周长的计算(教学设计)

2024-11-24 版权声明 我要投稿

周长的计算(教学设计)(精选12篇)

周长的计算(教学设计) 篇1

开始学习周长一章了,第一节课认识周长,借助课件,孩子直观的认识了图形的周长,并且顺利的找出了长方形、正方形、梯形、平行四边形的周长。我窃喜,看来这一章能顺利的完成教学任务了。转入实战动笔练习,忽然发现不是那么回事了,孩子对众图形的周长找的`挺准,说的也挺好,就是已让写出算式那算是五花八门,就是对的不多。更别说稍微变化的图形求周长了,学生更是瞪着题目不知如何下手。

怎么办,着急不是办法,冲学生发脾气更是不能解决问题,学生还迷迷糊糊。耐着性子对每一道题目,先引导学生读题理解题意,弄明白所求问题,在从问题出发找出所需条件,比如,要求长方形周长,先写出长方形的长,再写出长方形的宽,最后在求周长,求周长时想清楚打算用哪个公式,也就是说强调学生读完题后不是立即扎笔就做,而是头脑中有了清晰的思路后在下笔,做到有条理,有步骤。对于如求两个长方形拼成的长方形的周长,要求学生先画出拼出的图形,然后找出拼成的长是多少,宽是多少,最后再求周长,同时告诉学生,考虑问题要全面,学生有了清晰的思路,再下笔,书写就清楚流畅了许多。有时一节课40分钟只能处理两道题目,画图、找所需条件、带入公式求周长,只为了帮助学生理清思路,规范书写格式。虽然这么费劲,仍有个别学生不按老师的要求去做,偷工减料或者看到题目就下笔,结果写的乱七八糟。

通过本单元的学习,孩子要想掌握本单元知识灵活运用,解决实际问题,除了掌握基本公式之外,建立空间观念,头脑中有清晰的思路也是非常重要的。

周长的计算(教学设计) 篇2

———自主探究教学模式就体现了这样一种精神, 让学生由被动的接受转向主动的尝试、探究, 形成能力, 养成习惯, 进而成为学习的主人.

在图1-1 自主探究教学模式结构图中, 可以把自主探究教学过程划分为以下四个基本阶段:

第一阶段:创设情境, 问题定向. 教师有目的、有意识地创设能激发学生创造意识的各种情境, 促使学生产生质疑问题, 探索求解的自主探究动机, 从而激活学生原有知识信息, 在全面分析问题情境的基础上确定需要解决的实质性问题.

第二阶段:激发兴趣, 初步尝试. 明确问题后, 教师要通过多种方式激发学生兴趣, 引导学生收集必要的信息, 联系以往知识点, 进行初步尝试, 大胆设想解决问题的方案.

第三阶段:讨论探索, 适时点拨. 在学生进一步深入探究活动时, 要注意安排学生进行小组间或个别学生之间的交流, 教师也要以一个探究者的身份参与到活动中去, 对其中的重要条件和发现、疑难或重点, 适时点拨, 口头暗示或提醒.

第四阶段:迁移探究, 小结反思.在学生通过探究掌握所学内容后, 教师要帮助学生扩展视野, 训练发散性思维.反思是学习活动中的重要步骤, 它是对解决问题过程的“评估”.

以《长方形的周长计算》为例, 我们就能清楚地看出自主探究教学模式的四个阶段在数学课堂上的开展和运用.

根据儿童擅长形象思维的特点, 我利用荧屏图像开讲, 激起学生深厚的学习兴趣, 然后板书“周长”二字, 并在“周”字下面标记.

“今天我们第一次接触 ‘周长 ’, 按你的理解, ‘周 ’是什么意思? ”我抛出了第一个问题.

同学们纷纷举起了手.

“周围的意思.”

“一周, 也就是围一周的意思. ”

我点点头, “说的好, ‘周’含有‘周围’的意思, 又有‘一周’的意思. 如果让你给课桌面围一周, 你怎么围? ”

教室里热闹起来了, 学生们有的站起来比划着, 有的坐在椅子上冥想着方案, 有的俯下身子开始围课桌面的周长.不一会儿, 他们都正确地指出了周长.

那究竟什么是周长, 如何帮助学生确立周长的概念. 我让学生各抒已见, 说出自己理解中的周长, 并给出各种平面图形, 让他们指出周长;同时给出没封口的平面图形, 让他们陷入疑惑, 找不到周长. 最后组织讨论, 明确长方形的周长, 就是长方形四条边长度的和. 而今天我们就要专门研究长方形周长的计算.

儿童具有探究问题的天性, 当儿童处于一个让他感到困扰的环境时, 就会本能地开始探究. 这就是探究活动的起源.一开课, 我就有意识地创设问题情境, 激发学生思维, 并给他们广泛的自由猜想、操作、讨论, 从而明晰、确定需要解决的实质性问题———研究长方形周长的计算.

为了激发学生兴趣, 进行初次尝试———探索测算周长的方法, 我让学生拿出学具盒中的长方形框架.

“你能用什么方法量出这个长方形框架的周长? 下面小组合作讨论, 看谁的办法好? ”

一个个聪明的小脑袋聚在了一起, 教室里热闹非凡, 每个小组都在操作、实验、交流.

“老师, 我有办法了! 把这个长方形的四条边分别量出来, 再相加得到的和, 就是它的周长. ”

“ 我们也有办法了. 我们在桌上画了一条线. 从一点开始, 把长方形框架沿着这条线滚动, 滚完四条边再做个记号, 量量记号之间的长, 就是它的周长. ”

“这个方法挺有趣! ”同学们纷纷赞叹.

“你们听听我的办法行不行? 我用绳子在两条长之间 (垂直) 绕一圈, 就得到了两条宽的和;再用绳子在两条宽之间绕一圈, 就得到两条长的和, 两个和加起来就是周长. ”

……

孩子们的动手能力和思维方式令人惊叹, 他们积极开动脑筋, 初步尝试, 想出了各种测量方法. 但是, 如何引导他们找到最科学最简便的测量方法呢? 我摆出了矛盾:

“那好, 现在我们就用这些方法, 量一量我们学校操场的周长. ”

“好! ”同学一片欢笑……

“不行! ”马上有人站起来, “操场那么大, 哪有那么长的绳子? ”

“对呀! 操场也不能竖起来滚一圈啊! ”

“那么用什么方法测量最实际, 最简便呢? ”

经过一阵讨论, 猜想, 讨论, 同学们集思广益, 找到了最好的办法;根据长方形对边相等的特点, 只量长方形的长和宽, 就可以知道周长了.

在测量周长方法的探索中, 我精心设计每一个环节, 致力于调动学生初次尝试的积极性, 大胆地将“给你一个长方形框架, 怎样测量出它的周长”的主动权交给学生, 使学生通过操作一系列有结构的学习材料去观察、思考、比较、发现, 通过学习方法和思维方法, 提高了分析问题和解决问题的能力.

长方形周长的计算公式的理解是这节课的重点. 在经过上一个阶段“测算周长方法”的初次探索后, 学生重新组合和应用以往的经验, 积极进行讨论探索, 进行发散思维, 最后在发散的基础上, 从多种设想、途径和方法中敏锐地抓住其中的最佳线索, 找出最佳解决方案.

“如果操场的长是130 米, 宽是70 米. 如何计算它的周长? ”我跟随学生的思维兴奋点, 引出了进一步讨论探究的主题.

一石激起千层浪, 小高潮推动了思维高潮, 学生想着、写着、算着、深思、愉悦、兴奋.

130+70+130+70

130×2+70×2

(130+70) ×2

70×4+ (130-70) ×2……

学生讨论探索, 充分进行发散思维, 再经过分析、比较, 老师的适时点拨, 学生的思维集中到 (130 + 70) × 2 这种算法上来, 这样算最简便, 是求长方形周长的最佳算法. 运用这一算法计算了操场的周长后, 概括出:长方形周长= (长+ 宽) ×2. 在自主探究的第四个阶段, 我组织学生通过解决 “ 一个长方形的周长是24 厘米, (长和宽都是整厘米数) 它的长和宽分别是多少? ”等开放性问题, 让学生逆向运用公式, 展开发散思维, 进行知识的进一步迁移探究, 并引导学生小结反思, 提炼新方法, 发展思维能力.

学习有不同的层次, 学习结果也有不同的层次. 开放性问题是评估学生高层次思维能力的手段, 在数学教学中应培养学生高层次思维能力巳得到普遍的认同. 因此, 在自主探究教学模式的课堂教学中, 通过最后一个阶段迁移探究的进行, 学生思维达到高潮, 他们会用喜欢的方式对新的问题运用数学知识进行思考, 解释并加以处理, 从而使自主探究这种学习方式真正促进学生思维的发展.

在整个教学过程中, 我以引导学生自主探究的观点去分析处理教学内容, 创设了一种“化静为动, 以动促思”的教学情境. 从周长概念的引入、理解、认识、归纳, 到怎样计算长方形的周长, 再到计算公式的导出, 开放性问题的迁移探究, 在一系列知识的发展、变化过程中, 我启发诱导, 调控反馈, 使学生亲自经历 “问题定向→初次尝试→讨论探索→迁移探究”的认识提高过程, 为学生自主探究, 积极思维创造了条件.

从个案报告中可以看出, 自主探究教学要把学生作为真正的主体, 以学生乐于展示自我, 积极尝试探索, 主动自我发展作为出发点和落脚点. 叶澜认为: 主动性与人特有的发展联系在一起. 以主动性的态度去对待周围的世界, 对待自己的人生, 人的生命过程就会积极呈现出自主的色彩, 个体会具有独特性, 会出现创新, 不仅创造出新的事物, 新的方法, 新的外部世界, 而且会不断丰富自己的内在精神世界, 创造新的生命历程. (叶澜:《把个体精神生命发展的主动权还给学生》) . 因此, 自主探究教学模式首先贯彻的是主体性原则.一是把课堂还给学生, 让课堂焕发出生命活力. 要还学生在课堂上独立、主动学习的时间和空间, 从问题定向、初步尝试、讨论探究到迁移探究活动, 要让学生成为这一系列活动的主人, 充分调动他们的学习积极性、主动性创造性. 二是要发扬教学民主. 教师在教学活动中应找准自己的角色定位, 作为一名参与者、 探究者深入到学生之中去. 无论是精心设置情境, 激发学生举, 还是在学生质疑问难时适时点拨, 对教学内容进行小结反思, 都要把工夫下在“引”和“导”上. 同时, 教师要善于组织学生讨论、辩论与争论, 发挥小组探究的作用, 使学生在互相启发中取长补短, 把思辨活动从师生间转移到学生间, 从课堂内延伸到课外, 以学生的互相教育, 自我教育填补教师教育的局限和不足.

“圆的周长”教学设计 篇3

1.认识圆的周长,能用滚动、绕线等方法测量圆的周长。

2.在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义及圆周长的计算方法。

3.能正确地计算圆的周长,能运用圆周长的知识解决一些简单的实际问题。

教学过程:

一、创设情境,合理猜想

1.认识周长

师:上星期六,叶老师带着侄儿小明到公园玩,来到公园入口处,公园里有圆形和正方形两条路线,我在入口处等,让小明选择一条路线能尽快回到我身边,你们觉得小明会选择哪条路线?为什么?

生:小明会选择圆形路线,因为圆形路线比正方形路线短。

(1)回忆正方形的周长。

师:正方形路线的长度就是正方形的什么?什么是正方形的周长?

(2)认识圆的周长。

师:圆形路线的长度就是圆的什么?(板书:圆的周长)什么是圆的周长?

生:圆一周的长度就是圆的周长。

师:圆是由一条曲线围成的,所以我们可以说围成圆一周曲线的长度就是圆的周长。(课件演示)

师:和老师一起用手指一指屏幕上这个圆的周长。

2.合理猜想

(1)讨论圆的周长与直径的关系。

师:在这个图形中,如果正方形的边长是a,它的周长是多少?

生1:4a。

师:也就是说,正方形的周长是边长的几倍?

生:正方形的周长是边长的4倍。

师:可见,正方形的周长和它的边长有关。

师:那么圆的周长又和它的什么有关?(生答略)

师:圆的周长和直径有怎样的倍数关系?下面,请同学们根据屏幕上的图形进行合理的猜想,四人小组可以讨论。(板书:猜想)(学生小组探究,教师参与讨论)

(2)讨论探究。

生1:我认为圆的周长是直径的3倍左右,因为圆周长的一半我估计是直径的1.5倍左右,那么整个圆周长应该是直径的3倍左右。

生2:我也认为是直径的3倍左右,但我是这样想的:将圆周长4等分,每一份都是直径的1倍不到一点,所以我觉得4份合起来应该是直径的3倍左右。

师:刚才我们通过将圆的周长二等分或四等分,从而推测出了圆的周长是直径的3倍左右。那么究竟是多少倍呢?我们可以通过实际测量和计算加以验证。(板书:验证)

二、探索验证,得出公式

1.讨论测量方法

(1)提出问题。

师:我们都知道圆的周长是一条曲线,可以怎样用工具测量呢?(要区别公式计算)

(2)反馈。

①“滚动法”:把实物圆沿直尺滚动一周。

②“绕绳法”:用绸带缠绕实物圆一周并打开。

生:可以用“直径×3.14”计算,这样更快。

师:你这是利用公式计算圆的周长,现在我们要做的工作是利用工具测量出圆的周长和直径,然后求出周长与直径的比值,从而说明我们猜想的准确度,进而研究3.14的由来。(课件演示)

(3)小结各种测量方法。(板书:化曲为直)

2.分组测算

(1)明确要求。

师:每个小组手里有1号、2号、3号三个圆形,接下来我们开始4人小组合作学习。要求:①选择合适的测量方法,实际测量出这三个圆形的周长、直径并计算它们的倍数关系。②将测量和计算结果填入下面表格中。③为了节约时间,老师建议三人负责测量,一人记录并计算,计算时可以用计算器。

(2)生利用学具动手操作,师巡视指导、收集信息。(请小组长负责将本小组的活动停下来)

(3)集体反馈,分析数据。(选取3~4组实验结果,实物展示台演示)

师:分析测量结果,你们有什么发现?

生:周长总是直径的3倍左右。

师:其他小组有没有不同意见?(误差分析:误差总是存在的,但是我们要规范操作把误差控制在最小的限度)

3.课件验证

师:刚才我们测算的三个圆都保留了一位小数,如果保留的位数多几位是不是求得的商会更准确些呢?请看大屏幕。(课件进行验证)

师:可见,圆的周长除以直径总是3.14159…… 事实上,这个倍数是一个固定的数。

师:这个倍数通常被人们叫做什么,用什么表示呢?(学生汇报,教师板书:圆周率,用希腊字母π表示,c/d =π)

4.介绍数学文化(配音/课件)

师:中国古代数学家对找出π值做出了巨大的贡献。

(1)东汉时期的张衡计算出π≈3.1622。

(2)三国时期的刘徽创立“割圆术”,求得π≈3.14624,并提出以π=3.14作为实用近似值。

(3)南北朝时期的祖冲之计算π的值在3.1415926和3.1415927之间,比欧洲数学家早发现1000多年。

由于电子计算机技术的发展,现在已将圆周率计算到小数点后的12411亿位,π=3.141592653589793238462 643383279502……

师:了不得,中国古代数学家对π值的研究比欧洲数学家早发现1000多年。现代科技的发展将π值计算到小数点后的12411亿位还没有算完,这说明了什么?(圆周率π是一个无限不循环小数,板书:π≈3.14)

5.总结圆周长的计算公式

求下面各圆的周长:d=3,r=2。(学生计算并汇报)

(1)如果知道圆的直径,怎样求圆的周长?

板书:圆的周长 = 直径×圆周率

C=πd

(2)如果知道圆的半径,又该怎样计算圆的周长呢?(板书: C=2πr)如果知道圆的周长,怎样求直径?

三、巩固练习,形成能力

师:我们刚才学习了圆周率的有关知识,下面我们就将这些知识用到生活实际中去。

(1)算一算,说一说下面是一个怎样的圆?

①一个圆周长是6.28分米;

②这个圆周长是上一个圆的3倍;

师:你们有没有发现这两个圆有什么联系?

生:第二个圆的周长是第一个的3倍,而直径也是第一个圆的3倍。

师:那么半径呢?

生:第二个圆的半径也是第一个圆的3倍。

师:由此我们可以肯定,当一个圆的直径或半径扩大几倍,它的周长也扩大几倍。

(2)小朋友们用软尺测得一棵大树主干某处的周长约4.71米,它的直径约是多少米?(π值取3.14)

机动题:现在我们重新回到公园路线图假如正方形的边长为a,请用含有字母的式子表示两条路线长度的相差数(π取3.14)。

讲评后,教师问:当a=100米时,两条路线长度的相差数是多少?

四、课内小结,扎实掌握

师通过这节课的学习,你有什么收获?今天我们学习圆周率经历了怎样一个过程?(猜想——验证)

周长的计算(教学设计) 篇4

一课时

教学内容:苏教版三年级上册第41页例3,第42页试一试。教材分析:

本节内容是在认识了长方形、正方形的特征,理解了周长概念的基础上安排的,使学生通过猜想,自主探索,验证猜想,合作交流,总结长方形、正方形周长的计算方法及计算公式。学情分析:

学生已经认识长方形、正方形的特征,理解周长概念,有合作学习解决问题的经历。教学目标:

(一)知识目标

通过观察、交流等活动,使学生经历探索长方形和正方形的周长的过程,加深对周长的理解,掌握长方形和正方形周长的计算方法,能正确计算长方形和正方形的周长。

(二)能力目标

会解决与长方形和正方形周长计算相关的简单实际问题。

(三)情感目标

使学生在学习活动中体会现实生活中的数学,发展对数学的兴趣。

教学重点:理解并掌握长方形及正方形周长的计算方法。

教学难点:使学生认识到相同个数的小正方形拼长方形往往有不同的拼法,并能理解拼成的长方形的周长为什么不相等。

教具、学具准备:长方形、正方形纸各一张,课件。

设计理念:《数学课程标准》明确指出:“动手实践、自主探索、合作交流是学习数学的 重要方式。”本课设计以这一基本理念为指导,强调“以学生为中心”和“以自主探索、合作交流为主线”,重视学习过程和学习方式,鼓励算法多样化,努力使学生在探索交流中获得新知,同时享受到学习的乐趣。教学过程:

一、复习旧知,引入课题。

1.说出下面图形的周长(出示课件)

小结:把一个图形所有边的长度加起来就是这个长方形的周长。

2.拿出长方形和正方形纸,让学生上去指一指它们的周长各是指哪里的长度。

【设计意图:通过让学生说一说、指一指等实践活动调动学生的多种感官参与,使学生对周长的认识从形象感知逐渐深入到建立表象的层面,让学生感受到数学与生活的密切联系。】

3.导入:同学们,刚才我们通过举例以及指一指知道了周长的意思,我们来看生活中的一个问题。

二、探索交流、展开新课。

1.出示课本上的例题,学生自读题并理解题意。

师:谁来指一指这个篮球场的周长在哪儿,并告诉同学们哪条边是28米,哪条边是15米?

师:看懂了题目的意思,谁来告诉同学们你对这个问题是怎么理解的? 小结:篮球场就是一个长方形,长方形的周长是两条长和两条宽的和

【设计意图:通过指一指、想一想使学生认识到求篮球场的周长实际上就是求篮球场四条边长度的总和。】

2.自主探究、合作交流。

师:看来同学们对题意理解得很清楚,下面请同学们思考一下这道题你准备怎样解答?

(这里注意留给学生一定的思考时间)。

师:下面就请同学们用自己想的方法来算一算这个篮球场的周长。

(教师巡视了解学生做的情况,做到心中有数。)

师:从同学们的脸上我就知道大家都成功了,谁愿意把自己的方法拿到前面来展示一下?

(学生利用实物展示自己的方法,同时要求学生说出这样做的道理。学生回答的同时教师板书)

学生的方法有以下这四种:

(1)28+15+28+15=86(米)

(2)28+28+15+15=86(米)

(3)28×2=56(米)

15×2=30(米)

56+30=86(米)

(4)28+15=43(米)

43×2=86(米)

师:大家已经总结了四种方法,用这四种方法计算这个长方形篮球场的周长都必须知道这个长方形的什么?

(学生通过观察思考认识到这里求长方形篮球场的周长无论用哪种方法都要知道它的长和宽。)

师:请同学们说说,你喜欢用哪一种方法?并说说这种方法的意思。

【设计意图:这里教师要注意让学生说完整的话从而培养学生的逻辑思维能力及口头表达能力,更要注意调控课堂。由于学生的知识基础和理解的角度不同,各人喜欢的方法肯定有所不同。在讨论四种方法时可能对第1种方法和第2种方法不屑一顾,从而有些不耐烦,教 师要及时对该同学的发言进行肯定并重复,保证课堂教学的顺利进行,从而渗透体现新课标“鼓励算法多样化”的新理念。】

师:现在我们发现求长方形的周长有这么多的方法,请同学们在小组里说说哪一种计算比较简便?

(学生交流后请一名学生总结一下。)

教师板书:长方形的周长=(长+宽)X 2 1.你能计算出下面两个图形的周长吗?(出示课件)2.活动尝试

师:通过上面的题可以看出同学们对如何计算长方形的周长掌握得很好,如果换成正方形如何求它的周长呢?(课件出示试一试)

师:这题是老师把算式写在黑板上再来分析呢?还是同学们尝试一下自己解答呢?

【设计意图:这里由学生自己作主,充分体现出教师在课堂教学中致力把学生推向学习的主体地位,使之成为学习的主人,同时培养学生自主学习的品质,更进一步说明老师心目中有学生,把尊重学生放在首位。】

师:下面请同学们在小组里交流交流各是怎样算的,同时看看你们那一组出现了哪几种不同的方法?

(讨论后请一组派个代表汇报,其它组如有不同意见可补充。)

生1:25+25+25+25=100(cm)

生2:25×4=100(cm)师:哪种比较简便? 生:第二种比较简便? 师:你是怎么理解的?

生:正方形的周长指正方形4条边的总和

教师板书:正方形的周长=边长X 4 【设计意图:自主探究的学习方式给了学生探索、发现知识的机会,小组合作学习的方式又能使组员之间形成观点交锋、思维共享,达到学习互补的目的。】

三、巩固练习

(多媒体出示)1.计算下面正方形的周长。

生:15×4=60(m)

(多媒体出示)2.计算下面图形的周长。

生1:(6+3)×2

生2:(4+3)×2

生3: 3×4=12(dm)

=9×=7×2

=18(米)

=14(m)

(多媒体出示)3.正方形花圃每边长6米,它四周的栏杆长多少米?

生:6×4=24(米)

答:它四周的栏杆长24米

(多媒体出示)(2)用6个边长1厘米的小正方形拼成一个长方形,拼成的长方形的长和宽各是多少厘米?它的周长呢? 能拼成不同的长方形吗?它们的周长相等吗? 生1:长3厘米宽2厘米

生2:长6厘米,宽1厘米

周长:(3+2)×2

周长:(6+1)×2

=5×2

=7×2

=10(厘米)

=14(厘米)

生3:它们的周长不相等

四、课堂小结。今天这节课同学们学得真不错,能运用各种方法解决了很多问题,我想同学们一定有很多收获,谁愿意说给大家听听?

(板书课题:长方形和正方形的周长计算。)

长方形的周长=(长+宽)X 2

正方形的周长=边长X 4

【设计意图:让学生自己总结,既可以让学生享受成功的喜悦,又可以使学生从中总结好的学习方法,提高学习效率。】

(五)布置作业

教科书 P42页想想做做第1题、第3题。

板书设计:

长方形和正方形的周长计算:

长方形的周长=(长+宽)X 2 正方形的周长=边长X 4

教学反思:

本节课是在学生学习了长方形和正方形的基本特征并初步理解了周长含义的基础上进行教学的。教学中,我先让学生通过复习旧知,再导入新课的。我在出示长方形实物时提出问 题,我先让学生积极思考,大胆猜想,在学生说出求用了多少木条实际就是求长方形图片的周长,放手让学生自主探索,并且给学生提供足够的探索交流的时间。

由于学生生活经验和思考角度不同,所使用方法必然是多样的,让学生寻求各种解决问题的策略,并不强求一致,同时又注意引导学生:策略一定要合理而科学。在这里注意发挥学生的主体作用,鼓励学生独立思考,通过操作.交流等学习形式的交互作用,提高了学习效率,培养了学生的创新能力。

长方形正方形周长计算教学设计 篇5

一、教学内容:苏教版三年级上册63-65页

二、教学目标:

1. 能正确认识长方形和正方形的特征,有条理的表达长方形和正方形的周长计算方法的探究过程。

2、能正确测量和计算长方形和正方形及其他一些简单图形的周长,能应用所学知识解决日常生活中的简单问题,培养学生观察、推理、分析、综合、抽象、概括的能力和解决简单的实际问题的能力,培养学生动手操作能力。

3、在学习活动中,善于从数学的角度提出问题,能用不同的方法解决问题,灵活选择自己欣赏的方法,通过自主探索建立学习的自信心。

4、对学习的内容和过程有兴趣和热情,在与同学合作中,会根据具体问题的解决过程清楚地表达自己的看法,初步形成反思意识,获得与同学合作成功的体验。

三、教学重点:理解并掌握长方形及正方形周长的计算方法。

四、教学难点:使学生认识到相同个数的小正方形拼长方形往往有不同的拼法,并能理解拼成的长方形的周长为什么不相等。

五、教学关键:让学生在自己计算和解决问题的过程中体会和理解算法。

六、教具、学具准备:

边长1厘米的小正方形硬纸片每人6张、多媒体课件。

七、教学过程:

(一)、复习旧知,引入课题。

1.提问: 同学们,上节课我们已经学习了“周长”,谁来说说数学书的周长?

2.老师带来了几个图形,谁能指一指它们的周长。出示图形,让学生上去指一指它们的周长各是指哪里的长度。

3.导入:同学们,前面我们在计算周长的时候是用毛线围一围量出它的长度,如果我们每做一题都用毛线去围再算,这样方便吗?

那么,今天我们就一起来研究周长的计算。

(意图:通过让学生指一指图形的周长,进一步让学生巩固周长的含义,为学习新知做铺垫。)

(二)、探索交流、展开新课。

1.我们经常会在篮球场上体育课,那么我们就从篮球场开始今天的学习吧!出示图,学生读题。2 .“理清题意。

师:求篮球场的周长,实际就是求什么图形的周长?

师:谁来指一指这个长方形篮球场的周长在哪儿,并告诉同学们哪条边是28米,哪条边是15米?

(意图:通过观察篮球场的图,指一指篮球场的周长,让学生理解篮球场的周长就是图形的两条长和两条宽之和,进一步理解长方形的周长含义。)自主探究、合作交流。

师:看来同学们对题意理解得很清楚,下面就请同学们用自己的方法来算一算这个篮球场的周长。(教师巡视了解学生做的情况,做到心中有数。)

师:从同学们的表情中我知道大家都成功了,和同桌说一说你是怎样计算的?

谁愿意把自己的方法说给大家听一听。(学生汇报,同时要求学生说出这样做的道理。学生回答的同时教师板书)

学生的方法可能有以下这四种:

(1)28+15+28+15=86(米)

(2)28+28+15+15=86(米)

(3)28X2=56(米)15X2=30(米)56+30=86(米)(4)28+15=43(米)43X2=86(米)教师再次帮助学生理解每道算式的含义

师:大家已经说出了四种计算长方形篮球场的方法,用这四种方法计算这个长方形篮球场的周长都必须知道这个长方形的什么?需要知道几条长和几条宽?这几种方法其实算的都是长方形几条边的长度和?

师:请同学们说说,你喜欢用哪一种方法?哪种方法算起来最快,并说说这种方法的意思。

总结:计算长方形周长的方法有好几种,无论哪种方法我们都必

须要知道长方形的一条长和一条宽,才能算出长方形的周长,今后我们每个人都可以用自己喜欢的方法去求长方形的周长。

(意图:通过让学生自己尝试探究计算方法,让学生汇报不同的方法,明白无论用什么方法求长方形的周长就是求两条长和两条宽之和,并让学生选择自己喜欢的方法计算。)

5“试一试”。

师:通过这两题可以看出同学们对如何计算长方形的周长掌握得很好,如果换成正方形怎样求它的周长呢?(投影出示试一试)

学生读题,试着动手解决。

师:下面请同学们在小组里交流交流各是怎样算的,同时看看你们组出现了哪几种不同的方法?

学生汇报交流,可能出现下面两种方法:(1)25+25+25+25=100(厘米)(2)25X4=100(厘米)

师:计算正方形的周长,我们必须要知道什么呢?

总结:通过刚才学习,我们学会了计算长方形和正方形的周长计算方法,这就是我们今天要学习的内容。(板书课题)无论是长方形还是正方形要想求它的周长,其实就是求四条边的长度和。(意图:通过试一试,让学生理解正方形周长计算方法,明白正方形周长就是求四条边长之和,选择简单方法进行计算。)(三)、组织练习、巩固新知。

下面我们就用我们学习的知识来解决问题吧!

1.“想想做做”第3题。

要求学生用自己最喜欢的方法来解答,指名学生板演。

2、“想想做做”

1、2题

要想计算长方形的周长必须知道什么?正方形呢?

学生用手中已准备好的长方形和正方形进行测量,测量时要求是整厘米数计算。

2.“想想做做”第4题

我们都知道美羊羊最爱美了,她买了一块镜子,想要大家帮个忙。我们一起去看看吧!

要求学生先默看题目,然后说说对题目的理解,使他们认识到第4题实际上就是求一个长2米、宽1米的长方形的周长。

3、第5题。

下面我们再帮喜洋洋解决个问题吧

让学生理解题目要求,求栅栏的长其实是求什么?学生独立完成。集体订正。

4.“想想做做”第6题。

师:下面我们来玩一个“拼图”游戏,大家有兴趣吗?出示题目

师:请各组同学拿出小正方形纸片,同心合力,先按要求拼出图形,再讨论出问题的答案,学生到实物投影仪前汇报,肯定会出现两种不同的答案。

师:由此可见,用相同个数的小正方形拼长方形往往有不同的拼法,而且拼成的各个长方形的周长是不相等的。为什么都是有6个相

同的小正方形拼出的和长方形,周长却不同呢?你认为拼出的长方形的周长与什么有关?(长和宽的长短有关)

(意图:通过量一量、算一算、解决生活问题等练习,让学生巩固长方形和正方形周长计算。再通过摆一摆,让学生体会到长方形的周长与它的长和宽有关。)(四)、课堂小结。

今天这节课同学们学得真不错,你有什么收获?你能用简短的话告诉大家吗?同桌互说,然后告诉大家。

五、板书设计

长方形和正方形周长计算

(1)28+28+15+15=86(米)

(1)25+25+25+25=100(厘米)(2)28+15+28+15=86(米)

(2)25×4=100(厘米)(3)28×2=56(米)15×2=30(米)

56+30=86(米)

(4)28+15=43(米)43×2=86(米)

《长方形和正方形周长计算》

教 学 设 计

青铜峡市铝业学校

周长的计算(教学设计) 篇6

一、教学内容:原通用教材六年制小学数学第五册第69-70页例1,练习二十五中的习题。

二、教学目的:使学生初步建立长方形周长的概念,理解长方形周长计算的方法,并能正确地进行计算。

三、教具准备:长30厘米、宽18厘米的长方形吹塑纸一张;用两根96厘米的铁丝,分别围成长30厘米、宽18厘米的长方形框架;剪刀一把;教师用钉子板一块,细尼龙绳一根。学生准备火柴盒一个,长3厘米、宽2厘米的长方形纸一张,细线一根。

四、教学过程:

师:[出示小黑板,上面画有5个标上序号的不同图形]请同学们说一说,黑板上的哪几号图形是长方形?

生:第2号和第5号图形是长方形。

师:其他的呢?

生:其他的都不是。

师:第1号图形为什么不是长方形?

生:因为它只有三条边,三个角。

师:对。长方形应该有四条边,四个角,而它只有三条边,三个角。那第3号图形为什么不是长方形呢?

生:因为长方形四个角都是直角,而它的四个角不是直角。

师:我们还可以怎么看?

生:因为它的对边不相等。

师:第4号为什么也不是长方形?

生:它的对边虽然相等,但四个角不是直角。

师:那么,长方形的特点是什么?

生(1):长方形的对边相等,四个角都是直角。

生(2):还有,有四条边。

师:应该说,长方形有四条边,对边相等,有四个角,都是直角。[很多学生跟着教师说]

师:[出示钉子板,演示]现在老师在这个钉子板上围了一个长方形。谁来指一指,哪是长,哪是宽?

[一学生上前指出长方形的长和宽]

师:长方形有几个长,几个宽?

生:有两个长和两个宽。

师:你们知道不知道,这个长方形的长有多少厘米?

生:[齐]不知道。

师:怎样才能知道呢?

生:[齐]要用尺量。

师:[用米尺量长方形的上面一条边]现在老师量了这个长是28厘米,那这个长[指下面一条边]是多少厘米?

生:[齐]也是28厘米。

师:宽是多少?

生:[齐]不知道。

师:现在老师也来量。[用米尺量左边的一条边]宽比长短7厘米,那宽是多少厘米?

生:[齐]21厘米。

师:今天,就要在这个基础上来学习长方形的周长和长方形周长的计算方法。[板书:长方形周长的计算]通过这节课的学习,要知道什么叫做长方形的周长,还要知道长方形的周长是怎样计算的。现在先来看,什么叫做长方形的周长。老师用一根细绳从这个长方形的一个顶点开始,绕着长方形围一周。[边说边演示]这一周的长就是这个长方形的周长。[板书]

生:[齐][读板书]长方形的周长就是绕这个长方形一周的长。

师:[出示绕长方形一周长的细绳]那么,这个长方形的周长是多少呢?

生:[齐]要量。

师:[用米尺量这段细绳]现在老师量了,这个长方形的周长是98厘米。

师:现在请大家拿出火柴盒放在桌上,用带来的线沿着火柴盒的四周绕一圈,[教师演示指导绕的方法]然后量一量,看火柴盒面的周长是多少。

[学生动手操作,教师巡视指导绕和量的方法。然后指名说出量的结果]

生:火柴盒面的周长大约是17厘米。

师:现在请同学们拿起课本。这课本面也是一个长方形,请大家沿着课本的四条边摸一摸,这长方形的周长是从哪里到哪里。[在教师指导下,学生沿课本的边摸了一周]这一周的长就是我们课本面的什么?

生:[齐]周长。

师:这课本面的长是哪条边?[学生指出课本面的长]好,现在我们再来摸一遍。从长方形的这个长开始。

生:[齐][用手沿着课本面的长、宽、长、宽的顺序分段摸一周,边摸边说]长、宽、长、宽。

师:是不是摸了一周?

生:[齐]是的。

师:大家想一想:这个长方形的周长,跟它的四条边有什么关系?[见学生没有反映,要求学生跟着老师再一起摸课本面的四条边]这是一条长,这是一条宽,这又是一条长,这又是一条宽。这一周有几个长,几个宽?

生:[齐]两个长,两个宽。

师:这长方形的四条边一共有多长,也就是这个长方形的什么?

生:[齐]是这个长方形的周长。

师:请你们把剪好的长方形纸拿出来,看能不能把你们带来的线,绕着这个长方形纸围一周?

[学生用线沿长方形纸的周长想围上一周,但围了几次都没有成功]

师:[注视几个学生的操作]怎么样,不容易围吧?那就请你们用尺来量一量,看看长是几厘米,宽是几厘米。[学生们改用尺来量长方形纸的长和宽,纷纷回答:长是3厘米,宽是2厘米]

师:现在用尺来量,就很快量出了长和宽。有的时候,我们要求长方形的周长,直接去量它的一周很困难,就可以利用长方形四条边的长度跟周长的关系,量出长、宽,想办法计算出周长来。

师:[出示长方形吹塑纸教具,贴在黑板上]老师这里有个长方形,长是30厘米,宽是18厘米[在图形的长、宽旁标出长度]。老师又用铁丝围成了这个长方形的周长。[将铁丝围成的长方形框架比在长方形吹塑纸上]大家看,这一段[指长方形的长]铁丝多少厘米?

生:30厘米。

师:这一段[指长方形的宽]铁丝是多少厘米?

生:18厘米。

师:现在我们把这根铁丝展开。[将铁丝框粘在黑板上,逐段将铁丝拉直,启发学生说出每一段是长方形的长或者宽。教师在每段铁丝下面分别板书:长、宽、长、宽]

师:大家看,[指着拉直的铁丝和下面的板书]这个长方形的周长也就是这个长方形的--

生:[齐]长加上宽,再加上长,再加上宽。

师:想一想:这个长方形的周长应该怎样列式计算呢?

生:30加18加30加18,等于96厘米。[教师板书]

师:[又出示一个用铁丝围成的长方形框架]老师又用铁丝围了这个长方形的周长。[将铁丝框架比在长方形的吹塑纸上]现在把它从对角剪开[用剪刀把长方形框架剪成和两段,出示其中一段]看看这一部分铁丝是这个长方形的几个长和几个宽?

生[齐]:一个长和一个宽。

师:这一段铁丝也就是这个长方形的长加宽的和。[将这段铁丝展开,粘于黑板上,下面板书:长加宽的和]长方形的周长里面有几个这样的长加宽的和?

生:[齐]有两个。

师:[将另一段铁丝也展开拉直,粘于黑板上,并在“长加宽的和”后板书:“的2倍”]也就是说,长方形的周长等于长加宽的和的2倍。用这种方法计算这个长方形的周长又该怎样列式呢?注意,要把长加宽的和先求出来,要先算加。

生:(30+18)×20。

师:等于多少?

生:等于96厘米。

师:计算长方形周长可以有两种方法:这是第一种方法[指“长+宽+长+宽”],这是第二种方法[指求长加宽的和的2倍]。这两种方法都算了长方形的几条边的和?

生:[齐]四条边的和。

师:哪四条边的和?

生:两条长,两条宽。

师:计算结果呢?

生:都相同。

师:有什么不同?第一种方法是怎样计算的?

生:长+宽+长+宽。

师:按照刚才摸的顺序,把四条边一条一条地加起来。那第二种方法呢?

生:是把长和宽加起来,再乘以2。

师:[出示长方形木板]这里有个长方形,请哪个同学来量一量,长是多少?宽是多少?

生:[用尺量后说出]长53厘米,宽40厘米。[要求学生根据量出的数据计算出这个长方形的周长。教师巡视,并指名用不同方法计算的两人板演。订正后再了解用第一种方法或第二种方法计算的各有多少人。再指名一人用皮尺绕长方形木板一周,直接量出它的周长是多少,并报出结果]

师:刚才用两种方法计算出这个长方形的周长都是186厘米。现在这个同学用皮尺绕长方形木板一周,直接量出周长也是186厘米。说明这两种方法的计算都是正确的。我们对这两种算法进行比较,可以看出:用第一种方法,根据长方形周长的意义列出的算式容易懂,但计算比较繁。用第二种方法,先要算出长加宽的和,再乘以2,列式要用到小括号,但计算比较简便,你们可以根据各人的情况来决定用哪种方法。现在请看课本第70页练习二十五的第2题。先请你们量一量自己数学课本的长和宽。[学生量课本,有的说长是18厘米,有的说长是19厘米,有的说长是18厘米多一点,有的说长是19厘米不到一点。教师根据学生量的情况,统一成长是18厘米,宽是13厘米]再算出周长,填在书上的表格里。周长是多少?

生:[齐]周长是62厘米。

师:[再要求学生量练习本的长、宽,并统一成长是19厘米,宽15厘米,算出周长后填在书上的表格里]练习本的周长是多少?

生:68厘米。

师:[出示例1,指名学生读题后]要求周长是多少厘米,应该先要知道哪两个条件?

生:长和宽。

师:题目中告诉我们长是多少?宽是多少?[学生纷纷回答]请同学列式把周长算出来。

生(l):8+5=13(厘米),13×2=26(厘米)。

生(2):(8+5)×2=13×2=26(厘米)。

师:[边板书,边说]能列综合算式的,应尽量列综合算式计算。这是道应用题,还应该答题。[学生补答,教师把例题解答板书写完整]

[教师引导学生阅读课本第69页至第70页。并说明课本上“也就是长加宽的2倍”这句话意思不清楚,应改成“也就是长加宽的和的2倍。”教师在黑板上示范,让学生在课本第70页第一行“加宽的”后面添上“和的”二字。并把修改后的这一节课文完整地读一遍]

师:[小结]今天,我们学习了长方形周长的计算。请大家想一想∶什么叫做长方形的周长?

生:用绳子把长方形围一周,这一周的长就是这个长方形的周长。

师:长方形周长怎样计算?

生(1):用长加宽,再加长,再加宽。

生(2):还有一种方法,用长加宽的和乘以2。

师:要求长方形的周长,必须先要知道什么条件?

生:[齐]长和宽。

师:如果长和宽不知道怎么办?

生:[齐]可以量出来。

师:如果只直接告诉其中的一个条件,还有一个条件没有直接告诉,怎么办?

生:要把另一个条件先求出来。

师:下面请同学们把练习二十五的第3题、第4题做在课堂练习本上。大家看第4题,问题是“小明沿着足球场跑了一圈,跑了多少米?”这实际上是要求什么?

生:[齐]求足球场的周长。

师:请把题目看仔细了,哪个条件没有直接告诉我们,就先要把它求出来。

作者:孔华

审稿人:李传家

“周长是多少”一课的教学反思 篇7

《数学课程标准》明确了“图形与几何”的教学应积累活动经验。数学活动经验需要在“做”的过程和“思考”的过程中积淀, 在活动过程中逐步积累。结合学习内容, 设计有效的数学探究活动, 使学生经历数学的发生发展过程, 是学生积累数学活动经验的重要途径。在本课中要培养学生的数学活动经验, 应突出“经历———体验———迁移”三个环节。

一、经历———纸上得来终觉浅, 绝知此事要躬行

数学基本活动经验的形成过程实质是学生经历数学活动的过程。教师提供充分从事数学活动的时间和空间, 学生在自主探索和合作交流的过程中真正理解和掌握基本的数学思想和方法, 获得广泛的数学活动经验。

基于这种思考, 本课的活动设计, 不仅让学生直观地认识了长方形、正方形的周长, 更重要的是在实际操作、测量的过程中, 有效积累了数学活动经验。

二、体验———随风潜入夜, 润物细无声

数学活动经验是一种过程性知识, 是学生在活动过程中内化了的数学知识、技能和情感体验。既有日常生活经验, 还有在数学课中获得的经验。它的获得依赖于多种数学活动, 如观察、理解、提问、建模、论证等, 经历后才有体验。

三、迁移———横看成岭侧成峰, 远近高低各不同

数学教学是“数学思维活动的教学”。数学学习是学生根据自己的体验“再创造”数学知识的活动。活动中, 教师要有效地调控活动, 启发学生展开数学的思考。

《周长的认识》教学设计与说明 篇8

新人教版三年级上册83页和84页。

教学目标:

1.引导学生感悟周长的含义,通过小组合作与探究培养学生的观察、比较及操作能力。

2.让学生主动参与到亲身体验中,使学生感知周长的含义。

3.引导学生积极参与知识的探究,提出自己的见解。

教学重点:

亲身经历和感受周长的概念,懂得用自己喜欢的方法描述不同图形的周长。

教学难点:

理解周长的含义,提高对周长的实际应用能力。

教学过程:

一、谈话导入

同学们,你们认识这些图形吗?(五角星形、三角形、长方形、正方形)

你们在生活中还见过哪些平面图形?(生答)

同学们知道的图形可真多!今天我们就来研究与平面图形有关的知识——周长的认识。

看到题目,同学们想一想、猜一猜,我们这节课要研究学习什么内容?(生答)

[设计说明:利用老师带来的图形吸引学生的注意力,使学生复习认识的平面图形和生活中的一些平面图形,明确本节课要研究的内容和平面图形有关系。]

二、预设教学流程

1.学生先学

(1)学生学习什么是一周,体会一周的含义

下面请同学们看老师给你们带来的图画,漂亮吗?老师有个想法,把这些图画镶上黄色的边框,这样这些图画就更漂亮了,是吗?

谁来拿着老师做的模型,边指边说该怎么镶边框?(绕边线一周)

同学们,刚才给这些图形镶边框时候,不知道你们发现了没有,这些图形有一个共同特点,那就是这些图形都可以从边线一点出发,绕边线一圈,又回到起点,同学们指的就是图形的一周。

谁来边指边说游泳池的一周在哪里?同桌之间说一说篮球场的一周在哪里。

[设计说明:在现实生活中,很多学生对周长的认识都很模糊,知道那是什么,但却无法清晰描述,所以首先要解决的问题是学生如何理解“一周”。先理解什么是图形的一周,通过学生边指边说和同桌之间再说,让学生知道一周是从图形的边线找一起点,绕边线围一圈,又回到起点,这就是图形的一周,为出示周长概念做准备。]

(2)自学周长概念

同学们刚才指的那些图形一周的长度就是它们的周长,请同学们看书自学什么是周长,即在一个平面中封闭图形一周的长度就是这个图形的周长。

摸一摸课桌面的一周,说一说什么是桌面的周长。摸一摸数学书封面的一周,说一说什么是数学书封面的周长。说一说什么是长方形的周长,什么是三角形的周长。

找一找我们周围的哪些物体表面有周长,什么是它的周长。

2.暴露学生问题

预设暴露问题1:学生不理解一周是什么意思。

预设暴露问题2:不会描述一个物体表面或平面图形的周长。

预设暴露问题3:不知道什么是封闭图形。

3.师生共同释疑

一周是从图形的边线找一起点,绕边线围一圈,又回到起点。这就是图形的一周。

同学们,你们觉得平面中所有的图形都有周长吗?找一找:下面哪些图形能找出它们的周长,哪些不能,为什么?(不封闭的图形找不到它的一周就没有周长。通过正反例子的比较,学生明确了封闭是什么意思。)

[设计说明:对于周长概念,我首先让学生认识一周,学生能够用准确的语言描述什么是这个图形的周长,并通过“指一指”和“找一找”等探索活动,让学生充分实践、思考和感受,使学生在充分感受物体表面一周的边线的长的基础上,试着说说什么是周长,然后再提出疑问,通过练习建立正确的周长概念。]

三、当堂检测

(略)

四、总结

通过这节课的学习,你有什么收获?(生答)

请同学们回家自己动手量一量,为自己建立一份《周长健康档案》。(头围、胸围和腰围)

[设计说明:本课的结束环节安排的实践作业从两个方面反映了周长与生活的密切联系:第一,生活中周长的应用很广泛,如配画框、给枕头缝制花边、推算树龄等,这些都会用到测量计算周长的知识;第二,我们身体里藏着周长,比如通过对头围、胸围、腰围等的测量,再去和标准进行对比,可以从一个侧面反映出成长过程中的健康状况。一个个鲜活的画面能进一步深化学生对周长的理解,让学生切实感受到本节课知识的趣味性和实用性,同时使学生更热爱数学。]

长方形和正方形周长的计算教案 篇9

教学目标:

1. 通过观察、交流等活动,使学生经历探索长方形和正方形的周长的过程,加深对周长的理解,初步形成计算周长的能力。

2. 使学生在学习活动中体会现实生活中的数学,发展对数学的兴趣,培养自主探究的意识和合作交流的能力。

教学重点:理解并掌握长方形及正方形周长的计算方法。教学难点:使学生认识到相同个数的小正方形拼长方形往往有不同的拼法,并能理解拼成的长方形的周长为什么不相等。

准备:两张白纸 作业纸 教学过程

一、谈话揭题

同学们昨天进行了认真的课前预习,知道今天上课的内容是什么?(板书课题)

一、长方形周长的计算

师:每位同学都发到白纸了,形状是什么? 生:长方形。

师:看看这张白纸,指一指它的边线。这边线的长也就是长方形的什么?

生:周长。

师:你会算它的周长吗?那你们算一算。(学生拿尺)师:对,算周长不是先计算,是先测量。(学生量)师:谁来汇报测量结果? 生:长8厘米,宽6厘米。师:你们测量结果和他一样吗? 生:一样。

师:现在可以算了吗?(可以)那就把计算过程写在作业本上。(生开始练习)(一学生板书)师:好了,看看他做的。对吗?(对)他第一步6+8=14算的什么?

生:一条边一条长的长度。

师:这条边叫什么?(宽)重新说一遍。生:一条长一条宽的长度。师:还有别的算法吗? 生:(6+8)X2=28厘米 师:还有别的算法吗?

生:8X2=16厘米 6X2=12厘米 16+12=28厘米

师:我想请哪个同学来说说看,他这样做是怎样想的? 生:他把长方形的两个长都加起来了,两个宽都加起来了。两个长两个宽加起来就是长方形的周长。

师:8X2算的是什么? 生:两个长一共是多少厘米。师:2X6呢?

生:长方形的两个宽一共是多少厘米。师:16+12呢?

生:是把两个长两个宽都加起来了。

师:长方形周长计算有问题吗?全对的给自己打勾。你现在又喜欢上了那种方法,用这种方法再算一遍。你能把这个长方形分成两个周长相等的图形吗? 交流(把长对折、宽对折、沿对角线折、撕)师:那能分成两个完全一样的正方形吗?

长方形要怎么样才能分成两个完全一样的正方形呢?

二、正方形周长的计算

师:长方形周长计算有了,那正方形呢? 生:正方形四面相等,只要把边长乘以4 3

师:刚才他说的是正方形周长的计算,问题是现在没有正方形啊?

生:可以把这个长方形角这样折一下,再把多的小长方形撕掉,就是正方形。

师:我们可以在长方形里折出正方形,会不会?(会)好,折出来。

师:折好了吗?

师:嗯,我看到了,都是这样折的。(出示)问题是:你还能折出比这个正方形更大的正方形了吗?

生:不能。

师:那就是从这个正方形中折出来的最大的正方形了。把它剪下来。并平放在桌上。那刚才有一个同学说还有一个(小长方形)那你会算正方形的周长吗?这个小长方形呢?(学生算)

师:我发现有同学在测量,有同学说我不要测量我就能算出来了,这是怎么回事呢?(学生继续)

生:正方形的长度是6X4=24厘米。师:你刚才说的长度是这个正方形的什么? 生:是正方形的周长。师:直接说正方形的周长是

生:正方形的周长是6X4=24厘米 师:嗯,解释一下为什么要6X4?

生:正方形的边长是6厘米,它的周长有4个6厘米,就是6X4=24厘米了。

师:你怎么知道边长是6厘米的呢? 生:用尺子量。

师:哦,他用尺子量知道了。哪个同学说我有别的想法。生:还有一种方法用原先剪出的长方形的宽就是剪出最大正方形的边长。

师:嗯,还有什么发现谁来说?

生:正方形的四条边相等,前面一个大长方形的宽是6厘米,正方形它也有一条边也肯定是6厘米,正方形的四条边都是相等的,所以是6X4=24厘米。

师:嗯,刚才两个同学都说这个正方形的边长都等于原来长方形的(宽),这个不测量能不能知道边长是6厘米?(能)好,给自己批改。对的给自己打勾。

师:小长方形的周长怎么算呢?

师:刚才那个同学说他没说是量出来的还是算出来的,但是他说这个小长方形的长不用量,是原来长方形的宽。刚才这个同学说这条边也不用量,怎么算?

生:8-6=2厘米

师:那这个小长方形的长呢?(6厘米)宽呢?(2厘米)就能求出周长。

师:给自己批改。

师:刚才我们算了长方形的周长和正方形的周长,有问题吗?(没有)那我有问题了。这个正方形周长多少?(24厘米)这个小长方形呢?(16)24+16你能算出来是多少吗?(40)正方形的周长加上小长方形的周长是40厘米,那这个正方形和小长方形是原来的大长方形分来的吧,那怎么原来是28,现在是40呢?我看真是问题。

师:刚才她一边讲一边指,她发现多了两条边,多了哪两条边?用手指一指,在这儿吧。那这条边是多少?(6厘米)两条边是多少?(12厘米)40比28多了12厘米,就是多了这两条边的长度。

师:(和学生一起拼图形)把长方形拿出来,先分开,然后再拿出来靠在一起,发现两条边(没了)一条边长6厘米,两条边就是12厘米,再把它分开,就多了两个6厘米,就是12厘米。来,看着,长方形周长、正方形也会算了,还明白了怎么多了12厘米。

三、练习

1、操作

分组活动 : 用4个(6个)正方形可以拼成什么图形,长、宽(或边长)各是多少?周长是多少?

交流。

2、开放题

学校准备建一个周长是20米的花圃,下面的方格纸上已经设计了一个。你能设计不同的花圃吗?先自己设计,再在小组里交流。

四、小结

五、课外拓展

《认识周长》教学设计 篇10

北师大版数学教材三年级上册第五单元“周长”的第一课时。

设计理念

本节课内容是在学生认识了三角形、平行四边形、长方形、正方形等平面图形基础上展开的,通过这部分内容的学习,将为学习平面图形周长的计算奠定基础。

本节课的授课:对象是三年级学生,他们的观察能力、分析能力、认知水平已经得到了一定的发展,但形象思维仍高于抽象思维,他们虽然在学习的过程中第一次接触周长。但在生、活中对周长已经有了模糊的印象。

1.结合具体事物或图形,通过观察、操作等活动认识周长,能测量并计算三角形、平行四边形、梯形等图形的周长。

2.通过观察、操作、测量等多种动手实践活动,促进思维的发展,培养初步的空间观念。

3.能结合具体情境,感知周长与实际生活的密切联系,体会生活之中处处都有数学。教学重点

认识周长。

教学难点

初步探索各种图形周长的测量和计算方法。

关键

理解“一周”的含义。

教、学具

多媒体教学课件、图形卡片、尺、线绳、彩笔。

教学过程

一、在活动中感知

1.组织学生描树叶的边线

教师借助多媒体课件展示美丽的树叶。问:想不想描出树叶的形状?

学生拿出画有树叶的学具卡片,用彩笔描出树叶的轮廓。

教师组织学生到展台前展示描的方法。(学生汇报时,教师指导学生说清从哪里开始,沿着哪描,到哪里结束,并在开始处用彩笔点上一点做记号。)

多媒体动态演示描树叶轮廓的过程。

师:你们知道树叶一周的长度是什么吗?

生:树叶一周的长度是树叶的周长。

师:今天这节课我们就来认识周长。(板书课题:认识周长)

2.组织学生描平面图形的边线

为让学生感知平面图形的周长,教师用多媒体呈现长方形、平行四边形、五角星形、心形。

师:它们有周长吗?试着描出它们的周长。

学生拿出画有各种图形的学具卡片,用彩笔尝试着描出图形的周长。

教师组织学生汇报这些图形的周长,并借助多媒体动态演示以上图形的周长。

3.组织学生概括“图形的周长”

师:刚才大家通过描图形的边线,认识了树叶的周长、长方形的周长、平行四边形的周长、五角星形的周长、心形的周长,可在图形王国里还有很多很多图形呢,我们能一一认识吗?那你能说一说什么是图形的周长吗?

学生用自己的语言描述图形的周长,只要意思表达明白了,教师都给予充分的肯定。

(教师板书:图形一周的长度,就是图形的周长。)

[设计意图:心理学研究表明,当学习材料与学生的生活经验相联系时,学生对学习最感兴趣,而且也最容易接受和理解新知识。

本节课周长的认识学生虽然在学习的过程中第一次接触,但在生活中对周长已经有了模糊的印象,而且在幼儿时期就积累了描图案轮廓的经验。因此,在新课开始,直接从学生的生活经验“描图案轮廓”人手,作为学习的起点,新知的增长点,这样设计唤醒了学生的已有经验,同时使学生产生对数学的亲近感,激发起学生的学习热情。在此基础上,又组织学生描平面图形的周长,使学生拓宽对周长的感性认识,建立起丰富的表象,学生在经历中对图形的周长初步获得体验。]

二、在活动中完善

1.创设情境

教师创设“三只小兔练习跑步”的情境,组织学生进行辩论,学生在交流、说理过程中体会到“从起点开始,再回到起点,而且路线不重复,才是一周”。

师:森林里马上要召开运动会了,三只小兔为了在运动会上取得好成绩。每天都在家门前的这换草地上练习跑步。

多媒体动态演示三只小兔跑步的过程:

师:三只小兔都说自己跑的是这块三角形草地的周长,请你们给评判一下吧!

生1:白兔跑的是这块三角形草地的周长,因为它从起点开始出发,又回到起点结束,而黑兔和灰兔都没有跑完。

生2:虽然黑兔和灰兔都没有跑完,但它们跑的边也有长度呀。

生3:确实有长度,可是“周长”的“周”是什么意思呀?我们在操场上跑一圈,只有从起点开始,再回到起点,才是一圈,也就是一周啊。

生4:那灰兔跑的也应该是这块三角形草地的周长,因为它从起点开始出发,又回到起点结束。

生5:可是灰兔没有跑第三条边,而是沿着前两条边重复跑的,这样跑不是“一周”。

师:通过刚才这些同学的发言,你有什么感受?

生:我们明白了“图形一周的长度”中的这个“一周”是指“从起点开始,再回到起点,而且路线不重复”。

2.找出下面图形的周长

3.组织学生走进生活,寻找“周长”

师:请你找找我们周围物体表面的周长,并用手摸一摸。

找一找、摸一摸并汇报。

[设计意图:认识周长的关键就是理解“一周”的含义。在学生初步感知“图形一周的长度就是图形的周长”的基础上,创设了“三只小兔练习跑步”的情景,悄然将“封闭”与“不封闭”图形展现其中,学生通过辩论、说理,体会到“从起点开始,再回到起点,而且路线不重复,才是一周”,从而突破了周长含义的难点“一周”。在此基础上,组织学找生活中的周长,学生通过摸一摸、指一指、量一量等活动,进步步体会周长的含义,感受到周长与实际生活的密切联系。]

三、全课总结

1.组织学生说一说学习了什么,有何收获。

2.布置实践作业:

出示学校订做校服尺寸表:衣长、胸围、腰围、臀围、裤长。

师:有我们这节课学的知识吗?

生:胸围、腰围、臀围。

师:同桌之间指一指胸围、腰围、臀围。

师:怎样测量胸围、腰围、臀围?回家测量,并填写校服尺寸表,为自己确定一身合适的校服。

周长的计算(教学设计) 篇11

长方形的周长和面积之间存在着一定的关系,在北师大版小学数学教材中,有这样一道题目(见图1)。这道题考查的是当周长固定不变时,面积的大小随着长、宽改变的规律。规律是:当长和宽越接近时,长方形面积越大;当长和宽相差越多时,长方形面积越小;当长和宽相等时,也就是正方形时,面积最大。

“长方形的周长与面积关系”这一内容来源于等周问题。蔡宗熹在《等周问题》中介绍道“等周问题就是要在周长条件等同的所有区域中,找出面积最大的区域。所以等周问题属于极值问题范畴”,并给出了一些简单等周问题的结论:“在周长一定的一切三角形中,以正三角形的面积为最大;周长一定的一切四边形中,以正方形的面积最大;内接同一圆的所有n边形中,以正n边形的面积最大;在四边长度给定的一切四边形中,内接于圆的四边形具有最大面积;周长为给定值l的一切n边形中,正n边形具有最大面积;在周长一定的所有封闭平面曲线中,圆周所围的面积最大。”

教师带领学生解决长方形的周长和面积的关系的方法通常是根据周长的大小确定出所有长方形,在网格纸上画出这些长方形,再数出面积来进行比较。但是在新教育改革背景下,数学课程的学习要注重实践性,《义务教育数学课程标准(2011年版)》(以下简称“课标”)中设计了综合与实践模块,意在让学生通过实践活动获得数学活动经验,学会分析问题和解决问题的方法。所以,探索长方形的周长和面积这一内容,可以设计出以学生为主体的探究活动,让学生能够在课堂中真正地活动起来,在活动中获取知识,提升自己的分析与解决问题能力、表达能力等。在活动中教师要扮演好学生的指导者、引导者的角色。具体的探究活动内容如下:

一、问题与动机

教师可以开门见山,直接向学生抛出本活动所要探究的问题。教师拿出周长为24厘米长的细线,询问学生:“同学们,老师遇到了一个问题,老师想要知道周长是24厘米的长方形的面积什么时候最大?什么时候最小?谁有想法可以说一说。”学生会思考这个问题,猜测问题的答案,对这个问题产生学习兴趣。周长相等,面积不相等吗?可能会有同学存在这样的疑问。到底什么时候面积最大?什么时候最小呢?学生可能会画长方形,求面积,也有可能会拿出手中的细线,动手围一围长方形。不仅仅是动脑筋想,还动手操作,围一围试试,这样教师就可以很好地过渡到下一步,引导学生制作几何板,围长方形。

二、过程与设计

想要知道周长是24厘米的长方形的面积什么时候最大,什么时候最小,可以动手围出长方形,再进行观察、分析。而想要让围出的长方形更加准确、直观,可以借助几何板。

教师先让学生观察制作好的网格纸的几何板(见图2),给学生自己制作这样的几何板留出思考的空间。学生会结合桌上的材料以及几何板的模型,思考如何制作几何板。其次,教师需要让学生思考怎样在这个几何板上围出长方形,围出长方形后如何进行分析。

三、实施与操作

所需材料:硬纸板、网格纸、笔、图钉、细线、铅笔、尺子、钥匙环和胶水。

教师试着让学生了解活动的过程,并加以指导:我们需要计算出周长为24厘米的长方形的长和宽分别是多少,围出相应的图形,求出每个长方形面积,将长、宽和面积的数据记录下来,再画出对应的长方形图形,这样就可以比较出哪个长方形的面积大,哪个面积小了。这个探究活动需要4人为一组合作完成。学生在明确操作过程之后,动手进行实践。

1.制作几何板。

学生用胶水将网格纸贴在硬纸板上。在细线的一端系上钥匙环,量出从钥匙环的一端加细线的总长度为24厘米,在24厘米处的细线上打一个结。

2.在几何板上围出长方形,记录每个长方形的长、宽和面积。

学生需要确定周长是24厘米的长方形的长和宽分别是多少,这个问题需要学生利用学习过的长方形周长来解决。确定长、宽分别为11,1;10,2;9,3;8,4;7,5;6,6(单位:厘米)这六组数据,分别围出长方形。以其中一组11,1为例,在刚画出的网格纸上确定一个顶点,用图钉穿过钥匙环,按在第一个顶点上,以这个点为起点,横向数11个小方格,在两条线的交点处用图钉固定,确定第二个顶点,竖着数一个小格,用图钉固定,再找到长方形的第4个顶点,用图钉固定。将这四个图钉用细线围起来,围成的图形就是长方形,将这个长方形进行编号,叫作长方形1。数出这个长方形内包含的小方格数(也就是长方形的面积),将这个长方形的长、宽和面积记录下来,可以设计如下的表格来记录数据(如表1)。用同样的方法,周长固定不变,改变长方形的长和宽,分别记录每个长方形的长、宽和面积的数值。

3.在活动单上画出每个长方形,标出长和宽(见表2)。

学生需要根据刚记录下来的每个长方形的长、宽,画出长方形,标出长和宽。

学会与他人合作学习,是非常重要的一种解决问题的方式,本活动可以培养学生与他人合作学习的意识,让学生明白在与他人合作交流的同时可以提升学习的效率,加快活动的进程。让学生填写表格内容并进行分析,可以提升学生的数据处理能力。

四、结果与评估

所需材料:长方形长、宽及面积的数据、画出对应的长方形的图形。

“用自己的语言和同伴说一说周长是24厘米的长方形的面积什么时候最大,什么时候最小;长、宽和面积大小之间存在什么关联?”教师引导学生发现周长是24厘米的长方形的面积什么时候最大,什么时候最小。这个学生可以根据面积的数据直接看出来,教师再引导学生思考长、宽和面积之间存在着什么关联。

学生根据每个长方形的长、宽和面积数据,可以比较分析出哪个长方形的面积最大,哪个长方形的面积最小。再结合画出的每个长方形,发现:

(1)当长和宽相等时,也就是长和宽都为6厘米时,面积最大,为36平方厘米。

(2)当长和宽相差最多时,也就是长是11厘米,宽是1厘米时,面积最小,为11平方厘米。

(3)当长和宽越接近时长方形的面积越大。

(4)当长和宽相差越多时面积越小。

教师可以根据学生总结的结论,为学生进行知识内容的拓展,简单地介绍等周问题。

在和同伴讨论周长和面积关系的过程中,每个同学的看法可能不一样,在进行合作交流的过程中学生之间可能会擦出“火花”,使学生拥有足够的学习兴趣去进行探究。

五、延伸与思考

如果长方形的一边靠墙,也就是用固定周长围出长方形三边的长度,那么长方形的面积什么时候最大呢?如果长方形的两边都靠墙呢?可以让学生思考这个问题,提升了难度,更加具有挑战性。

解决一边靠墙的办法是将周长×2,也就是使长方形的2倍达到正方形的时候,面积最大(见图3)。解决长方形两边靠墙的问题,采用上述学生总结出的结论,只要用线绳围出正方形就可以了,面积就是最大的,这相当于把周长平均分成了两半,需要注意的是给定周长的数值如果不是偶数,那么长、宽的数值不是整数。

六、关联与应用

所需材料:硬纸板、网格纸、笔、图钉、细线、铅笔、尺子、钥匙环和胶水。

“今天的探究活动比较的是当周长一定时长方形的长、宽和面积之间的关联。当面积一定时,长、宽和周长之间存在着什么关联呢?”教师引导学生探究周长可以固定不变,看面积的变化规律。同样的,面积是不是也可以固定不变,看周长的变化呢?让学生学会提出问题,学会多方面地考虑问题。而人教版教材中,恰巧有这样的问题(见图4)。教师可以仿照周长固定不变的活动设计,设计面积不变的探究活动。

下面每个方格表示1平方厘米。在方格纸上,画出面积是16平方厘米的长方形,你能画几个?算出它们的周长,填入表中。

学生按照比较长、宽和面积的方法来固定面积的大小,比较长、宽和周长之间的关联。

学生可能会发现:

(1)当长和宽相差越多时,长方形的周长越大。

(2)当长和宽越接近时,长方形的周长越小。

(3)当长和宽相等时,长方形的周长最小。

七、总结与反思

教师可以为学生设计如表格3的问题,让学生进一步明确今天的学习内容是什么,我有哪些收获,遇到问题我是如何进行解决的等。教师可以根据实际的教学情况进行调整。

以上的内容可作为小学数学实践活动的素材,适合于小学三年级的学生开展活动所用。活动环节的设计可以参考郜舒竹教授的观点,郜舒竹教授认为:“学习是学生自己逐步‘自悟’的过程,是一个从开始的‘迷惑’逐步走向‘清晰’的过程。期间至少应当包括四个层次,第一,明确问题,产生动机;第二,过程方法、获得结论;第三,多样比较,错误辨析;第四,关联应用,总结提升。”教师可以根据自己的教学经验,根据活动的内容加以调整。

参考文献

[1]蔡宗熹.等周问题[M].北京:科学出版社,2002.

周长的计算(教学设计) 篇12

(二)小组合作,解决问题。

1、兔子的路程:

提问:兔子的路线有什么特点?(长方形)

长方形的特征是什么呢?

怎么算长方形的周长呢?

小组讨论解决方法:小组讨论看你们有几种办法解决这个问题?

学生汇报结果。师:现在我们发现求长方形的周长有这么多的方法,请同学们在小组里说说如何计算一个长方形的周长?

小组讨论 后汇报小结:

宽+长+宽+长=周长 宽+宽+长+长=周长

宽×2+长×2=周长 (长+宽)×2=周长

师:计算长方形周长的方法有这么多种,这里的每一种方法都很棒,你认为哪一种方法比较简便?你最喜欢哪种方法呢?今后我们每个人都可以用自己喜欢的方法去求长方形的周长。

(设计思路:教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。因此教师在教学中应当充分尊重学生的主体地位,积极为学生创设主动学习的机会,提供尝试探索的空间,使学生乐于、善于自主学习,能主动从不同方面,不同角度思考问题,寻求解决问题的途径。同时还要培养学生的合作意识,使组员之间形成观点交锋,思维共享,达到学习互补的目的。实现知识的学习、互补和再创造。在这个环节中,尽量让学生多做多说多看多交流,老师放手使学生在动手中深刻的体会,并且验证自己的观点,并通过小组间的讨论与合作,得出结论。使学生操作,思维,语言相结合,深刻的体会长方形周长的计算方法。这样的设计还有利于学生的动手能力和概括等能力得到锻炼。)

2、小龟的路程

提问:怎样计算乌龟的路线(正方形的周长)。正方形的特征是什么?

小组讨论解决方法:讨论怎样计算正方形的周长。你有哪些方法? 总结成公式。

汇报结果:边长+边长+边长+边长=周长 边长×2+边长×2=周长 边长×4=周长

(设计思路:有了长方形周长的基础进行知识迁移,学生会轻轻松松的总结出来正方形的周长公式。使学生体会到学习的快乐。)

3、得出他俩的路程一样长

乌龟和兔子比赛究竟谁胜利了?(对,小兔获得了胜利。)

4、给小兔点掌声,有错就改,真棒!希望我们也能像小兔那样作一个知错就改的好学生。

(设计思路:前后照应,并对学生进行思想品德教育。)

(三)巩固深化,联系生活,解决实际问题(课件出示)

1、在钉子板上围出长方形和正方形并求它们的周长。

2、求数学课本封面的周长:(学生测量、计算。)

3、求毛巾的周长:(课件出示)

4、求跑两周多长:(课件出示)

5、求篱笆的长:(课件出示)

(设计思路:课堂教学的好坏,教学目标的达成与否,学生发展的有无,一一都要通过练习来检验。本课中,依据教学重、难点,分层设计了以上几个习题,通过练习,既加深学生对新知识的理解、巩 固、记忆,又为第二课时的教学打下了扎实的基础。)

(四)课堂总结。学生交流本节课都学到了什么?

今天这节课同学们学得真不错,你有什么收获?你能用简短的话告诉大家吗?同桌互说,然后告诉大家。

(五)课后延伸,解决实际问题。

1、小组为单位,寻找生活中哪些地方用到周长的知识?(3-5个)

2、搜集数据计算教室门、窗、课桌、凳子面的周长。

(设计思路:新课标指出数学学习要联系生活实际,学有用的数学。周长的问题在儿童的生活中接触还是比较多的。这几个习题的设计,更让学生感受到数学知识就在自己的身边,使学生联系生活实际,体验周长。)

七、规律总结

学生是学习的主体,我按照新课标要求,让学生自己在学习过程中自己总结规律,说出规律。既锻炼了学生思维的严谨性又培养了学生的口头表达能力。

八、板书设计

上一篇:定积分应用教案下一篇:跳舞发言稿