判断函数的奇偶性例题

2024-08-29 版权声明 我要投稿

判断函数的奇偶性例题

判断函数的奇偶性例题 篇1

1.先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性

2.根据分解的.函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)

3.若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇

4.若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶

判断函数的奇偶性例题 篇2

例1试判断函数f (x) =πlogπx3的奇偶性.

解函数的定义域为{x|x>0}, 显然它不关于原点对称, 故原函数为非奇非偶函数.

2.函数f (x) =0, 当其定义域关于原点对称时, 它是唯一既是奇函数又是偶函数的函数.

因此, 我们就可以总结出判断函数奇偶性的一般步骤:

第一步:首先考查其定义域是否关于原点对称, 是就进行第二步, 否就判断它为非奇非偶函数;第二步:再判断原函数是否为零函数, 是就判断它为既是奇函数又是偶函数, 否就进行第三步;第三步:以-x代替x, 考察f (x) 与f (-x) 的关系, 最后由奇偶函数的定义即可得出结论.

下面我们应用这种方法做下面的例题.

例4试判断函数F (x) =f (x) -f (-x) , x∈R的奇偶性.

解其定义域为R, 显然关于原点对称.

(1) 当F (x) =f (x) -f (-x) =0时, 则当f (-x) =f (x) 时, 亦即当f (x) 为偶函数时, 函数F (x) 既是奇函数, 又是偶函数.

(2) 当F (x) =f (x) -f (-x) ≠0时, 则f (x) 为非偶函数时, 有F (-x) =f (-x) -f (x) =-[f (x) -f (-x) ]=-F (x)

故此时F (x) 为奇函数.

综上, 当f (x) 为偶函数时, F (x) 既是奇函数又是偶函数;当f (x) 不是偶函数时, F (x) 为奇函数.

函数的奇偶性 篇3

科目:数学

年级:高一年级

内容:普通高中课程标准实验教科书人教A版1.3.2节函数的性质——奇偶性

函数奇偶性的概念形成,以及性质的简单应用(1课时)

奇偶性是函数的重要性质之一,它是通过函数的图象来研究得出的一个概念,实际上反映的是函数图像的一种对称,而我们所研究的数学领域存在着大量的对称美,因此也可以借此培养学生对数学对称美的认识,提高他们对数学的理解能力。

二、教学目标分析

知识与技能:通过对图象的理解,充分经历函数奇偶性这个概念的形成过程;会判断一些简单函数的奇偶性;初步学会运用函数图象理解和研究函数的性质。

过程与方法:经历函数的奇偶性这个概念的形成过程,掌握判断函数奇偶性的方法。

情感·态度·价值观:通过本节内容的学习,认识数学中的对称美,陶冶他们热爱数学、欣赏数学的情操。并且让他们对数学的认识不只是停留在对图象的表面理解,让他们对数学有更进一步的认识,提高到理论层次的认识。

三、学生特征分析

通过平时的观察、了解以及测试,学生的基础处于一个理解和简单应用的水平,不能拔高要求。不过在这之前,学生已经学习了函数的单调性,掌握了单调性概念的形成过程,也会利用单调性求函数的最值,所以为利用化归的数学思想方法来理解函数的奇偶性打下了一个良好的基础。

四、教学策略选择与设计

本课题设计的基本理念:充分利用熟悉的函数的图象来形成概念,然后利用形成的数学概念来研究更多函数的奇偶性。

主要采用的教学与活动策略:

1.复习、总结数学里的一些简单对称,如中心对称、轴对称。

3.从对图象的理解来抽象出数学中奇函数和偶函数的定义。

4.利用函数的解析式来判定函数的奇偶性,并掌握基本的判定步骤。

5.奇偶性在其他方面的应用。

策略实施过程中的关键问题:

1.从图形的理解到抽象的数学概念形成,学生理解有点难度。

2.对奇函数和偶函数概念的理解应用。

五、教学资源与工具设计

多媒体教学,充分利用几何画板和电教平台。

教学参考:教材、《教师教学用书》、《新课程导学》、《新教材,新学案》、《学海导航》等等。

六、教学过程

(一)复习总结

1.点(1,2)关于y轴的对称点是 。点(1,2)关于x轴的对称点是 。点(1,2)关于原点的对称点是 。

2.一般地:点P(x,y)关于y轴的对称点是P1(-x,y),关于x轴的对称点是P2(-x,y),关于原点的对称点是 。

3.一般地:对于函数y=f(x),其图象上一点P(xf(x))关于y轴的对称点为P1 ,关于x轴的对称点为P2 ,关于原点的对称点为P3 。

八、帮助和总结

探究:已知函数f(x)满足:对任意的x、y都有f(x)+f(y)=f(x+y),试判断函数f(x)的奇偶性。

函数的奇偶性教案 篇4

http://

函数的奇偶性

教学目标 知识与能力目标

(1)理解函数奇偶性的含义,掌握判断函数奇偶性的方法。(2)能用定义来判断函数的奇偶性。

(3)掌握奇偶函数的图像性质及其简单应用。2 过程与方法目标

(1)能培养学生数形结合的思想方法。(2)从数和形两个角度理解函数的奇偶性 3情感态度与价值观目标

(1)体会具有奇偶性函数的图像对称的性质,感受数学的对称美,体现数学的美学价值。

(2)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、从特殊到一般的数学思想。

教学重点

函数奇偶性概念的形成, 奇偶函数的图像特征与函数奇偶性的判断 教学难点

对函数奇偶性的概念的理解 教学用具

投影仪,计算机 教学方法

引导发现法 教学过程

一.引入新课

同学们,我们生活在美的世界中,在我们身边就有很多美丽的图片,现在请同学们认真观察下面生活中的几个图片,大家发现它们有什么特点呢?(教师用PPT展示一组图片:蝴蝶、建筑物、麦当劳的标志等。同学们交流讨论后一起回答,最后教师给出答案,从而引入今天的课题)生活中的美引入我们的数学领域中,我们可以发现上面的那些图形都是对称图形(轴对称或是中心对称),特别地,给麦当劳的标志建立适当的直角坐标系,发现它的图象是关于y 轴对称的,这节课我们就同学们谈到的与轴对称的函数展开研究。

下面大家先思考一下: 哪些函数的图象关于y 轴对称?试举例

(学生可能会举出一些,如 二.讲解新课

和 等.)请同学们观察函数yx和y|x|的图象,它们各自有怎样的对称性?并根据表格试着解决下面的问题(学生观察,交流,发现问题,教师引导发现):

上面两个函数图象具有什么共同特征?(答案:图像关于轴对称)

亿库教育网

http://

2亿库教育网

http:// 能用函数解析式来描述图象这个特征吗?(答案:f(-x)=f(x))

22从而得到结论:实际上,对于R内任意的一个x,都有f(-x)=(-x)=x=f(x)及f(-x)=|-x|=|x|=f(x),这时我们称函数y=x及y=|x|为偶函数.从这个结论中就可以给出

偶函数定义:如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)。那么f(x)就叫偶函数。(板书)(给出定义后可让学生举几个例子,如 步认识,同时用PPT给出偶函数

f(x)x21,f(x)2等以检验一下对概念的初

2x11 的图象,从而观察发现并验证得到偶函数图像的性质定理:偶函数的图像都是关于y轴对称的。)

类比得到偶函数定义的方法,让学生通过观察函数f(x)=x和f(x)=1/x的图象, 并完成课本34页的两个表格,得到图象的共同特征? 从而给出奇函数的定义、举出几个奇函数的例子,与奇函数图像的性质定理:奇函数的图像都关于原点对称.奇函数的定义: 如果对于函数 的定义域内任意一个 ,都有 ,那么就叫做奇函数.(板书)

(给出了奇偶函数的定义概念后,教师对定义中的关键字和符号进行说明,加深学生对概念的理解)说明:

⑴定义中的等式f(-x)=f(x)(或f(-x)=-f(x))对定义域里的任意x都要成立,若只对个别x值成立,则不能说这函数是偶函数(或奇函数);

⑵等式f(-x)=f(x)(或f(-x)=-f(x))成立,除了表明函数值相等(或互为相反数)外,首先表明对定义域中的任意x来说,-x也应在定义域之中,否则f(-x)无意义;

⑶奇函数和偶函数的定义域必定是关于原点对称的,由此得结论:凡是定义域不关于原点对称的函数一定是非奇、非偶的函数.(下面两个例题分别帮助学生对奇偶函数的性质定理和概念的理解)

例1.根据下列函数图象,判断函数奇偶性.亿库教育网

http://

亿库教育网

http://

324例2中前三个题做完,进行一次小结,得到判断函数奇偶性的步骤:(1)先确定函数定义域,并判断定义域是否关于原点对称;(2)确定f(x)与f(-x)的关系;(3)作出结论: 若定义域关于原点对称,且f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若定义域关于原点对称,且f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.剩下的几个小题留给学生课后去解决。

(最后给出一道思考题,综合了前面所学知识的简单应用,用于检查学生是否真正掌握了这堂课所要求掌握的内容。)思考:(1)判断函数 f(x)x3x的奇偶性.(2)根据图中给出的函数图象一部分,并根据f(x)的奇偶性画出它在y轴左边的图象吗?

三.回顾小结(板书)

1、两个定义:

对于f(x)定义域内的任意一个x, 例

2、判断下列函数的奇偶性(1)f(x)x;(5)f(x)x;x(1,1](2)f(x)x;(6)f(x)2x1;1(3)f(x)x;(7)f(x)0;x1(4)f(x);x如果都有f(-x)=-f(x)f(x)为奇函数 如果都有f(-x)=f(x) f(x)为偶函数

亿库教育网

http://

亿库教育网

http://

2、两个性质:

一个函数为奇函数  它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称

四.作业

1、判断下列函数是否具有奇偶性

(1)f(x)=x(2)f(x)=2x+ x(3)f(x)=x+ x(4)f(x)=2x+1 f(x)=x(x=-2,-1,0,1,2)

2、已知函数y=f(x)是奇函数,它在y轴的右边的图象如图所示,画出函数y=f(x)在y轴左边的图象.亿库教育网

函数的奇偶性说课稿 篇5

同心县回民中学 马万

各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

一、教材分析

(一)教材特点、教材的地位与作用

本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点

1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标

1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;

2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析 1.教学方法:启发引导式

结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.

2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习.

三、教辅手段

以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学

四、教学过程

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序:温故导新,指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。

(一)温故导新,指导观察,形成概念

这节课我们首先从两类对称:轴对称和中心对称展开研究.思考:请同学们做出函数y=x2和y=|x|图象,并观察这两个函数图象的对称性如何?

给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征(通过课件展示的几个函数的图像,使学生发现图像关于y轴对称了则定义域关于原点对称)引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书:(1)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数

提出新问题: 再以学生熟悉的两个函数 y=1/x和y=x的图象让学生观察这两个函数的图像有怎样的对称性?

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:(2)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数

强调注意点:“定义域关于原点对称”的条件必不可少.结论:什么是函数的奇偶性?并注意函数的奇偶性是函数的一个整体性质,不同于函数的单调性。

(二)通过刚才的学习让学生试着总结奇偶函数都有哪些性质,老师补充。(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。

(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.

(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.

(4)偶函数:f(x)f(x)f(x)f(x)0, 奇函数:f(x)f(x)f(x)f(x)0;(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。

(三)探究函数奇偶性的判断方法: 方法一:图像法

方法二:定义法。根据前面所授知识,归纳步骤:(1)求出函数的定义域,并判断是否关于原点对称(2)验证f(-x)=f(x)或f(-x)=-f(x)3)得出结论

给出例题,加深理解: 例1:判断下列函数的奇偶性:(教师以第一个小题为例,给出具体的解题步骤 其余几个留给学生独立解决,发现问题及时纠正)通过练习:提高学生解题的熟练程度。

(四)让学生为本节课小结,老师补充完善

函数奇偶性教案 篇6

教学目标

1.知识与技能:

理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;

2.过程与方法:

通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.

3.情态与价值:

通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.

教学重点和难点

教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法

教学过程:

一:引入课题

观察并思考函数

以及y=|x|的图像有哪些共同特征?这些特征在函数值对应表是如何体现的?(学生自主讨论)根据学生讨论的结果推出偶函数的定义。

偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)f(x),那么f(x)就叫做偶函数.

(学生活动)

依照偶函数的定义给出奇函数的定义.

奇函数

一般地,对于函数f(x)的定义域的任意一个x,都有f(x)f(x),那么f(x)就叫做奇函数.

注意:

1.具有奇偶性的函数的图像的特征:

偶函数的图像关于y轴对称;奇函数的图像关于原点对称.

2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称). 二:例题讲解

例1.判断下列函数是不是具有奇偶性.(1)f(x)2x3x[1,2]

2(2)f(x)xxx1

例2.判断下列函数的奇偶性

(1)f(x)x4

(2)f(x)x5

(3)f(x)x总结:利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f(-x)与f(x)的关系; ○3 作出相应结论: ○若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数;

若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.

三:课堂练习

课本P36习题1

利用函数的奇偶性补全函数的图象(教材P41思考题)

规律:偶函数的图象关于y轴对称;

奇函数的图象关于原点对称.

1x

(4)f(x)1x2

四:归纳小结,强化思想

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

五:作业布置

1.作业:判断下列函数的奇偶性: f(x)○2x2xx122f(x);

x(1x)x0,x(1x)x0.f(x)x32x ;

○4 f(x)a

(xR)○

对函数奇偶性的认识 篇7

一、函数奇偶性的产生背景

从数学概念产生的客观背景来说, 一般有两种情形:一是直接从客观事物的空间形式和数量关系反应得来的。二是在已有数学概念的基础上, 经过多层次的抽象概括而形成的。显然, 函数奇偶性的产生属于前者。在现实世界中, 存在着大量对称性的物体或图形。我们将这些物体或图形抽象为平面内的一条曲线, 并将其放于平面直角坐标系中。然后, 以坐标为工具通过数量关系来反映曲线上点与点之间的对称关系。具体来说, 若一个函数的图象关于点成中心对称 (或关于直线成轴对称) , 我们把该图象进行平移, 使得对称中心与原点重合 (或对称轴与轴重合) , 这就是奇函数 (或偶函数) 的图象。因此, 函数奇偶性是对客观事物属性的抽象产物。

二、函数奇偶性的数学意义

研究函数的奇偶性即研究函数图象的对称性。对于具有对称性的物体或者图象, 我们可以从其对称中心或对称轴将其平分成两部分, 进而可以根据其中一部分的形状和特点推导出另一部分的形状和特点。因此, 对于中心对称或轴对称的函数图象, 我们常常可以通过对其中一侧的研究而得到另一侧的性质。

三、函数奇偶性的本质属性

奇函数和偶函数的本质属性有两个侧面:“形”的特征和“数”的表示, “数”与“形”有着密切的联系。在“形”的方面, 奇函数关于原点对称, 偶函数关于y轴对称;而在“数”的方面, 则是利用函数解析式描述函数图象的对称特征, 对于函数f (x) 的定义域内的任意一个x, 都有f (-x) =f (x) , 那么f (x) 就叫做偶函数;若都有f (-x) =-f (x) , 那么f (x) 就叫做奇函数。

因此, 对函数奇偶性的教学要突出从“形”“数”两个方面, 由“形”得“数”, 由“数”思“形”, 体现发现和探究的理念。教学时不适合一开始就给出定义, 而是应该先让学生观察图形, 从中寻找它们的共性, 目的是让学生先有个直观上的认识, 体会“形”的特征。另外, 为了引导学生由图形的直观认识上升到数量关系的精确描述, 应先提示学生图形是由点组成的, 找出其间的关系后, 建立奇 (偶) 函数的概念。

数学概念是数学知识中最基本的内容, 是数学认知结构的重要组成部分。现代的一些学者认为“数学的学习过程, 就是不断地建立各种数学概念的过程。”然而, 数学概念具有抽象性, 学生对概念的理解在一定程度上受教师的影响。因此, 教师必须深刻理解每一个数学概念。只有这样, 我们的教学才是有效的、科学的。

摘要:数学概念是数学知识中最基本的内容, 是数学认知结构的重要组成部分。学生对数学概念的理解在一定程度上受教师的影响。教师对概念的深刻理解显得尤为重要, 从三个方面阐述了对函数奇偶性的认识:函数奇偶性的产生背景、函数奇偶性的数学意义、函数奇偶性的本质属性。

关键词:概念,函数奇偶性,本质

参考文献

函数的周期性与奇偶性 篇8

一、函数的周期性

一般地说,对于函数y=f(x),如果存在一个不为零的常数T,使取定义域内的每一个x值时, f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。理解周期性要注意以下几点:1.定义适合定义域中的每一个x值。2.并不是所有周期函数都存在最小正周期,如常数函数f(x)=c,所有的正数都是它的周期,但没有最小值,故常数函数没有最小正周期。3.周期函数的周期不止一个,若T是周期,则kT(?资∈?篆+)也是周期。4.周期函数的定义域一定是无限集,而且定义域一定无上界或无下界。5.设a为非零常数,若对于f(x)定义域内的任意x,恒有下列条件之一成立:①f(x+a)=-f (x) ②f(x+a)= ③f(x+a)=- ④ f(x+a)=⑤ f(x+a)=⑥ f(x+a)=f(x-a),则函数y=f(x)是周期函数。

二、函数的奇偶性

如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x),那么函数y=f(x)就叫做奇函数;如果对于函数(x)定义域内的任意一个x,都有f(-x)=f(x),则称函数y=f(x)为偶函数。理解奇偶性要注意以下几点:1.定义域必定关于原点对称,即定义域关于原点对称是函数具有奇偶性的必要不充分条件。2.奇偶性是研究函数在整个定义域内的函数值的对称问题。3.若函数f(x)既是奇函数又是偶函数,则f(x)=0,反过来不一定成立,如:f(x)=0(-1

三、周期性与奇偶性的结合

周期性解决的问题是自变量相差常数(周期的倍数)时,对应的函数值相等;奇偶性解决的问题是自变量互为相反数时,函数值的关系。当求某一函数值时,可以先考虑一方面进行变化,如得不到结果,再从另一方面进行变化,从而解答相关问题。现举例如下:

例1:已知f(x)是定义在R上的以2为周期的偶函数,且当 x∈(0,1)时,f(x)=2x-1 ,则f(log212)的值为 。

解析:∵3

∴f(log212) =f(log212-4)=f(4-log212)=24-log212-1=

评析:函数的周期为2,则自变量相差2的整数倍的函数值相等,但只给了(0,1)时的解析式,所以再利用偶函数性质,互为相反数的两个自变量对应的函数值相等,得出所要求的函数值。

例2:(2010?安徽卷)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2 ,则f(3)-f(4)= ( ) A.-1 B.1 C.-2 D.2

解析:由周期性得f(3)=f(-2),再由奇函数得 f(-2)=-f(2) ∴f(3)=-f(2) 同理f(4)=-f(1)∴f(3)-f(4)=f(1)-f(2)=1

评析:函数是奇函数可求互为相反数的两个自变量所对应的函数值,周期可得自变量相差5的倍数的函数值相等。只有两个性质灵活运用才能顺利解决问题。

练习:已知f(x)是定义在R上的以4为周期的偶函数,若当x∈(0,2)时,f(x)=lg(x+1), 则有( )。A.f(-)>f(1)>f() B.f(-)>f()>f(1) C.f(1)>f(-)>f()

D.f()>f(1)>(-)B. (答案A)

例3:已知定義在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期,若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为( )A.0 B.1 C.3 D.5

解析:∵f (x)为奇函数且周期为T,∴f(0)=0 ∴ f(T)=f(-T)=0 又∵ f(-)=f(-+T)=f()=-f(∴f()=0, f(-)=0 ∴f(x) 在 [-T,T]上至少有5个根。(答案D)

评析:1.奇函数定义域包含0,则f(0)=0。2.奇函数得出 f(-)=-f(),周期性得出 f(-)=-f() ∴f()=0。此题通过两个性质的巧妙结合可以培养学生分析问题和解决问题的能力。

练习:若f(x)是R上周期为3的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内的解至少有( )。 A.4个 B.5个 C.6个 D.7个 (答案D )

例4:已知定义在R上的奇函数f(x)的图象关于直线x=1对称,并且x∈(0,1]时,f(x)=x2+1,则f(462)的值为( )。A.2 B.0 C.1 D.-1

解析:由奇函数得f(x)=-f(x),由图象关于直线x=1对称得 f(-x)=f(2+x)∴f(2+x)=-f(x)∴T=4 ∴f(462)=f(2)=f(0)=0

评析:函数既有奇偶性,又关于直线x=a(a≠0)对称,则函数必为周期函数,又奇函数f(0)=0,结合关于x=1对称,∴f(2)=f(0)=0 ∴f(462)=0

练习:已知函数f(x)是定义在R上的偶函数且满足f(x+1)+f(x)=3,当 x∈[0,1]时f(x)=2-x,则f(2011.5)= 。(答案1.5)

函数的周期性和奇偶性的结合自然巧妙,旨在考查学生理解定义和灵活运用所学知识的能力,是培养学生分析问题、解决问题的很好的题型。以上是我对函数周期性和奇偶性的一点认识,愿与各位同仁共同探讨。

1.3.2函数的奇偶性教案 篇9

1.3.2函数的奇偶性

教学目的:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性. 教学重点:函数的奇偶性及其几何意义.

教学难点:判断函数的奇偶性的方法与格式.

教学过程:

一、引入课题

1.实践操作:

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;

问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;

(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.

②以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:

问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;

(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.

二、观察思考

象上面实践操作①中的图象关于y轴对称的函数即是偶函数,操作②中的图象关于原点对称的函数即是奇函数.

1.偶函数(even function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那编辑部地址:武汉市前三眼桥85号(430000)

联系电话:027—85789995

考试指南报——课堂网()

么f(x)就叫做偶函数.

(学生活动):仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

注意:

①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

三、典型例题

1.判断函数的奇偶性 例题 课本例题

应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)

总结:利用定义判断函数奇偶性的格式步骤:

①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f(-x)与f(x)的关系; ③作出相应结论:若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数;若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.

说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.

2.利用函数的奇偶性补全函数的图象(教材P41思考题)

规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

说明:这也可以作为判断函数奇偶性的依据.

3.函数的奇偶性与单调性的关系

(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.

例 已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数

解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原编辑部地址:武汉市前三眼桥85号(430000)

联系电话:027—85789995

考试指南报——课堂网()

点对称的区间上单调性一致.

四、归纳小结

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

五、作业布置

课本P46习题1.3(A组)第9、10题,B组第2题. 补充作业:

判断下列函数的奇偶性:

x(1x)x0,2x22xf(x)f(x)x1;

②x(1x)x0.①

3f(x)x2x ;

④ f(x)a

(xR)③

课后思考:

已知f(x)是定义在R上的函数,设g(x)f(x)f(x)f(x)f(x)h(x)22,①试判断g(x)与h(x)的奇偶性; ②试判断g(x),h(x)与f(x)的关系;

③由此你能猜想得出什么样的结论,并说明理由.

编辑部地址:武汉市前三眼桥85号(430000)

【教学设计】函数的奇偶性_数学 篇10

1.学情调查,情景导入

情景1:生活中,哪些几何图形体现着对称美?

情景2:我们学过的函数图象中有没有体现着对称的美呢? 情景3:引导学生从对称角度将所说的函数图象进行分类比较。

2.问题展示,合作探究

问题1: 根据函数的解析式,结合函数的图像通过求值观察并总结出规律。(设计这个问题有这样的目的:通过直观图像帮助学生更好的找出规律一是从图象的角度作出判断;二是从“数的方面”论证概念创设教学情景.)问题2:“能不能从函数解析式的角度来描述函数图象的对称性?如果能,该怎么解决?

学生会选取很多的x的值,得到结论。追问:这些x的值能不能代表所有x呢?

借助课件演示,引导学生进行代数式推导,再次得出结论f(-x)=-f(x).(强调x是定义域内任意值,帮助学生完成由特殊到一般的思维过程)

用数学符号表示奇函数的严格定义。

问题4:让学生用自己的语言描述对偶函数的认识。(从形和数两方面)问题5:结合课本中的材料,仿照奇函数概念的建立过程,学生独立去建立偶函数的概念。

3.归纳概括,精致概念

(此时,大部分学生已经有了如何判断函数奇偶性的意识,只是不太确定。)问题6:通过具体例题的判断总结如何判断函数的奇偶性

(设计这个问题的目的:一来是为学生强调判断函数奇偶性的方法;二来强调判断函数奇偶性的一个先决条件:“定义域必须关于原点对称”)。

问题6:在学习函数奇偶性的概念中有哪些几个注意的地方?

问题7:我们经历了函数单调性和奇偶性概念的学习过程,谈谈你对这两个概念的认识?

(引导学生进一步精致所学概念:认识单调性、奇偶性都是描述函数整体特征的,都必须在整个定义域范围内进行研究;引导学生对定义中“任意”的理解;引导学生认识到函数图象是函数性质的直观载体;)最后布置思考题:

1、当____时一次函数f(x)=ax+b(a≠0)是奇函数

判断函数的奇偶性例题 篇11

关键词:周期性;奇偶性;对称性;深刻联系

函数是整个高中数学的灵魂,又是学习高等数学的基础,在高考数学试题中占有重要的地位.而函数的周期性、奇偶性、对称性是它非常重要的性质,既是教学重点,又是难点,在解题中有着广泛的运用。高考常将函数的单调性、奇偶性及周期性相结合命题,以选择题或填空题的形式考查,难度稍大,为中高档题.但是学生对这些性质理解得不透彻,运用不灵活.下面对它们的联系做一些总结.

一、函数周期性、奇偶性、对称性定义及简单性质

奇函数:如果对于函数定义域内任意一个数x,都有f(-x)=-f(x),那么,函数f(x)就是奇函数.

偶函数:如果对于函数定义域内任意一个数x,都有f(-x)=f(x),那么,函数f(x)就是偶函数.

轴对称:如果函数f(x)满足f(x+a)=f(a-x),则f(x)的图像关于x=a对称.

性质1.设a,b是任意常数,则函数f(a+x)=f(b-x)的充要条件是f(x)的图像对称.

二、奇偶性、对称性、周期性三者之间的联系

1.对称性+奇偶性周期性

性质2.如果f(x)是奇函数,且图像关于x=a对称,则得f(x)是以T=2a为周期的周期函数.

推论:一般的,若定义在R上的函数f(x)的图像关于直线x=a和x=b对称,则f(x)是以( )为周期的周期函数.

2.对称性+周期性对称性,奇偶性

性质3.设f(x)的图像关于x=a对称,且T=b的周期函数,则f(x)的图像关于x=a+b对称.

推论:设,且,则是偶函数.

3.周期性+奇偶性对称性

性质4.如果是偶函数,且(a>0),则得的图像关于x=a对称.

性质5.如果是R上的奇函数,则得的图像关于x=a对称。

例1.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=9,则f(8.5)=( )

A.-9 B.9  C.-3 D.0

解析:选B.因为f(x)是偶函数,所以f(x)=f(-x),又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(-t)=f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),f(x)周期T=4.所以f(8.5)=f(4.5)=f(0.5)=9.

例2.已知函数f(x)是定义在R上的奇函数,且它的图像关于直线x=1对称.求证:f(x)是周期为4的周期函数.

证明:由函数f(x)的图像关于直线x=1对称,有f(x+1)=f(1-x),即有f(-x)=f(x+2).

又函数f(x)是定义在R上的奇函数,

故有f(-x)=-f(x).

故f(x+2)=-f(x).

从而f(x+4)=-f(x+2)=f(x),

即f(x)是周期为4的周期函数.

评析:例1由函数的奇偶性得到函数的周期性,例2由函数的奇偶性与对称性得函数的周期性.

从上面的分析可以看出,函数奇偶性、周期性、对称性之间存在着联系,在解题中,若能从整体上把握并灵活运用这些性质,那么抽象函数的高考试题就能迎刃而解.

参考文献:

[1]王江.浅谈函数性质[J].数学教学,2008(4).

[2]雷玲.中学数学名师教学艺术[M].华东师范大学出版社,2008-03.

浅谈函数奇偶性的教学体会 篇12

函数的奇偶性的定义如下:

(1) 一般地, 如果对于函数f (x) 在定义域内的任一个x, 都有f (-x) =f (x) , 那么函数f (x) 叫做偶函数。

(2) 一般地, 如果对于函数f (x) 在定义域内的任一个x, 都有f (-x) =-f (x) , 那么函数f (x) 叫做奇函数。

学习这个定义要紧紧抓住两个要点: (1) 函数的定义中的x是任一个值。 (2) 都有f (-x) =f (x) (或f (-x) =-f (x) )

在讲课中, 我特别注意强调x是任一个而不是某一个, 而不少同学经常要用具体的某一个值来判断函数的奇偶性, 正是对定义缺乏深刻的理解。而定义中的都有f (-x) =f (x) (或f (-x) =-f (x) ) , 表示对于任意的x都成立, 即上面的式子是一个恒等式, 而不是对于部分x成立。

应该特别注意的是, 仅仅简单地记住这个定义的两个要点是远远不够的, 因为, 函数的奇偶性的定义包含着更深刻的内涵:

(一) 定义中涉及的求f (x) , f (-x) , 这里应该强调的是:f (x) 与f (-x) 必须同时有意义。因此, 可以得出下面的结论, 函数f (x) 是奇函数 (或偶函数) 的必要条件是函数的定义域必须是关于原点对称的数集 (原点可在也可不在定义域内) 。下面, 让我们总结一下常见的关于原点对称和关于原点不对称的数集。

在讲课中, 我通过对常见的关于原点对称和关于原点不对称的数集进行总结, 使同学们很快就能根据数集的形式来判断函数的定义域是否是关于原点对称的数集, 从而进一步判断出函数的奇偶性。

(二) 函数的奇偶性是整个定义域内的性质, 仅在定义域内的一个真子集中讨论函数的奇偶性是没有意义的。这一点和研究函数的单调性的方法不同。

因此, 只有深刻地理解函数的奇偶性的定义的内涵, 才能正确地判断函数的奇偶性。

二、关于函数奇偶性的几个重要性质

根据函数的奇偶性的定义, 我们可以系统地总结出函数的奇偶性的几个重要性质:

(1) 对称性:奇 (偶) 函数的定义域关于原点对称。

(2) 整体性:函数的奇偶性是整体性质, 对定义域内的任意一个x都必须成立。

(3) 可逆性:①f (-x) =f (x) ⇔f (x) 是奇函数

②f (-x) =-f (x) ⇔f (x) 是偶函数

(4) 等价性:①f (-x) =f (x) ⇔f (-x) -f (x) =0

②f (-x) =-f (-x) ⇔f (-x) +f (x) =0

(5) 图像的对称性:奇函数的图像关于原点对称。偶函数的图像关于y轴对称。

三、如何判断一个函数的奇偶性

根据函数的奇偶性的定义判断函数的奇偶性有两个步骤。首先应判断函数的定义域是否是关于原点对称的数集, 其次是验证f (-x) =f (x) (或f (-x) =-f (x) ) 对于定义域中的任意x是否成立。两个条件中尤以第一个条件最为重要, 因为如果不能满足第一个条件, 即使第二个条件成立也不能判断函数的奇偶性。不少同学在判断函数的奇偶性时经常只依据第二个条件是否成立来进行判断, 因而产生了错误。

根据判断函数的奇偶性的两个条件, 我们可以把函数按奇偶性分为: (1) 奇函数; (2) 偶函数; (3) 非奇非偶函数; (4) 既是奇函数也是偶函数四种类型。下面, 我们根据各种题型举行举例分析。

上述几个例子都是根据判断函数的奇偶性的两个步骤来判断函数的奇偶性的, 它属于比较简单的题目, 属于基本的题型。但有的题目较复杂, 例如:

由上面的例子可知, 若函数的表达式较复杂时, 一定要对式子的特点进行分析才得出恒等式是否成立的结论, 必要时应对表达式先进行化简, 再根据定义进行判断。

另外, 判断函数的奇偶性也可以根据它的图像的对称性进行判断。如果函数的图像关于原点对称, 则该函数一定是奇函数, 如果函数的图像关于y轴对称, 则该函数一定是偶函数。反之, 若函数

的图像关于原点或y轴不对称, 则该函数一定是非奇非偶函数。

四、几个判断函数奇偶性例子的错解分析

分析:上述解题结论正确, 过程错误。因为f (x) 与f (-x) 不能同时有意义。因此, 正确的解法是, 只有判断函数的定义域关于原点不对称, 就可以直接得出结论, 而不用验证f (-x) =f (x) (或f (-x) =-f (x) ) 是否成立。

分析:上述解题过程是错误的。很明显, 解题过程中没有考虑f (x) 的定义域是否是关于原点对称的数集。实际上, f (x) 的定义域是关于原点不对称的数集, 因此, f (x) =x2是非奇非偶函数。这道题也可以从它图像的对称性进行判断。

总之, 只要深刻地理解函数的奇偶性的定义, 那么, 判断函数的奇偶性就不难了。

摘要:函数的奇偶性是函数的重要性质之一。本文主要探讨函数的奇偶性的定义、性质, 函数按奇偶性的分类, 奇偶函数的图像特征以及几个常见的判别函数的奇偶性的错例分析。

关键词:奇函数,偶函数,函数奇偶性

参考文献

[1]陆利标.中学数学教与学.奇偶性的误区——忽视定义域.2007.

[2]韩忠月.高中数学教与学.高一数学测试题, 2007.

判断函数的奇偶性例题 篇13

(一)[任务分析]

“函数的奇偶性”是函数的一个重要性质,常伴随着函数的其他性质出现。函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的对称性。利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。函数的奇偶性也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。[方法简述] 本节课有着丰富的内涵,是继函数单调性以后的又一个重要性质。教法上本着“以教师为主导,学生为主体,问题解决为主线,能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题导引,分析、比较,自主探究,讲练结合”的教学方法。通过复习提问呈上其下的引入,通过观察图像,从具体到抽象的引入,通过与单调性研究方法的的类比的引入,使学生对函数的奇偶性先有了一定的感性认识;通过设置一条问题链,采用多角度的,启发式的,学生积极参与的,有思想交锋的方式,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。[目标定位]

数学教学不仅仅是知识的教学、技能的训练,更应使学生的能力得到提高。本节课应使学生掌握函数奇偶性的定义,会用定义判断简单函数的奇偶性。在学生经历函数奇偶性的探究和应用过程中,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。在教学中,重点应为理解函数奇偶性概念的本质特征;掌握函数奇偶性的判别方法。对高一学生来说,由于初中代数主要是具体运算,因而代数推理能力较弱,许多学生甚至弄不清代数形式证明的意义和必要性。因此教学难点是有关偶函数问题的证明,与培养驾驭知识、解决问题的能力。突出重点、突破难点的关键是设计有一定思维含量的问题与实例,引导学生思考、分析讨论,加深学生对函数奇偶性的认识与应用。结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识。[课堂设计]

一、复习旧知、引入定义

基于学生前面已经学习过函数的单调性,先从复习函数单调性入手。问题1:回顾上一节课如何定义增函数、减函数?试举例说明。由学生回答,学生应该容易得出定义,单调增、减函数(定义略)

并能举出一些常见的单调函数,如一次函数,三次函数。

设计意图:从学生已学过的函数单调性复习引入,因为函数的单调性的定义是学生第一次接触用函数的对应关系的性质来刻画函数的性质,他不同于初中是通过图像看性质。学生在复习中体验用代数手段刻画函数性质的方法, 为后面用函数对应关系来刻画函数的奇偶性做好准备。为突破难点奠定基础。

问题2:判断下列两函数在其定义域内单调性如何?

反比例函数f(x)21 x二次函数f(x)x1 设计意图:让学生注意函数的单调性要分区间讨论。对于同一函数而言,不同的区间上可能会有不同的单调性,为后面研究函数的奇偶性要注意自变量的范围埋下伏笔。

图示学生举出的例子和以上两个例题,(1)f(x)2x(2)f(x)x3(3)f(x)2x1(4)f(x)1(5)f(x)x21 x引导学生观察图像。

思考:除了显示了函数的单调性,是否还有其他特征?

引导学生发现初中就学过的优美的对称性——中心对称、轴对称。问题3:能否用函数的对应关系来刻划其对称性?

让学生先观察、思考、交流讨论,教师再引导。

启发:首先注意到自变量的对称性可以用x与-x来刻画,相应的考察f(x)与f(-x)的关系。

(请5个同学到黑板上板演计算f(x)与f(-x)的,并判断相应函数值的特点。板书课题,引出定义)。函数奇偶性定义:

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)叫奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)叫偶函数。

设计意图:引导学生通过函数值的特征来描述函数对应关系的性质,实现由形到数的转化,同时为归纳引出定义以及判断函数奇偶性做好准备。

二、定义理解、揭示本质

问题4:定义中那一句话对刻划函数的性质更实质?

学生阅读定义,回答问题。归纳:验证恒等式f(-x)=-f(x)或 f(-x)=f(x)的重要性。让学生根据定义判别以上5个函数的奇偶性,教师作出点评。

设计意图:让学生深刻理解定义,解释函数奇偶性的本质。把探求新知的权利交给学生,为学生提供宽松、广阔的思维空间,让学生主动参与到问题的发现、讨论和解决等活动上来.而且在探究交流过程中学生对函数奇偶性的认识逐步由感性上升到理性。

2x22x问题5:判断函数f(x) 的单调性如何?

x1引发学生思考讨论。学生可能会有两种结论,一是奇函数,二不是奇函数,让学生辨别,引起学生思维的交锋,教师给与宏观的指导,看准火候,及时点拨。引导学生注意定义中定义域的重要性,得出推论。

推论:奇偶函数的的定义域在轴上对应的点集关于原点对称。

设计意图:强调对定义域的考虑,既帮助学生准确理解定义,又对函数奇偶性的概念进行反面理解,同时使学生进一步熟悉判断奇偶性的方法,为引出推论做准备。问题6:有没有既是奇函数又是偶函数的函数? 引导学生共同探究,得到f(x)=0,且定义域关于原点对称。共同归纳得到:函数按照奇偶性可分为四类:

A.是奇函数而不是偶函数 B.是偶函数而不是奇函数 C.既是奇函数而又是偶函数D.既不是奇函数又不是偶函数

设计意图:数学思维中最积极的的成分是问题,不断的提出问题,不断的解决问题,提出具有探究意义的问题,培养学生的探究意识,进一步完善函数奇偶性的概念。

三、手脑并用、概念应用

问题7:能否归纳函数奇偶性的判别方法及步骤:(1)求函数的定义域;(2)计算f(-x)(3)判断f(-x)与-f(x)或(x)是否相等;(4)下结论,指明是四类中的哪一类。在刚才归纳的基础上,学生练习例1:判断下列函数的奇偶性(1)f(x)xx31(2)f(x)2x43x2

(3)f(x)2x(4)f(x)1x2(5)f(x)f(x)a

x21

教师版书第一小题,学生口答第二小题,(3)、(4)(5)请三位学生板演。教师规范、订正版演。

设计意图:在归纳中掌握方法,巩固新知及时反馈,为灵活应用方法打下基础.

四、沟通联系、深化提高

例2 已知函数f(x)是奇函数,而且在(0,)上是增函数,f(x)在(,0)上是增函数还是减函数?并给出证明。

引导学生分析条件,探索思路,沟通已知与未知 的联系,实现单调性的转化。设计意图:沟通函数奇偶性与单调性的联系,揭示函数奇偶性对函数性质研究的作用。使学生进一步加深对知识的掌握,并体验数学在解决问题中的作用。

五、归纳小结、练习反馈 引导学生归纳小结(1)函数奇偶性的定义(2)判别函数奇偶性的方法(3)函数奇偶性的初步应用 设计意图:学生自己从所学到的数学知识、数学思想方法两方面进行总结,提高学生的概括、归纳能力.同时,学生在回顾、总结、反思的过程中,将所学知识条理化、系统化,使自己的认知结构更趋合理.注重数学思想方法的提炼,可使学生逐渐把经验内化为能力,从而走向一个新的制高点。反馈练习:课本P口答练习

在整个练习过程中,教师做好及时小结,加强对学生的个别指导,设计意图:巩固所学知识,进一步促进认知结构的内化,并且可使学生对自己的学习进行自我评价.也让教师及时了解学生的掌握情况,以便进一步调整自己的教学.

六、布置作业、引导复习

1.书面作业:P89 练习A2,练习B 1、2、3.2.研究与思考:

(1)若f(x)为奇函数,且x=0时与意义,则f(0)=?(2)判别函数的奇偶性

(3)在公共定义域上,函数的和、差、积、商的起偶性如何?

第一层次要求所有学生都要完成,第二层次则只要求学有余力的同学完成.研究思考的(1)(2)(3)不仅开阔了学生的思路,而且提高学生的探究热情。.设计意图:分层次作业既巩固所学,又为学有余力的同学留出自由发展的空间,培养学生的创新意识和探索精神。同时为下节课内容作好准备,将探究的空间由课堂延伸到课外.[教有所思] 这节课本着“课程标准为依据,教师为主导,学生为主体”的原则进行设计与教学,高中学生的思维水平已发展到辩证思维的形成阶段,从能力上讲,他们能通过观察、比较、归纳等方式来认识新知识。结合学生的特点及本节课的内容,在教学中采用了“问题导引,分析比较、自主探究、讲练结合”式的教学方法。通过问题激发学生求知欲,从学生已知问题已知的函数图形入手,使学生对函数的奇偶性有了一定的感性认识,并且形成各自对函数奇偶性概念的了解,再引导学生抓住实质,抛开个性的东西,抽取共性的内容,在相互交流、启发、补充、争论中,概括出定义,经历了知识的形成过程。使学生主动参与数学实践活动,在教师的有效指导下解决问题。应当说在知识的习得、能力的培养二个方面有收获,基本上达到了预期的教学目的。在概念-方法-应用当中,方法是本节课的重点。通过对问题3至问题6的分析、反思、深化,使学生的思维步步深入,在自我发现、自我解决问题的过程中,深刻理解了函数奇偶性的定义的实质。

上一篇:服装展会合作协议下一篇:服务期管理办法