格要求,增益可调节的最小范围为0.1dB,使用S型放大信号处理曲线,有相应的生物组织模块。标准化A型超声对视网膜脱离与纤维血管膜的定性鉴别诊断有两个公式。

A1公式:在基线上与右侧第一个高波峰的夹角应为90度或近似于90度,高波峰从低部到峰尖途中不能出现3个结点,该高波峰代表视网膜脱离的最大波峰即100%。此时时检查使用的增益条件是-6dB。如果多余3个结点,表明探测声波与被探测的组织界面的夹角未能达到90度或近似90度,可能会出现其他结果。

Q2公式:该公式的使用有三个过程,首先检查使用的增益条件是-6dB。先测量玻璃体内膜样回声强度或回声振幅高度,再探测巩膜回声振幅高度,最后探测巩膜前膜回声高度,这时仪器内会根据所测的三个数值结合仪器内的生物模块进行对比计算,得出检测结果。它可直接显示在屏幕,即视网膜脱离或膜样物的提示报告。

对标准化A型超声的检查过程是有严格要求的,其过程如下:首先进行结膜囊内的接触式B型超声探测,详细观察病变的所在位置与回声图像形态特征。用标准化A型超声探测的位置,应是B型超声探测到病变的位置。在全部检查过程中探头应始终保持位置的相对固定,这是非常重要的。他是保证测量准确可靠的关键之处。

三、视网膜囊肿

视网膜囊肿多发生于陈旧性视网膜脱离,是视网膜第五层的分离,多见于下方、大小不等、单发或多发,无视网膜脱离而发生视网 膜囊肿的较少。

B型超声图像形态学特征,视网膜脱离回声光带上出现单个或多个边界清楚的圆形或椭圆形透声区回声光环,回声强度与视网膜脱离回声强度相近似。

四、脉络膜脱离

脉络膜脱离是脉络膜与巩膜之间的潜在间隙有液体或血液的聚集,使脉络膜与巩膜分离。脉络膜与巩膜之间由胶原纤维板状组织连接,赤道前部连接较疏松,所以该处是脉络膜脱离的易发部位。

眼底检查可见到周边部暗褐色或灰褐色扁平隆起,脱离较高时形成单个或多个半球形隆起,表面光滑无皱褶,其上面可见到视网膜血管。

B型超声图像形态学特征,玻璃体透声区内出现单个或多个圆顶形强回声,光带厚而平滑。前端可超过锯齿缘,后端多数终止于赤道部,几乎无后运动。隆起光带与后壁之间显示为无回声暗区时,为脉络膜渗液称为渗出性脉络膜脱离,若有疏密不等的回声光点或光斑称为出血性脉络膜脱离。脉络膜脱离有时出现于多个部位上,呈现对吻或多个相连的隆起图像形态。脉络膜后运动不明显,A型超声振幅高度几乎达到100%。

五、眼球内异物

眼球穿通伤使正常组织解剖组织结构破坏,异物本身对眼球会造成机械性、化学性损伤,同时异物可将细菌带入增加感染机会。在眼内异物中70-90%为金属异物,尤其是铁、铜等异物可导致眼部铁锈 症、铜锈症及眼内感染,使眼部组织破坏造成严重后果。对眼内异物特别是眼球内异物的临床检查与准确诊断是十分重要的,临床上有多种检查方法可以使用。超声扫描探测简单易行,不受屈光间质混浊的影响。可根据眼球内异物声学图像特征迅速发现异物,对眼球壁异物定位是准确的,可确定异物与眼球壁的相互关系,同时对外伤造成的眼部损伤通过超声动态扫描探测可清楚的观察到。

B型超声扫描图像形态学特征,任何眼内异物进入眼内的过程是通过眼睑皮肤,进入角膜或结膜与巩膜进入眼内。特别是异物进入眼球内,异物在途径玻璃体的过程中,该处组织结构遭到破坏,产生了玻璃体混浊或液化。在超声图像上显示玻璃体内的机化索条,他是由异物进入眼球内所致的,也可叫作眼内异物穿通道。该索条声学特性是高增益低反射的性质。在超声探测中探头与角膜或结膜、巩膜伤口应保持一定角度,最好为零度进行探测。检查过程中首先将仪器增益调至到最高条件水平上,轻轻移动探头位置发现玻璃体内机化索条的全貌。前端与角膜、结膜、巩膜伤口相对应,其形态为直或弯曲的回声光带。在其末端均可见到强回声光斑即为异物,此时降低仪器增益条件致异物穿通道机化索条及眼球壁回声消失,强回声光斑仍存在。眼球内异物声学图像特征:强回声光斑、回声光斑后多次反射、三角回声、眼球后无回声间隙,以上四点是超声诊断眼球内异物的重要声学图像特征,特别是在有外伤史前提下,声像图具备有前两点图像形态学特征者,基本上可准确诊断为眼球内异物。

六、脉络膜骨瘤 脉络膜骨瘤是良性肿瘤,病因不明。女性患者多见,好发年龄为25~39岁,多数为单眼受累。

临床表现为视力下降、视物变形。眼底后极部邻近视盘周围,可见到卵圆形或扇贝形不规则的轻度隆起。瘤体中的钙质呈黄白色,周围的视网膜色素上皮变薄显示为橙红色。

B型超声扫描图像形态学特征,单眼或双眼的后极部可见到扁平的强回声带,宽度超过2毫米,其形状与眼球壁形状相近似,其后可见声影,降低增益至眼部正常组织结构基本消失,病变处仍可清晰见到。

七、视盘玻璃疣

视盘玻璃疣是由于神经轴索代谢异常导致细胞内线粒体钙化与细胞外钙质沉着。使视盘扩大、隆起。

眼底检查时位于视盘深部的玻璃疣,是不易发现的。只能发现视盘边界模糊,隆起。

B型超声扫描图像形态学特征,在进行水平位、垂直位扫描时均能显示视盘部位玻璃疣,为强回声光斑。降低检查时的增益条件至周围邻近组织回声消失,强回声光斑仍存在。在强回声光斑后一般不会出现尾影或多次反射。

八、晶状体脱位

外伤或先天异常使晶状体悬韧带部分或全部断裂,会发生晶状体半脱位或全部脱位。晶状体可脱位到前房内或嵌在瞳孔区,而脱到玻璃体腔的最为常见。B型超声扫描图像形态学特征,晶状体脱位到玻璃体腔内,经常附着在视网膜表面上。有时可以沿着视网膜表面滑动,可引发玻璃体出血等眼内病变。超声探测时要不断变化探头位置与角度,才能显示脱位晶状体的声学断面图。图像形态学特征为似一椭圆形中等强度的回声。

玻璃体腔内显示圆形或椭圆形强回声光环为晶状体囊膜回声,晶状体透明时在前后囊中为透声区或无回声区。晶状体完全混浊或晶状体核状混浊时,在椭圆形回声中显示强回声光点或光斑。因外伤或其他原因所致的晶状体囊破裂,晶状体位置正常但晶状体混浊,晶状体前囊基本正常而后囊有时会出现不规则的破裂。特别是用20MHZ探测时其形态学变化显示的非常清楚,破裂的后囊呈不规则的三角形,回声强度为中等强度。这种晶状体后囊破裂的超声显示,对临床决定治疗方案的选择是非常重要的。

人工晶体脱入到玻璃体内呈扁状的椭圆形强回声光斑,与眼球内异物一样可见到伪影。

九、猪囊尾蚴病

眼猪囊尾蚴病变是猪囊尾蚴的幼虫经血液循环到达眼内的,多见与玻璃体与视网膜下,眼眶内有时也可见到。

B型超声扫描图像形态学特征,玻璃体内显示为环形的回声光环为中等强度回声,环内可见一强回声光斑,光环与光斑之间为低或透声区,如果虫体是活的在超声探测时可以发现蠕动。在视网膜下的囊虫回声光环与视网膜和脉络膜接触的光环显示的不十分清楚,不与 视网膜和脉络膜接触的光环显示是清楚的。光环内的强回声光斑显示的非常清楚。

十、黄斑疾病

黄斑病变的诊断在临床主要通过常规检查,OCT用于黄斑部与周围视网膜病变的断层成像检查是最好的检查方法之一。但常因屈光间质不清或病变的范围广而受到限制,眼科超声扫描仪特别是高频超声可以显示黄斑病变,特别是对一些疑难病例可提供有利于鉴别诊断的信息。

B型超声扫描显示黄斑部位有两种基本扫描方式:

(1)水平位扫描:探头位于角膜中央,探头标记指向鼻侧。声像图上面显示视神经,声像图下面显示即视神经下方显示黄斑部。

(2)垂直位扫描:将探头标志向上,放置于鼻侧角膜缘处,显示视神经后,轻轻向颞侧移动,当声像图的前部见到晶状体后囊回声时,以晶状体后囊弧形回声中央点作为定位黄斑部的参照。

黄斑部病变主要包括中心性浆液脉络膜视网膜病变、视网膜下新生血管性黄斑病变、老年性黄斑变性。

超声波个人总结 篇2

自2005年从事超声波检测工作以来,我认为超声波检测的难点主要在于:焊接质量受人的因素和环境的影响很大,超声波检测时有未焊透、未熔合、裂纹、气孔和夹渣等焊接缺陷产生的回波,也可能有焊缝内成型(内凹或内凸)和错边产生的回波。有些回波信号在探伤仪示波屏上出现的位置相同或相近,有的形态又很相似,给检测工作识别带来了难度,有可能造成误判、漏判。超声波检测前应对有关被检测工件的情况(如:焊接工艺、坡口形式、钝边高度、钝边间隙等)进行了解。分析缺陷产生的可能性及其产生在焊缝中的部位,正确判断反射回波;可以防止焊缝中缺陷的漏检、误检,同时结合探头的扫查方式观察缺陷的动态回波变化特点。

超声波探伤对缺陷的判断,主要是依赖于对示波屏上显示的反射回波的鉴别。当认定某一回波是缺陷反射波后,在不同的方向上对该缺陷进行探测,根据缺陷波形状和高度的变化,结合缺陷的位置和焊接工艺,才能对缺陷性质大小进行综合判断。而实际探伤过程当中示波屏上往往有大量回波信号,所以第一步从大量反射回波中找出真正的缺陷波是至关中要的。

然而在实际超声波探伤工作中,示波屏上除了这些缺陷信号外还同时存在着许多其它非缺陷回波信号,也就是伪缺陷波。通常探伤中所占比例要大大高于真实缺陷比例。这些伪缺陷波的存在一方面容易造成探伤者的误判,造成不必要的人力、财力浪费延误工期;另一方面,它们也同时影响检验精度,容易造成漏检影响了检验质量,为

将来安全运行埋下隐患,所以必须把示波屏上的缺陷信号和其它非缺陷回波信号区分开来。实际探伤中,我认为一般是由探伤仪器、探头杂波、工件轮廓回波、耦合剂反射波以及其它一些波等引起的非缺陷回波信号。仔细正确的识别缺陷信号和其它非缺陷回波信号对今后超声波检测工作会有很大帮助。

以上是我从业以来对超声波检测工作的一点心得体会,工作中发现自己的专业知识和理解能力还需要继续加强。在今后的工作中,我会加强学习专业知识,对新型钢超声波检测及新标准继续学习。

崔海峰

超声波探伤培训教程 篇3

渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。

涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。

磁粉、渗透和涡流统称为表面检测。

波长:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。

由上述定义可得:C= f,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。

次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。它们的区别在主要在于频率不同。频率在20~20000Hz之间的能引起人们听觉的机械波称为声波,频率低于20Hz的机械波称为次声波,频率高于20000Hz的机械波称为超声波。次声波、超声波不可闻。

超声探伤所用的频率一般在0.5~10MHz之间,对钢等金属材料的检验,常用的频率为1~5MHz。超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无损探伤。

1.方向性好:超声波是频率很高、波长很短的机械波,在无损探伤中使用的波长为毫米级;超声波象光波一样具有良好的方向性,可以定向发射,易于在被检材料中发现缺陷。

2.能量高:由于能量(声强)与频率平方成正比,因此超声波的能量远大于一般声波的能量。

3.能在界面上产生反射、折射和波型转换:超声波具有几何声学的上一些特点,如在介质中直线传播,遇界面产生反射、折射和波型转换等。

4.穿透能力强:超声波在大多数介质中传播时,传播能量损失小,传播距离大,穿透能力强,在一些金属材料中其穿透能力可达数米。

互相垂直的波,称为横波,用S或T表示。

当介质质点受到交变的剪切应力作用时,产生剪切形变,从而形成横波;只有固体介质才能承受剪切应力,液体和气体介质不能承受剪切应力,因此横波只能在固体介质中传播,不能在液体和气体介质中传播。钢中横波声速一般为3230m/s。横波一般应用于焊缝、钢管探伤。3.表面波R 当介质表面受到交变应力作用时,产生沿介质表面传播的波,称为表面波,常用R表示。又称瑞利波。

表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向;椭圆运动可视为纵向振动与横向振动的合成,即纵波与横波的合成,因此表面波只能在固体介质中传播,不能在液体和气体介质中传播。

表面波的能量随深度增加而迅速减弱,当传播深度超过两倍波长时,质点的振幅就已经很小了,因此,一般认为表面波探伤只能发现距工件表面两倍波长深度内的缺陷。表面波一般应用于钢管探伤。4.板波

在板厚与波长相当的薄板中传播的波,称为板波。根据质点的振动方向不同可将板波分为SH波和兰姆波。板波一般应用于薄板、薄壁钢管探伤。

二.超声波声速测量

对探伤人员来说,用探伤仪测量声速是最简便的,用这种方法测声速,可用单探头反射法或双探头穿透法;可用于测纵波声速和横波声速。

1.反射法测纵波声速 声速按下式计算:

声速 C=2d/(T1-t); t = 2T1 – T2 式中 d------工件厚度;

t------由探头晶片至工件表面传输时间;

T1------由探头晶片至工件底一次波传输时间;

T2------由探头晶片至工件底二次波传输时间;

2.穿透法测纵波声速 声速按下式计算:

声速 C=d/(T1-t); t = 2T1 – T2 式中 d------工件厚度;

t------由探头晶片至工件表面传输时间;

T1------由探头晶片至工件底一次波传输时间;

T2------由探头晶片至工件底二次波传输时间;

3.反射法测横波声速

用半圆弧测横波声速,按下式计算: 声速 C=2d/(T1-t); t = 2T1 – T2 式中 d------半圆半径长度;

t------由探头晶片至半圆弧探测面传输时间;

T1------由探头晶片至圆弧面一次波传输时间;

T2------由探头晶片至圆弧面二

次波传输时间;

动中任何质点都可以看作是新的波源。据此惠更斯提出了著名的惠更斯原理:介质中波动传播到的各点都可以看作是发射子波的波源,在其后任意时刻这些子波的包迹就决定新的波阵面。2.波的衍射(绕射)

波在传播过程中遇到与波长相当的障碍物时,能绕过障碍物边缘改变方向继续前进的现象,称为波的衍射或波的绕射。如右图,超声波(波长为)在介质中传播时,AB(其尺寸为D)遇到缺陷,据惠更斯原理,缺陷边缘可以看作是发射子波的波源,使波的传播改变,从 而使缺陷背后的声影缩小,反射波降低。

当D<<时,波的绕射强,反射弱,缺陷回波很低,容易漏检;当D>>时,反射强,绕射弱,声波几乎全反射。

波的绕射对探伤即有利又不利。由于波的绕射,使超声波产生晶料绕射顺利地在介质中传播,这对探伤有利;但同时由于波的绕射,使一些小缺陷回波显著下降,以致造成漏检,这对探伤不利。一般超声波探伤灵敏度约为/2。

三. 超声场的特征值

充满超声波的空间或超声振动所波及的部分介质,叫超声场;超声场具有一定的空间大小和形状,只有当缺陷位于超声场内时,才有可能被发现。描述超声场的特征植(即物理量)主要有声压、声强和声

阻抗。1.声压P 超声场中某一点在某一时刻所具有的压强P1与没有超声波存在时的静态压强P0之差,称为该点的声压,用P表示(P = P1-P0)。

声压幅值 p = cu = c(2fA)其中 ----介质的密度;c----波速;u----质点的振动速度; A----声压最大幅值; f----频率。

超声场中某一点的声压的幅值与介质的密度、波速和频率成正比。在超声波探伤仪上,屏幕上显示的波高与声压成正比。2.声阻抗Z 超声场中任一点的声压p与该处质点振动速度u之比称为声阻抗,常用Z表示。

Z = p / u = cu / u = c 由上式可知,声阻抗的大小等于介质的密度与波速的乘积。由u = P/Z可知,在

同一声压下,Z增加,质点的振动速度下降。因此声阻抗Z可理解为介质对质点振动的阻碍作用。超声波在两种介质组成的界面上的反射和透射情况与两种介质的声阻抗密切相关。3.声强I 单位时间内垂直通过单位面积的声能称为声强,常用I表示。

22I = Z u/2 = P/(2Z)当超声波传播到介质中某处时,该处原来静止不动的质点开始振动,因而具有动能;同时该处介质产生弹性变形,因而也具有弹性位能;声能为两者之和。

声波的声强与频率平方成正比,而超声波的频率远大于可闻声波。因此超声波的声强也远大于可闻声波的声强。这是超声波能用于探伤的重要原因。

在同一介质中,超声波的声强与声压的平方成正比。

四. 分贝的概念与应用

1.概念

由于在生产和科学实验中,所遇到的声强数量级往往相差悬殊,如引起听觉的声-16 2– 4 强范围为10~ 10瓦/厘米,最大值与最小值相差12个数量级。显然采用绝对量来度量是不方便的,但如果对其比值(相对量)取对数来比较计算则可大简化运算。分贝就是两个同量纲的量之比取对数后的单位。

通常规定引起听觉的最弱声强为I1 = 10 2–16 瓦/厘米 作为声强的标准,另一声强I2与标准声强I1 之比的常用对数称为声强级,单位是贝尔(BeL)。实际应用时贝尔太大,故常取1/10贝尔即分贝(dB)来作单位。(如取自然对数,则单位为奈培NP)

 = lg(I2/I1)(Bel)=10 lg(I2/I1)= 20 lg(P2/P1)(dB)在超声波探伤中,当超声波探伤仪的垂直线性较好时,仪器屏幕上的波高与声压

成正比。这时有

 = 20 lg(P2/P1)= 20 lg(H2/H1)(dB)这时声压基准P1或波高基准H1可以任意选取。2.应用

分贝用于表示两个相差很大的量之比显得很方便,在声学和电学中都得到广泛的应用,特别是在超声波探伤中应用更为广泛。例如屏上两波高的比较就常常用dB表示。

例如,屏上一波高为80%,另一波高为20%,则前者比后者高

 = 20 lg(H2/H1)= 20 lg(80/20)= 12(dB)

用分贝值表示回波幅度的相互关系,不仅可以简化运算,而且在确定基准波高以后,可直接用仪器的增益值(数字机)或衰减值(模拟机)来表示缺陷波相对波高。

超声波从一种介质传播到另一种介质时,在两种介质的分界面上,一部分能量反射回原介质内,称为反射波;另一部分能量透过界面在另一种介质内传播,称为透射波。在界面上声能(声压、声强)的分配和传播方向的变化都将遵循一定的规律。

一. 单一界面的反射和透射

声能的变化与两种介质的声阻抗密切相关,设波从介质1(声阻抗Z1)入射到介质2(声阻抗Z2),有以下几种情况: 1.Z2 > Z1

声压反射率小于透射率。如水/钢界面。2.Z1> Z2

声压反射率大于透射率。如钢/水界面。声强反射率及透射率只与Z1、Z2的数值有关,与从哪种介质入射无关。3.Z1>> Z2

声压(声强)几乎全反射,透射率趋于0。如钢/空气界面。

4.Z1 Z2

此时几乎全透射,无反射。因此在焊缝探伤中,若母材与填充金属结合面没有任何缺陷,是不会产生界面回波的。

二. 薄层界面的反射和透射

此情况主要对探头保护膜设计具有指导意义。

当超声波依次从三种介质Z1、Z2、Z3(如晶片—保护膜—工件)中穿过,则当薄层厚度等于半波长的整数倍时,通过薄层的声强透射与薄层的性质无关,即好象不存在薄层一样;当薄层厚度等于四分之一波长的奇数倍且薄层声阻抗为其两侧介质

1/2 声阻抗几何平均值(Z2 =(Z2 Z3))时,超声波全透射

三. 波型转换和反射、折射定律 当超声波倾斜入射到界面时,除产生同种类型的反射和折射波外,还会产生不同类型的反射和折射波,这种现象称为波型

转换。

1.纵波斜入射

2.横波入射

四. 超声波的衰减 超声波在介质中传播时,随着距离增加,超声波能量逐渐减弱的现象叫做超声波衰减。引起超声波衰减的主要原因是波束扩散、晶粒散射和介质吸收 1.扩散衰减

超声波在传播过程中,由于波束的扩散,使超声波的能量随距离增加面逐渐减弱的现象叫做扩散衰减。超声波的扩散衰减仅取决于波阵面的形状,与介质的性质无关。

2.散射衰减

超声波在介质中传播时,遇到声阻抗不

同的界面产生散乱反射引起衰减的现象,称为散射衰减。散射衰减与材质的晶粒密切相关,当材质晶粒粗大时,散射衰减严重,被散射的超声波沿着复杂的路径传播到探头,在屏上引起林状回波(又叫草波),使信噪比下降,严重时噪声会湮没缺陷波。

3.吸收衰减

超声波在介质中传播时,由于介质中质点间内磨擦(即粘滞性)和热传导引起超声波的衰减,称为吸收衰减或粘滞衰减 通常所说的介质衰减是指吸收衰减与散射衰减,不包括扩散衰减。

较远处轴线上的声压与距离成反比,与波源面积成正比。1.近场区

波源附件由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。

波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。22 N =(Ds-)/(4) Ds/(4)2.远场区

波源轴线上至波源的距离x >N的区域称为远场区。远场区轴线上的声压随距离增加单调减少。当 x >3N时,声压与距离成反比,近似球面波的规律。因为距离x足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉

现象可以略去不计,所以远场区不会出现声压极大极小值。

3.近场区在两种介质中分布

实际探伤时,有时近场区分布在两种不同的介质中,如水浸探伤,超声波先进入水,然后再进入钢中,当水层厚度较小时,近场区就会分布在水、钢两种介质中。设水层厚度为L,则钢中剩余近场区长度N为 N = Ds/(4)– Lc1/c2 式中 c1----介质1水中波速;

c2----介质2钢中波速;

----介质2钢中波长。

在近场区内,实际声场与理想声场存在明显区别,实际声场轴线上声压虽也存在极大极小值,但波动幅度小,极值点的数量也明显减少。

二. 横波声场

目前常用的横波探头,是使纵波斜入射到界面上,通过波形转换来实现横波探伤

的,当入射角在

超声波探伤中常用的规则反射体有平底孔、长横孔、短横孔、球孔和大平底面等。回波声压公式(考虑介质衰减因素):

四. AVG曲线

AVG曲线是描述规则反射体的距离、回波高及当量大小之间关系的曲线;A、V、G是德文距离、增益和大小的字头缩写,英文缩写为DGS。AVG曲线可用于对缺陷定量和灵敏度调整。

以横坐标表示实际声程,纵坐标表示规则反射体相对波高,用来描述距离、波幅、当量大小之间的关系曲线,称为实用AVG曲线。实用AVG曲线可由以下公式得到: 不同距离的大平底回波dB差

Δ=20lgPB1/PB2=20lgX2/X1 不同距离的不同大小平底孔回波dB差

Δ=20lgPf1/Pf2=40lgDf1X2/Df2X1 同距离的大平底与平底孔回波dB差

Δ=20lgPB/Pf=20lg2λX/πDfDf 用以上公式计算绘制实用AVG曲线时,要统一灵敏度基准。

坐标代表反射波的幅度。由反射波的位置可以确定缺陷位置,由反射波的幅度可以估算缺陷大小。B型:B型显示是一种图象显示,屏幕的横坐标代表探头的扫查轨迹,纵坐标代表声波的传播距离,因而可直观地显示出被探工件任一纵截面上缺陷的分布及缺陷的深度。C型:C型显示也是一种图象显示,屏幕的横坐标和纵坐标都代表探头在工件表面的位置,探头接收信号幅度以光点辉度表示,因而当探头在工件表面移动时,屏上显示出被探工件内部缺陷的平面图象,但不能显示缺陷的深度。

目前,探伤中广泛使用的超声波探伤仪都是A型显示脉冲反射式探伤仪。

3.A型脉冲反射式模拟超声波探伤仪的一般原理

二. 探头

超声波的发射和接收是通过探头来实现的。下面介绍探头的工作原理、主要性能及其及结构。1.压电效应

某些晶体材料在交变拉压应作用下,产生交变电场的效应称为正压电效应。反之当晶体材料在交变电场作用下,产生伸缩变形的效应称为逆压电效应。正、逆压电效应统称为压电效应。

超声波探头中的压电晶片具有压电效应,当高频电脉冲激励压电晶片时,发生逆压电效应,将电能转换为声能(机械能),探头发射超声波。当探头接收超声波时,发生正压电效应,将声能转换为电能。不难看出超声波探头在工作时实现了电能和声能的相互转换,因此常把探头叫做换能器。

2.探头的种类和结构

直探头用于发射和接收纵波,主要用于探测与探测面平行的缺陷,如板材、锻件探伤等。

斜探头可分为纵波斜探头、横波斜探头和表面波斜探头,常用的是横波斜探头。横波斜探头主要用于探测与探测面垂直或成一定角度的缺陷,如焊缝、汽轮机叶轮等。

当斜探头的入射角大于或等于

基本频率-晶片材料-晶片尺寸-探头种类-特征

三. 试块

按一定用途设计制作的具有简单几何形状人工反射体的试样,通常称为试块。试块和仪器、探头一样,是超声波探伤中的重要工具。

1. 试块的作用(1)确定探伤灵敏度

超声波探伤灵敏度太高或太低都不好,太高杂波多,判伤困难,太低会引起漏检。因此在超声波探伤前,常用试块上某一特定的人工反射体来调整探伤灵敏度。(2)测试探头的性能

超声波探伤仪和探头的一些重要性能,如放大线性、水平线性、动态范围、灵敏度余量、分辨力、盲区、探头的入射点、K值等都是利用试块来测试的。(3)调整扫描速度

利用试块可以调整仪器屏幕上水平刻度

值与实际声程之间的比例关系,即扫描速度,以便对缺陷进行定位。(4)评判缺陷的大小

利用某些试块绘出的距离-波幅-当量曲线(即实用AVG)来对缺陷定量是目前常用的定量方法之一。特别是3N以内的缺陷,采用试块比较法仍然是最有效的定量方法。此外还可利用试块来测量材料的声速、衰减性能等。2.试块的分类(1)按试块来历分为:标准试块和参考试块。(2)按试块上人工反射体分:平底孔试块、横孔试块和槽形试块 3.试块的要求和维护

4.常用试块简介(仪器使用时重点讲解)

IIW(CSK-IA)CS-1 CSK-IIIA

3.动态范围

动态范围是指仪器屏幕容纳信号大小的能力。

二. 探头的性能及其测试 1.斜探头入射点

斜探头的入射点是指其主声束轴线与探测面的交点。入射点至探头前沿的距离称为探头的前沿长度。测定探头的入射点和前沿长度是为了便于对缺陷定位和测定探头的K值。

注意试块上R应大于钢中近场区长度N,因为近场区同轴线上的声压不一定最高,测试误差大。

2.斜探头K值和折射角

斜探头K值是指被探工件中横波折射角的正切值。

注意测定斜探头的K值或折射角也应在近场区以外进行。

3.探头主声束偏离和双峰

探头实际主声束与其理论几何中心轴线

的偏离程度称为主声束的偏离。

平行移动探头,同一反射体产生两个波峰的现象称为双峰。

探头主声束偏离和双峰,将会影响对缺陷的定位和判别。4.探头声束特性

探头声束特性是指探头发射声束的扩散情况,常用轴线上声压下降6dB时探头移动距离(即某处的声束宽度)来表示。

三. 仪器和探头的综合性能及其测试 1.灵敏度

超声波探伤中灵敏度一般是指整个探伤系统(仪器和探头)发现最小缺陷的能力。发现缺陷愈小,灵敏度就愈高。

仪器的探头的灵敏度常用灵敏度余量来衡量。灵敏度余量是指仪器最大输出时(增益、发射强度最大,衰减和抑制为0),使规定反射体回波达基准高所需衰减的衰减总量。灵敏度余量大,说明仪器与探头的灵敏度高。灵敏度余量与仪器和探头

的综合性能有关,因此又叫仪器与探头的综合灵敏度。

2.盲区与始脉冲宽度

盲区是指从探测面到能够发现缺陷的最小距离。盲区内的缺陷一概不能发现。始脉冲宽度是指在一定的灵敏度下,屏幕上高度超过垂直幅度20%时的始脉冲延续长度。始脉冲宽度与灵敏度有关,灵敏度高,始脉冲宽度大。3.分辨力

仪器与探头的分辨力是指在屏幕上区分相邻两缺陷的能力。能区分的相邻两缺陷的距离愈小,分辨力就愈高。4.信噪比

信噪比是指屏幕上有用的最小缺陷信号幅度与无用的噪声杂波幅度之比。信噪比高,杂波少,对探伤有利。信噪比太低,容易引起漏检或误判,严重时甚至无法进行探伤。

发生变化时,将改变试件的共振频率,依据试件的共振频率特性,来判断缺陷情况和工件厚度变化情况的方法称为共振法。共振法常用于试件测厚。

二. 按波形分类

根据探伤采用的波形,可分为纵波法、横波法、表面波法、板波法、爬波法等。1.纵波法

使用直探头发射纵波进行探伤的方法,称为纵波法。此时波束垂直入射至试件探测面,以不变的波型和方向透入试件,所以又称为垂直入射法,简称垂直法。垂直法分为单晶探头反射法、双晶探头反射法和穿透法。常用单晶探头反射法。垂直法主要用于铸造、锻压、轧材及其制品的探伤,该法对与探测面平行的缺陷检出效果最佳。由于盲区和分辨力的限制,其中反射法只能发现试件内部离探测面一定距离以外的缺陷。

在同一介质中传播时,纵波速度大于其

它波型的速度,穿透能力强,晶界反射或散射的敏感性较差,所以可探测工件的厚度是所有波型中最大的,而且可用于粗晶材料的探伤。2.横波法

将纵波通过楔块、水等介质倾斜入射至试件探测面,利用波型转换得到横波进行探伤的方法,称为横波法。由于透入试件的横波束与探测面成锐角,所以又称斜射法。

此方法主要用于管材、焊缝的探伤;其它试件探伤时,则作为一种有效的辅助手段,用以发现垂直法不易发现的缺陷。3.表面波法

使用表面波进行探伤的方法,称为表面波法。这种方法主要用于表面光滑的试件。表面波波长很短,衰减很大。同时,它仅沿表面传播,对于表面上的复层、油污、不光洁等,反应敏感,并被大量地衰减。利用此特点可通过手沾油在声束传播方向上进行触摸并观察缺陷回波高度的

变化,对缺陷定位。4.板波法

使用板波进行探伤的方法,称为板波法。主要用于薄板、薄壁管等形状简单的试件探伤。探伤时板波充塞于整个试件,可以发现内部和表面的缺陷。5.爬波法

三. 按探头数目分类 1.单探头法

使用一个探头兼作发射和接收超声波的探伤方法称为单探头法,单探头法最常用。

2.双探头法

使用两个探头(一个发射,一个接收)进行探伤的方法称为双探头法,主要用于发现单探头难以检出的缺陷 3.多探头法

使用两个以上的探头成对地组合在一起进行探伤的方法,称为多探头法。

四. 按探头接触方式分类 1.直接接触法

探头与试件探测面之间,涂有很薄的耦合剂层,因此可以看作为两者直接接触,此法称为直接接触法。

此法操作方便,探伤图形较简单,判断容易,检出缺陷灵敏度高,是实际探伤中用得最多的方法。但对被测试件探测面的粗糙度要求较高。2.液浸法

将探头和工件浸于液体中以液体作耦合剂进行探伤的方法,称为液浸法。耦合剂可以是油,也可以是水。

液浸法适用于表面粗糙的试件,探头也不易磨损,耦合稳定,探测结果重复性好,便于实现自动化探伤。

液浸法分为全浸没式和局部浸没式。

超声波探伤中,超声波的发射和接收都是通过探头来实现的。探头的种类很多,结构型式也不一样。探伤前应根据被检对象的形状、衰减和技术要求来选择探头,探头的选择包括探头型式、频率、晶片尺寸和斜探头K值的选择等。1.探头型式的选择

常用的探头型式有纵波直探头、横波斜探头、表面波探头、双晶探头,聚焦探头等。一般根据工件的形状和可能出现缺陷的部位、方向等条件来选择探头的型式,使声束轴线尽量与缺陷垂直。

纵波直探头波束轴线垂直于探测面,主要用于探测与探测面平行的缺陷,如锻件、钢板中的夹层、折叠等缺陷。

横波斜探头主要用于探测与探测面垂直可成一定角度的缺陷,如焊缝中未焊透、夹渣、未溶合等缺陷。

表面波探头用于探测工件表面缺陷,双晶探头用于探测工件近表面缺陷,聚焦探头用于水浸探测管材或板材。

2.探头频率的选择。

超声波探伤频率0.5~10MHz之间,选择范围大。一般选择频率时应考虑以下因素:(1)由于波的绕射,使超声波探伤灵敏度约为波长的一半,因此提高频率,有利于发现更小的缺陷。

(2)频率高,脉冲宽度小,分辨力高,有利于区分相邻缺陷。

(3)频率高,波长短,则半扩散角小,声束指向性好,能量集中,有利于发现缺陷并对缺陷定位。

(4)频率高,波长短,近场区长度大,对探伤不利。

(5)频率增加,衰减急剧增加。

由以上分析可知,频率的高低对探伤有较大的影响,频率高,灵敏度和分辨力高,指向性好,对探伤有利;但近场区长度大,衰减大,又对探伤不利。实际探伤中要全面分析考虑各方面的因素,合理选择频率。一般在保证探伤灵敏度的前提下尽可

能选用较低的频率。

对于晶粒较细的锻件、轧制件和焊接件等,一般选用较高的频率,常用2.5~5MHz;对晶粒较粗大的铸件、奥氏体钢等宜选用较低的频率,常用0.5~2.5MHz。如果频率过高,就会引起严重衰减,屏幕上出现林状回波,信噪比下降,甚至无法探伤。3.探头晶片尺寸的选择

晶片尺寸对探伤也有一定的影响,选择晶片尺寸进要考虑以下因素:(1)晶片尺寸增加,半扩散角减少,波束指向性变好,超声波能量集中,对探伤有利。(2)晶片尺寸增加,近场区长度迅速增加,对探伤不利。(3)晶片尺寸大,辐射的超声波能量大,探头未扩散区扫查范围大,远距离扫查范围相对变小,发现远距离缺陷能力增强。

以上分析说明晶片大小对声束指向性、近场区长度、近距离扫查范围和远距离缺

陷检出能力有较大的影响。实际探伤中,探伤面积范围大的工件时,为了提高探伤效率宜选用大晶片探头;探伤厚度大的工件时,为了有效地发现远距离的缺陷宜选用大晶片探头;探伤小型工件时,为了提高缺陷定位定量精度宜选用小晶片探头;探伤表面不太平整,曲率较低较大的工件时,为了减少耦合损失宜选用小晶片探头。

4.横波斜头K值的选择

在横波探伤中,探头的K值对探伤灵敏度、声束轴线的方向,一次波的声程(入射点至底面反射点的距离)有较大的影响。K值大,一次波的声程大。因此在实际探伤中,当工件厚度较小时,应选用较大的K值,以便增加一次波的声程,避免近场区探伤;当工件厚度较大时,应选用较小的K值,以减少声程过大引起的衰减,便于发现深度较大处的缺陷。在焊缝探伤中,不要保证主声束能扫查整个焊缝截面;对于单面焊根未焊透,还要考虑端角

反射问题,应使K=0.7~1.5,因为K<0.7或K>1.5,端角反射很低,容易引起漏检。

三. 耦合

超声耦合是指超声波在探测面上的声强透射率。声强透射率高,超声耦合好。为提高耦合效果,在探头与工件表面之间施加的一层透声介质称为而耦合剂。耦合剂的作用在于排除探头与工件表面之间的空气,使超声波能有效地传入工件,达到探伤的目的;耦合剂还有减少磨擦的作用。

影响声耦合的主要因素有:耦合层的厚度,耦合剂的声阻抗,工件表面粗糙度和工件表面形状。

四. 表面耦合损耗的补偿

在实际探伤中,当调节探伤灵敏度用的试块与工件表面粗糙度、曲率半径不同时,往往由于工件耦合损耗大而使探伤灵敏度降低,为了弥补耦合损耗,必须增大仪器的输出来进行补偿。

块来调节,如用CSK-IA试块50或1.5的孔。

三. 定量调节

定量调节一般采用AVG(直探头)或DAC(斜探头)。

四. 缺陷定位

超声波探伤中测定缺陷位置简称缺陷定位。

1.纵波(直探头)定位

纵波定位较简单,如探头波束轴线不偏离,缺陷波在屏幕上位置即是缺陷至探头在垂直方向的距离。2.表面波定位

表面波探伤定位与纵波定位基本类似,只是缺陷位于工件表面,缺陷波在屏幕上位置是缺陷至探头在水平方向的距离(此时要考虑探头前沿)。3.横波定位

横波斜探头探伤定位由缺陷的声程和探

头的折射角或缺陷的水平和垂直方向的投影来确定。

4.横波周向探测圆柱面时缺陷定位 周向探伤时,缺陷定位与平面探伤不同。(1)外圆探伤周向探测(2)内壁周向探测

当量试块比较法是将工件中的自然缺陷回波与试块上的人工缺陷回波进行比较来对缺陷定量的方法。此法的优点是直观易懂,当量概念明确,定量比较稳妥可靠。但成本高,操作也较烦琐,很不方便。所以此法应用不多,仅在x<3N的情况下或特别重要零件的精确定量时应用。2.当量计算法 当x>3N时,规则反射体的回波声压变化规律基本符合理论回波声压公式,当量计算法就是根据探伤中测得的缺陷波高的dB值,利用各种规则反射体的理论回波声压公式进行计算来确定缺陷当量尺寸的定量方法。

3.当量AVG曲线法

当量AVG曲线法是利用AVG曲线来确定工件中缺陷的当量尺寸。

二. 测长法测缺陷大小

当工件中缺陷尺寸大于声束截面时,一

般采用测长法来确定缺陷的长度。

测长法是根据缺陷波高与探头移动距离来确定缺陷的尺寸,按规定的方法测定的缺陷长度称为缺陷的指示长度。由于实际工件中缺陷的取向、性质、表面状态等都会影响缺陷回波高度,因此缺陷的指示长度总是小于或等于缺陷的实际长度。根据测定缺陷长度时的基准不同将测长法分为相对灵敏度法、绝对灵敏度法和端点峰值法。

三. 底波高度法测缺陷大小

底波高度法是利用缺陷波与底波的相对波高来衡量缺陷的相对大小。当工件中存在缺陷时,由于缺陷的反射,使工件底波下降。缺陷愈大,缺陷波愈高,底波就愈低,缺陷波高与底波高之比就愈大。四. 缺陷测高

及其它

目前A型脉冲反射式超声波探伤仪是根据屏幕上缺陷波的位置和高度来评价被检工件中缺陷的位置和大小,了解影响因素,对于提高定位、定量精度是十分有益的。

一.影响缺陷定位的主要因素 1.仪器的影响

仪器的水平线性的好坏对缺陷定位有一定的影响。2.探头的影响

探头的声束偏离、双峰、斜楔磨损、指向性等影响缺陷定位。3.工件的影响

工件的表面粗糙度、材质、表面形状、边界影响、温度及缺陷情况等影响缺陷定位。

4.操作人员的影响

仪器调试时零点、K值等参数存在误差或定位方法不当影响缺陷定位

二.影响缺陷定量的主要因素 1.仪器及探头性能的影响

仪器的垂直线性、精度及探头频率、型式、晶片尺寸、折射角大小等都直接影响缺陷回波高度。

2.耦合与衰减的影响

耦合剂的声阻抗和耦合层厚度对回波高有较大的影响;当探头与调灵敏度用的试块和被探工件表面耦合状态不同时,而又没有进行恰当的补偿,也会使定量误差增加,精度下降。

由于超声波在工件中存在衰减,当衰减系数较大或距离较大时,由此引起的衰减也较大,如不考虑介质衰减补偿,定量精度势必受到影响。因此在探伤晶粒较粗大和大型工件时,应测定材质的衰减系数,并在定量计算时考虑介质衰减的影响,以便减少定量误差。

3.工件几何形状和尺寸的影响

工件底面形状不同,回波高度不一样,凸曲面使反射波发散,回波降低,凹曲面

使反射波聚焦,回波升高;工件底面与探测面的平行度以及底面的光洁度、干净程度也对缺陷定量有较大的影响;由于侧壁干涉的原因,当探测工件侧壁附近的缺陷时,会产生定量不准,误差增加;工件尺寸的大小对定量也有一定的影响。

为减少侧壁的影响,宜选用频率高、晶片尺寸大且指向性好的探头探测或横波探测;必要时不可采用试块比较法来定量。

4.缺陷的影响

不同的缺陷形状对其回波高度有很大的影响,缺陷方位也会影响到回波高度,另外缺陷波的指向性与缺陷大小有关,而且差别较大;另外缺陷回波高度还与缺陷表面粗糙度、缺陷性质、缺陷位置等有影响。

三.缺陷性质分析

超声波探伤安全操作规程 篇4

一、本作业岗位主要危险源(危害)

1、未按规定穿戴防护用品,导致人员伤害事故;

2、对作业场地缺乏检查,导致人员伤害事故;

3、设备电器部件老化、线路破损或PE线连接不可靠,导致触电事故发生;

4、高处作业没有采取防护措施,引发坠落事故。

二、工作准备与检查

1、必须规范着装,进入作业现场必须戴安全帽。

2、检查作业环境是否符合安全规定。

3、检查被探伤材料摆放是否平稳、可靠,确认安全后方可进行工作。

三、操作方法

1、熟悉仪器性能,操作方法和注意事项。

2、连接交流电源时,应仔细核对电压防止错接电源,烧坏元件。

3、移动旋纽时不宜用力过猛,以防旋纽损坏。

4、连接电源或探头电缆时,应用手抓插头,壳体操作,电源线和探头线应理顺,不要折、曲。

5、仪器用完后,及时进行外表清洁,放在干燥处。

四、控制标准(安全方法和严禁事项)

1、熟悉本设备的结构性能和使用方法,遵守本安全操作规程。

2、使用仪器前必须对仪器导线、插头等有关设备及工具进行检查。检查合格后方可使用。仪器必须有可靠的接地线。

3、超声发射探伤仪的电源应使用胶皮软线或轻型移动电缆。电源线无裸露。

4、经常需要探伤的车间,在配电盘附近应装上备用固定电源,探伤者不得任意接线。

5、工作中如使用机油,要注意脚下,防止滑倒摔伤。

6、高处作业时,应遵守高处作业安全操作规程,并采取相应的防护措施,防止人和仪器从高空坠落。

7、在金属容器内探伤时,电源部分应置于容器外,操作者衣服应干燥。

上一篇:“无传销社区”创建活动实施方案下一篇:主题班会课教案设计