电解原理说课稿(精选4篇)
各位评委老师好!我叫XXX,我申请的学科是高中化学,我抽到的说课题目是《XXXXXX》。下面是我的说课内容。
本节选自全日制普通高级中学教科书(必修加选修)化学(人教版)第三册第四单元《电解原理及其应用》的第一节的内容—电解原理。电解原理的教学要求为理解层次,通过电解原理的学习,学生要能够领会概念、原理的基本含义,能够解释和说明一些简单的化学问题。同时这部分知识是历年高考的重要知识点之一,经常考查电极名称的确定、电极反应的书写、电解产物的判断、电解(离子)方程式的书写等,考查涉及的知识范围较宽,有一定的综合度,但难度不大。
一、教学目标
根据本节内容特点,结合大纲要求,我确立了如下教学目标:
①通过实验探究,掌握电解池的工作原理和形成条件,从而能够区分电解池与原电池 ②能够正确判断电解池的阴、阳极,并与原电池的正负极区分 ③能够正确判断电解产物,并能正确书写电极反应、电解方程式
④过对电解原理的实验探究,培养学生观察、分析、推理、归纳、总结、探究等能力,巩固实验探究的一般方法。
二、教学重、难点
根据以上对教材的分析可知:本节课的重点是电解池的工作原理和形成条件,而电解池的工..作原理则是本节的难点即①电极反应的书写②电解产物的判断③电解(离子)方程式的书写。..
三、教学程序
【复习提问】必修2中我们学习了原电池原理,请同学们回忆原电池原理及构成原电池的条件是什么?
【总结】构成原电池的条件:
1.活泼性不同的两个电极;2.电解质溶液并形成闭合电路3.自发氧化还原反应。
原电池原理:化学能转化为电能
一. 电解原理
【引入】若以氯化钠为原料制备金属钠,则需要外界提供能量(如电能)。这就需要电能转化为化学能,那么,电能又是如何转化为化学能呢?这就是我们这一节课要解决的问题? 【投影仪显示图1】
【讲述】这是一电解CuCl2 溶液的装置,我们又称为电解池。
【板书】阴极:与电源的负极相连的电极;阳极:与电源的正极相连的电极。
仔细观察实验现象 实验现象:在通直流电的条件下,阴极的石墨棒上有红色铜析出,阳极的石墨棒上有气泡放出,同时湿润的淀粉KI试纸变蓝,可以断定,放出的气体是Cl2↑
CuC1
2Cu + C12↑
这个实验告诉我们,CuC12溶液受到电流的作用,在导电的同时发生了化学反应,生成了Cu + C12↑,那么为什么CuC12溶液在电流的作用下会分解生成Cu + C12↑?
【设问】为什么会有这样的结果呢? 【讨论】:
①通电前,氯化铜溶液里有哪些离子?这些离子的运动情况怎样?
通电前溶液中Cu2+、Cl-、H+OH-
自由移动、②通电时,这些离子的运动情况有什么变化?为什么?
通电后带正电的Cu2+、H+向阴极移动;
带负电的Cl-、OH-向阳极移动。
【教师总结】通电前氯化铜溶液里存在着自由移动的氯离子和自由移动的铜离子,通电时,电解液中的阴阳离子发生定向移动。电子由原电池负极流向电解池阴极,电解液中的阳离子(铜离子,氢离子)移动过来铜离子得到电子,生成铜单质,发生还原反应;电解液中的阴离子(氯离子,氢氧根离子)移向阳极,氯离子失去电子,生成氯气,发生氧化反应.【讲述】CuCl2溶液在外加电场的作用下,在阴阳两极发生了氧化还原反应,我们把这个过程叫做电解。
【板书】电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。
阴极:Cu2+ + 2e == Cu(还原反应)Cu2+在阴极得电子变成了单质Cu, 阳极:2Cl--2e == Cl2 ↑(氧化反应)Cl-在阳极失电子变成了Cl2。总反应:CuC12
Cu + C12↑
电解池(或电解槽):把电能转变为化学能的装置 【设问】在CuCl2溶液中有自由移动的Cu2+、Cl-、H+、OH-,为什么只有Cu2+、Cl-得失电子,而H+、OH-却不能在两极上得失电子呢?
【讲述】当用惰性电极电解并且离子浓度相同时,水溶液中含有多种阳离子时,离子在两极上放电顺序是有一定规律的,根据大量事实,人们总结出一些离子的放电顺序。阴极上,金属阳离子得电子能力越强,越先放电。它们在阴极上放电的先后顺序是:Ag>Hg2>Fe3+>Cu2>(H+)>Fe2>Zn2;水溶液中含有多种阴离子时,阴离子失电子能力越强越先放电,它们的惰性阳极上放电的先后顺序是:S2>I>Br>Cl>OH-++
+
+
+
-
-
-
-由此看出由惰性电极电解CuCl2溶液
【设问】在电解过程中,电子是如何形成闭合回路的?
关键词:变压器 机电机械专业 技工院校 说课稿
一、说教材
“变压器原理与结构”一课是陈小虎主编、高等教育出版社出版的《电机与变压器》第五章第一节的内容。该门教材是国家高职院校“十五”规划教材,实践性强,通俗易懂。
1.教学大纲
根据电机与电压器课程的教学计划要求,该课教学的主要内容是有关变压器原理与结构的,即要求学生理解变压器的工作原理、变压器的内部结构以及工作效率等。
2.教学重点、教学难点以及突破方法
本节课的教学重点为:在电压器工作过程中,采用一次绕组方式与二次绕组方式时电压的比值等于它们之间线圈匝数的比值。
本节课的教学难点为:怎样利用本节课学到的知识解决实际问题,即教会学生怎样进行解题。为了突破难点,本节课选择幻灯片演示四道题目,并且给出解题过程。通常采用多媒体教学法(说教学过程中会详细说明准备过程)。
3.教学目标
第一,知识目标方面。本节课要求学生了解变压器的工作原理,掌握变压器的基本结构,会利用所学知识解决实际问题。
第二,素质目标方面。本节课着重于培养学生的独立自主能力,促进学生分析问题和解决问题能力的提高。
第三,情感目标方面。本节课着重于提升学生学习的积极性、师生关系的和谐性以及促进学生课后自习习惯的养成等。
二、说教法和学法
1.学情分析
笔者传授该课程的对象是技工院校机电机械专业大二的学生。这些学生已经具备一定的电工和电子基础知识,为该课程的学习奠定了坚实的基础。但是由于技工院校学生基础比较差,学习主动性比较低,他们不喜欢抽象式教条,喜欢直观形象的教学模式。
2.教法
本节课应该始终贯彻以学生为主、教师为辅的原则,让学生主动学练,激发学生学习兴趣,从而提高教学效果。为此本课可以采用的教法主要有:使用案例教学法,使学生更加明白变压器的工作原理;使用实物教学法,使学生能够掌握变压器的内部结构;使用多媒体教学法,向学生演示题目以及解题过程,提高学生利用所学知识解决实际问题的能力,并且能够节省时间,提高教学效果和教学质量。
3.学法
提问法:教师向学生提出几个与教学重点和难点紧密相关的问题,让学生思考,调动学生学习积极性,更好地突破教学重点和难点,顺利完成教学任务。
课堂解题法:让学生在黑板上进行板书解题,提高学生的动手能力和计算能力。
三、说教学过程
本节课可以分成五个部分,总课时为45分钟。
第一步:举例说明,实物拆装(5分钟)。
可以向学生举例现实生活中变压器的使用领域以及使用的重要性,激发学生学习热情。拆解变压器,让学生了解普通变压器的基本结构。用多媒体向学生展示变压器双绕组结构时主要有心形以及壳形两种形式。
第二步:讲故事和提问题,让学生明白变压器的基本功能(15分钟)。
为了使学生明白变压器的基本功能,向学生提出这些问题:现在已经广泛使用电力变压器,为什么还要研究开发电子变压器?电力变压器与电子变压器之间有什么区别与联系?没有标志的电源变压器通过怎样的办法使其能够得到利用?直流电能够在变压器中使用吗?通过讲故事和提问题,让学生明白采用一次绕组方式与二次绕组方式时电压的比值等于它们之间线圈匝数的比值,删去教材中繁琐的论证说明变压器变压作用。不过,教师在课堂中也要强调,如果学生感兴趣,可以在课外自主学习,了解变压器变压作用的推导过程。
第三步,多媒体教学,使学生了解变压器工作原理(10分钟)。
多媒体教学材料需要教师课外精心准备,结合大纲要求,图文并茂地向学生展示变压器工作原理。
第四步,多媒体教学,向学生讲解典型样题(10分钟)。
将事先准备好的典型样题通过播放幻灯片的形式演示给学生看。题目演示时,先要求学生独立完成,学生思考后,再播放解题过程,让学生比对校正。该部分教学安排是因为考虑到技工院校学生基础比较差,通过加强练习巩固消化知识。
第五步,小结(5分钟)。
对教学内容进行归纳总结,有助于学生进一步消化知识。总结过程中还要对主要内容进行板书,比如将重要概念、重要结论以及解题方法等在黑板上呈现给学生,进一步巩固学习内容。本节课的主要内容为:了解了双绕组变压器结构具有心形和壳形两种结构模式;变压器磁路主体铁心是电路主体绕组;一次绕组方式与二次绕组方式时电压的比值等于它们之间线圈匝数的比值。
四、教学反思
在完成教学任务的同时,又能提高课堂教学的趣味性、激发学生的兴趣,从而使得学生能够主动参与到教学过程中来,这是笔者一直思考并为此努力的方向。
《抽屉原理》说课稿1
这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。
一、说教材
本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。
二、说教学目标
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“总有”“至少”的含义。
我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
三、说教法学法
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
四、说教学流程
本节课共四个教学环节:游戏导入——探究新知——解决问题——游戏深化。
下面我分别说说这样设计的意图。
第一环节——游戏导入
通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
第二环节,探究新知
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣,让学生不但知其然,更要知其所以然。课上我让学生通过列举法、数的分解法及假设法探究总结出了结论:3本书,放到2个抽屉里,不管怎么放,总有一个抽屉里至少有2本书。这是本课的重点,接着引导学生把每种分法中得书最多的旁边作个记号,得出每种分法中有一名学生得2本、3本即2本书以上,再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解“总有”“至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。
在此基础上,我让学生把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能得出结论。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”
第三环节——解决问题
数学来源于生活又服务于生活,此环节我选择了贴近学生生活的喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。
第四环节——游戏深化
课的开始是游戏导入,结束时必须让学生没有遗憾的离开课堂,所以我在出示了几道关于出生年、月、日的练习题,在解决这几个问题时,我把问题逐步深化,比如:四(3)班有43名同学,至少有多少人在同一个月出生?我校有1603名学生至少有xx人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?这一类问题正是下节课要学习的抽屉原理(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了相信科学不迷信的情感教育,落实情感教育标。
《抽屉原理》说课稿2
今天我将要为大家讲的课题是《抽屉原理》。
首先,我对本节教材进行一些分析:
一、教材结构与内容简析
本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。
二、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,制定如下教学目标:
1 、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2 、能力训练目标:
1)、会用“抽屉原理”解决简单的实际问题。
2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。
3 、个性品质目标:
通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。
三、教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。
五、学法
教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。
六、教学程序及设想
1、由鲁宾孙航海故事 引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
本题从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
《抽屉原理》说课稿3
一、说教材
《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。让学生经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。
二、说教学目标
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”,并会用“抽屉原理”解决简单的实际问题。
三、说教学流程
本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结
下面我分别说说前3个环节。
第一环节——游戏导入
通过“抢椅子”游戏,体验不管怎么坐,一定有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的.切入点,这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
第二环节——探究新知
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,让学生不但知其然,更要知其所以然。课上我让学生通过小组合作摆一摆,说一说,让每一个学生都参与到知识的探究中来,让学生实际到讲台前演示,并对数进行分解法,把学生得出的结论进行汇总,最后由学生总结出了结论:5根小棒放进4个杯子,一定有一个杯子里至少有2根小棒。例2是让学生明确数量、抽屉和结论三者之间的关系,特别是对“一定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”,引导学生总结归纳这一类“抽屉问题”的一般规律。
第三环节——解决问题
此环节是对学生学习效果的检验,在设置习题方面采取层层深入,有一定的梯度,由学生很容易找到抽屉的题型过度到抽屉隐藏在题目中,逐渐提高难度,所选择的题力争与实际生活相结合。
整节课,我始终注意调动学生的学习兴趣,通过小组讨论,动手操作,学生演示,幻灯示范,抓住学生的思维,让学生通过我的引导来完成本节课的学习。
《抽屉原理》说课稿4
一、说教材
“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。
二、说教法
本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。
三、总体设计
本节课我安排了四个教学环节:
第一环:创设情境,诱发兴趣
在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。
第二环:自主参与,探索新知
在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。
第三层:应用新知,解决问题
让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。
第四层:引导学生总结规律
在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。
《抽屉原理》说课稿5
各为评委、老师,大家好:
我说课题目是《抽屉原理》(板书),这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说说这节课。
一、(首先谈谈第一点)从学情出发,确定课时的划分,与文本对话。
本单元共三个例题,例1、例2的内容,教材通过几个直观的例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。例1和例2既可以用一课时完成,又可以分两课时完成,而我选择后者,有如下思考。
数学广角的内容蕴含着丰富的数学思想方法,广角的教学目的主要在于让学生受到数学思想方法的熏陶,发展数学思维能力,因此对大多数学生而言,学起来是存在一些思维难度的。而抽屉原理是数学广角这个皇冠上的明珠,比十一册上的《鸡兔同笼》的学习更具挑战性。在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度,尤其是对“至少”的理解,它不同于以往数学学习中所说的含义,这里的“至少”是指在物体个数最多的抽屉中找到最少的物体个数,这对学生而言是一种全新的思维方式,他们很可能一时转不过弯。另外,让学生用精炼准确的语言来表述自己的思考也是一个难点。
再看看课本,根据例1、例2理出了《抽屉原理》的知识序列。例1描述的是物体数比抽屉数多1的情况,例1的做一做代表的是物体数不到抽屉数的2倍,比抽屉数多2、多3一类的情形,例2描述的是物体数比抽屉数的非1整数倍多1的情况,例2的做一做代表的是物体数比抽屉数的非1整数倍多,且不止多1的情形。可见,例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,他们才可能顺利地进行例2的学习,否则,此内容的学习将只是优生炫酷的天地,他们可能一开课就能说出原理,而其他学生可能一节课下来还弄不清什么是“总有一个”、什么是“至少”,怎样才能很快知道“至少”是几个物体。因此,我选择将例1、例2分成两课时完成。可能有老师说,这样本课的教学内容容量太少了,基于这一点,我在第四个环节有说明的。
二、从文本出发,确定教学目标
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。
3. 通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点是:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
我把:理解抽屉原理中“总有”“至少”的含义作为本课的教学难点
我之所以这样确定教学目标和重难点,是因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
三、从学生实际出发,选择合理的教法学法
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
第四个方面是:以学定教,与课堂对话。
本节课共我设计了四个教学环节:游戏导入——探究新知——反思、呈现——解决问题(游戏)。
下面我分别说说这样设计的意图。
第一环节——游戏导入
由于只把例1作为本课的教学内容,我在设计的时候对例1的教学进行了一些铺垫和补充。在导入部分,设计了猜至少有几个学生是同月生的游戏,拉近数学与生活的关系,激发学生的探究欲望。在例1的教学后加入了5枝铅笔放入4个盒子的问题,目的在于通过两个不同的实例让学生较充分地感受、体验、发现相同的现象,有利于学生进行抽象、概括,使结论的得出更有说服力。然后拓展到7枝铅笔放入5个盒子,8枝铅笔放入5个盒子,9枝铅笔放入5个盒子,这一类余数是2、是3、是4的问题的探究,完成对抽屉原理第一层次的认识。
第二环节,探究新知。
根据学生学习的困难和认知规律,我在探究部分设计了三个层次的教学活动,这三个层次的教学活动由形象思维逐步过渡到抽象思维,层层递进,培养学生的逻辑思维能力。
第一个层出:实物操作,把4枝铅笔放入3个盒子(板书),解决3个问题:
1、怎样放
知道排列组合的方法,明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导学生有序思考,为后面的列举扫清障碍。
2、共有几种放法 孕伏对“不管怎样放”的理解。
3、认识“总有一个”的意义。
通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。
第二个层次:脱离具体操作,由抽象到数,进行数的分解——思考把5枝铅笔放入4个盒子(板书包括6支5盒),又会出现怎样的情况,学生直接完成表格。这一层次达成三个目的:
1、理解“至少”的含义,准确表述现象。
通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”,学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒” 时,总有一个文具盒里至少放入2枝铅笔的结论。
2、理解“平均分”(板书)的思路,知道为什么要“平均分”。
抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法——就是按照盒数平均分,只有这样才能让最多的盒子里枝数尽可能少。
3、抽象概括 小结现象
通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”,让学生抽象概括出 “当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体” (板书),初步认识抽屉原理。
(三)学生自选问题,探究“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”(板书789物体5抽屉)
这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。
教学流程的第三个环节,将本节课研究过的所有实例进行总体呈现,让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体(板书)。
在最后的练习环节以游戏的形式出现,我设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是“待分的东西”,什么是“抽屉”,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。
抽屉原理
平均分
4支铅笔放进 3个文具盒
5支 4 个
6支 5个
当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体。
7个物体 5抽屉
8个物体 5抽屉
9个物体 5抽屉
﹕ ﹕
﹕ ﹕
“……,不管怎样放,总有一个抽屉,至少放进 2 个物体。”
这是这节课的板书设计。
谢谢大家!我的说课完毕。
《抽屉原理》说课稿6
今天我们在培训中心大厅听了来自××县的××老师的一节录像课《抽屉原理》。抽屉原理这节课不同于六年级其他课型,与前后知识点没有联系,比较孤立。抽屉原理也很抽像,对于师生而言,这节课比较难上。××老师是通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”的,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,并会用“抽屉原理”加以解决。
××老师上的《抽屉原理》一课虽然朴实,但是结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探究的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
优点:
1.本节课充分放手,让学生自主思考,采用自己的方法证明:把4支笔放入3个杯子中,不管怎么放,总有一个杯子中至少放进2支笔。然后交流活动,为后面开展教学活动做了铺垫。此处注意了从最简单的数据开始摆放,有利于学生观察理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验理解最基本的“抽屉原理”:当物体个数大于抽屉个数是,一定有一个抽屉放进了2个物体。这样的教学过程,从方法和知识层面对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。
2.在教学过程中充分发挥了学生的主体性,在抽屉原理的推导过程中,至少是商+余数,还是商+1个物体放进同一个抽屉里。让学生互相争辩,在由学生验证,使学生更好的理解抽屉原理。
3.注意渗透数学和生活的联系,并在游戏中深化知识。课前教师设计了一组简单真实的生活情境:让一名学生在去掉了大小王的扑克牌中,任意抽取5张。老师猜,总有一种花色的牌有2张。学完抽屉原理后,让学生用学过的知识来解释这一现象,有效的渗透“数学来源于生活,又换源于生活”的理念。
建议:
1、3个杯子放4支笔时说的基本原理在后面不适用,教师应该强调。
2、在得出抽屉原理后应该让学生多加练习并加以说明。
3. 应该不断在活动中使学生感受到了数学魅力。
“抽屉原理”的建立是学生在观察、操作思考、推理的基础上理解和发现的,学生学的积极主动。老师上的比较扎实,是一节好课。
《抽屉原理》说课稿7
××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”这是为什么?学生很惊讶。于是,学生的积极性被调动起来了,总想接开其中的奥秘。学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。
商讨之处:
学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。
《抽屉原理》说课稿8
一.说教学内容。
我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,教材70-71页的例1和例2.
二.说教学目标。
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
三.说教学理念。
1、用具体的操作,将抽象变为直观。
“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。
2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
3、适当把握教学要求。
我们的教学不同于社会上的辅导培优机构,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。
四.教法和学法:
以学生为课堂的主体,采用创设情境,提出问题,让学生大胆猜测、动手操作、自主探究、合作交流。
五.说教学流程.
(一)、游戏激趣,初步体验。
今天在学习新课之前,老师和大家玩一个“抢凳子”游戏。(下面有2把椅子。3个同学玩抢凳子的游戏,要求每个人都要坐到凳子上,结果会怎样?)
【设计意图:在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。】
(二)、操作探究,发现规律。
1、提出问题:把4支笔放进3个文具盒中,可以怎么放?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一、说明列举的不同情况,二、结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)
学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支笔被放进了同一个文具盒。
【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。】
(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?
学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。
【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。】
(3)初步观察规律。
教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?
【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。】
3、运用抽屉原理解决问题。
出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】
4、发现规律,初步建模。
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。
【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。】
5、用有余数的除法算式表示假设法的思维过程。
(1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?
(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?
【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。】
6、再次发现规律。
观察板书,你有什么发现吗?让学生通过对除法算式的观察,得出“只要物体个数比抽屉个数几倍还多,总有一个抽屉至少有商+1个这样的物体。”的结论。
【设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2个”德到“至少商+1个的结论。】
7、介绍课外知识。
介绍抽屉原理的发现者——数学家狄里克雷。
【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】
(三)、巩固练习。
《导学练案》自我测评第一题
(四)、归纳小结,强化思想
对于本节课的学习,你的感受如何?
(五)板书设计
只要物体数量比抽屉的数量多,
总有一个抽屉至少放进2个物体。
这就叫做抽屉原理。
只要物体个数比抽屉个数几倍还多,总(至少数=商+1)
关键词 概念界定;研究对象;理论基础
中图分类号 G40-057 文献标识码 A
教学设计自80年代传入我国,就以它独特的程序化、精确化和合理化现代教学技术的魅力,在教育技术领域独领风骚,受到人们的关注和青睐,命名传统经济型教学受到挑战。但是,不论教学设计怎样受人推崇,它毕竟是飘洋过海的泊来之物,要做到“洋为中用”,成为具有中国特色的教学设计,还必须经历本土化过程。为此,在研究教学设计之风乍起,人们都热衷于教学设计的介绍和模仿时,笔者认为,进一步探讨教学设计的概念、研究对象和理论基础是十分必要的,对构建具有中国特色的、符合我国教育教学国情的教学设计理论体系和模式将有重要的现实意义。
一、教学设计的概念
什么是教学设计?回答这个问题,属于学科本体论研究范围,目的是正本清源,避免概念上的岐义,带来研究上的困惑。教学设计本是教学开发的重要组成部分,随着教学开发运动深入发展,推动了教学设计的研究,“自60年代以来,已逐渐发展成为教育技术领域的一门独立学科”。作为一门独立的学科概念本应有比较一致的认识,实则不然,从已经出版的教学设计著作和已发表的有关文章中,可以看出对其概念的界定,不论是内涵还是外延,都存在差别。归纳起来大致有如下一些说法:一是“计划”说。把教学设计界定为是用系统的方法分析教学问题,研究解决问题途径,评价教学结果的计划过程或系统规划。这种论点的代表当推美国学者肯普,他给教学设计下的定义是:“教学设计是运用系统方法分析研究教学过程中相互联系的各部分的问题和需求。在连续模式中确立解决它们的方法步骤,然后评价教学成果的系统计划过程。二是“方法”说。把教学设计看作是一种“研究教学系统、教学过程和制定教学计划的系统方法”。而这种方法与过去的教学计划不同,其区别就在于“现在说的教学设计有明确的教学目标,着眼于激发、促进、辅助学生的学习,并以帮助每个学生的学习为目的。”三是“技术”说。鲍嵘在《教学设计理性及其限制》一文中认为,教学设计是一种“旨在促进教学活动程序化,精确化和合理化的现代教学技术。”四是“方案”说。认为“教学设计是运用系统方法分析教学问题和确定教学目标,建立解决方案、评价试行结果和对方案进行修改的过程。”这种观点在我国有较大的影响面,代表人物是乌美娜。五是“操作程序”说。认为“教学设计就是运用系统方法和步骤,并对教学结果作出评价的一种计划过程与操作程序”。
可见,关于教学概念的界说观点并不一致。造成这种分歧的主要原因,就是研究者对研究对象关注的视角和取向的不同。通过对国内外教学设计概念界定的比较分析可以发现,人们是从以下三个方面来界定教学设计的:一是从教学设计的形态描述来界定,如“计划”与“方案”说。二是从教学设计的功能来界定,如“方法”与“操作程序”说。三是从揭示教学设计本质来界定,如“技术”说。确切地说,从某一方面、某一视角出发,研究教学设计的理论,所 构建的都不是严格意义上的教学设计概念。任何事物都是通过概念来揭示它的本质,规定它的内涵,反映它的规律的。教学设计作为一门学科的概念,关系到研究对象、理论基础和学科体系的建设,有必要在对教学设计概念梳理的基础上,进行科学界定。所谓科学界定,就是要遵循定义的科学性、严格性、逻辑性、高度概括性、理论抽象性和陈述的简明性原则,给教学设计一个准确、恰当的定义。在没有界定这前,我们还了解什么是教学和设计。美国教育学家史密斯(P·L·Smirch)和拉根(T·J·raglan)认为,教学就是信息的传递及促进学生到达预定、专门学习目标的活动。包括学习、训练和讲授等活动。所谓设计就是指在进行某件事之前所作的有系统的计划过程或为了解决某个问题而实施的计划。韦斯特(Charles·K·West)等人则从认知科学的角度探讨教学设计,他们认为,教学就是以系统的方式传授知识,是关于技术程序纲要或指南的实施。设计是计划或布局安排的意思,是指用某种媒介形成某件事情的结构方式。从上述关于教学和设计的界定中,我们可以总结出两点,一点是教学是一个有目标的活动;另一点是“设计就是为实现某一目标所进行的决策活动”。掌握了这两点,就可以给教学设计下定义了。我们认为,教学设计是研究教学目标、制定决策计划的教学技术学科。这一定义下的教学设计具有以下一些特征:
第一,教学设计是把教学原理转换成教学材料和教学活动的计划。教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
第二,教学设计是实现教学目标的计划性和决策性活动。教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
第三,教学设计是以系统方法为指导。教学设计把教学过程各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
第四,教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程。教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
【电解原理说课稿】推荐阅读:
电解池《电解原理的应用》教案11-01
分类计数原理与分步计数原理说课稿09-12
电解液07-02
车间电解工实习心得10-15
铝电解车间工作总结06-13
电解质的电离教案02-09
电解水化学教案03-02
弱电解质的电离论文03-16
鲁科版必修1电解质06-07
电解水的实验教案 初中化学09-18