面面垂直的判定公开课(推荐9篇)
课题:垂直关系
教学分析
垂直关系是一种非常重要的位置关系,它不仅应用较多,而且是平行关系的转化手段,可以说垂直关系是立体几何的核心内容之一,也是高考热点内容。
垂直的性质定理在立体几何中有着特殊的地位和作用。在巩固线线垂直和面面垂直的基础上,讨论垂直的性质定理及其应用时,要注意是立体几何最难的定理,往往是一个复杂问题的开端,先由面面垂直转化为线面垂直,否则无法解决问题。
三维目标
1.探究垂直的判定定理,培养学生的空间想象能力。
2.掌握垂直的判定定理的应用,培养学生分析问题、解决问题的能力。
3.探究垂直的性质定理,进一步培养学生的空间想象能力。
4.垂直的性质定理的应用,培养学生的推理能力。
5.通过垂直的性质定理的学习,培养学生的转化思想。
重点难点
教学重点:(1)垂直关系的判定定理及其应用(2)垂直的性质定理
教学难点:(1)应用判定定理解决问题(2)性质定理的应用
课时安排:1课时.教学手段:多媒体.教学过程:
一、知识回顾
1、线面垂直的判定方法
(1)定义——如果一条直线和一个平面内的任意一条直线都垂直,则直线与平面垂直。
(2)判定定理——如果一条直线和一个平面内的两条相交直线都垂直,则直线与平面垂直。
lbalbabAla
2线面垂直的性质
(1)如果一条直线和一个平面垂直则这条直线垂直于平面内的任意一条直线。
(2)性质定理——如果两条直线同垂直于一个平面,则这两条直线平行。
3、面面垂直的判定方法
(1)定义-----如果两个平面所成的二面角是直二面角,则这两个平面垂直。
(2)判定定理-----如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直α⊥β,α∩β=l⇒m⊥β.用符号表示为mα,m⊥l
4面面垂直的性质
如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面
二、课堂演练
1.在三棱锥V-ABC中,VA=VC,AB=BC,则下列结论一定成立的是()
A.VA⊥BCB.AB⊥VC
C.VB⊥ACD.VA⊥VB
2.设l、m、n均为直线,其中m、n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.关于直线m、n与平面α、β,有以下四个命题:
①若m∥α,n⊥β且α⊥β,则m∥n.②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n∥β且α⊥β,则m∥n;
其中真命题的序号是()
A.①②
C.①④B.③④ D.②③第4题图
4.△ABC,∠ABC=90°,PA⊥平面 ABC,则图中直角三角形的个数是________.
三、典例精析
例1如图,AB是圆O的直径,C是异于A,B的圆周上的任意一点,PA垂直于圆O所在的平面。求证:(1)BC⊥面PAC(2)若AH⊥PC,则AH⊥面PBC
C B 例2如图,已知PA┴ 矩形ABCD所在平面,M、N分别是AB、PC的中点 求证:(1)MN┴CD(2)若PDA
P 45,求证:MN面PCD
四、小结:三种垂直关系的转化
M D C
五、作业:课时作业
(二)教学目标:
通过本节教学提高学生解决问题能力;进一步提高学生认知图形能力、空间想象能力;从多角度解答问题过程中,感悟等价转化思想运用;创新精神,实践能力在数学中的体现、渗透。
教学重点:
两个平面所成二面角的棱寻求、角的求解。
教学难点:
找求问题解决的突破口,转化思想渗透。
教学过程:
1.复习回顾:
1)二面角的平面角找法依据.2)三垂线定理及逆定理.2.讲授新课:
[师]前面研究了如何找一个二面角的平面角,解决的途径有定义法、三垂线法、垂面法,除此外又给了面积射影法求二面角.本节主要研究无棱二面角的求解思路、方法.近几年的高考试题涉及无棱二面角问题的题目也较突出.找无棱二面角的棱依位置可分二类,例1:如图,在所给空间图形中ABCD是正方形,PD⊥面ABCD,PD=AD.求平面PAD和面PBC所成二面角的大小.[师]面PAD和面PBC图中只给出一个公共点,那么怎样找棱呢?请思考.[生]作线在面内进行,BC∥AD则经BC的平面与 面PAD的交线应平行,由此想到经P作BC或AD平行线,找到棱后的主要问题就是找平面角.解法如下:
解:经P在面PAD内作PE∥AD,AE⊥面ABCD,两线相交于E,连BE ∵BC∥AD 则BC∥面PAD
∴面PBC∩面PAD=PE ∴BC∥PE
因PD⊥面ABCD,BC⊥CD 那么BC⊥PC,BC⊥面PDC 即有PE⊥面PDC PE⊥PD,PE⊥PC
∠CPD就是所求二面角的平面角 因PD=AD,而AD=DC
⊥面AC1,E∈BB1,AA1=A1B1,求面A1EC与面ABC所成二面角的大小.[师]此题显然依上述方法去找平行线已不可能.由图B1C1与CE不平行.但与前两个问题的相同点还是两面从图形看到的只有一个公共点,依公理我们只有去找另一公共点,观察图我们可看到CE与B1C1是同一平面内线,突破口就选在面B1C1CB内,找到点后,二面角的棱也就找到.请同学思考并表述过程.解:∵A1是平面A1EC与平面A1B1C1的一个公共点,∴只需找到另一个公共点,即可.因AA1=A1B1=A1C1,连AC1 则AC1⊥A1C,AC1∩A1C=O 取BB1的中点E,连EO
因面ABC是正三角形,则经B作BG⊥AC有 BG⊥面AC1,OE∥BG ∴OE⊥面AC1
因面A1EC⊥面AC1,故E是BB1中点
1那么EB1∥
CC1
=2∴CE与B1C1延长后必交于一点F,即F为面A1EC,面A1B1C1的另一个公共点
连A1F,则A1F为面A1EC与面A1B1C1所成二面角的棱 因FB1=B1C1=A1B1,∠A1B1F=120° ∴∠FA1B1=30°
那么∠C1A1F=90°即A1C1⊥A1F 那么CA1⊥A1F(三垂线定理)
∠CAC1为面A1EC与面A1B1C1所成二面角的平面角.∠CA1C1=45°,因AA1∥ BB1∥ CC1
==而面ABC∥面A1B1C1
∴面A1EC与面ABC所成二面角大小为45°.[师]找公共点F是解此题关键,例1、2是通过公共点作棱,例3是通过再找公共点而得棱.因题条件不同而采用不同作法.例1、2找棱的方法不妨叫“作平行线”,例3的方法叫“找公共点”.[师]问题的解决不一定就一种思路,一条途径,只要多去想条件涉及到的知识点,解决方法总会找到,“柳暗花明又一村”的境界一定能达到.3.课时小结:
编制人:lh
学习目标:
1.知识与技能:理解并掌握平面与平面平行的判定定理及应用
2.过程与方法:通过感知、举例、类比、探究、归纳出判定定理
3.情感价值观:进一步陪养解决空间问题平面化的思想
学习重点:平面与平面平行的判定 学习难点:面面平行判定定理的应用
一、复习与思考
1.我们学习过两种判断线面平行的方法:
(1)定义法:
(2)直线与平面平行的判定定理:
条件:关键:
思想:
找平行线的方法有:
2.两个平面有几种位置关系?请画图说明:
3.观察你的周围,请举出面面平行的具体例子:
二、合作探究
问题
1提示:将面面平行转化为......问题2思考在下列4种情况下,α∥β是否成立。(请举例说明理由)
(1).若平面α内有一条直线a平行于平面β,能保证α∥β吗?
(2).若平面α内有两条直线a、b都平行于平面β,能保证α∥β吗?
-“学习的三大要素是接触、综合分析、实际参与。”-----名人名言
(3).如果平面α内的无数条直线都平行于平面β,则α∥β吗?
(4).如果平面α内的任意直线都平行于平面β,则α∥β吗?
三、面面平行的判定定理
根据探究结果,对照线面平行的判定定理,请尝试归纳出面面平行的判定定理: 定理内容:图形表示
符号表示:
简述为:
定理再理解
1.正确运用定理需要
2.定理用到的数学思想:
3.运用定理的关键是:
四、定理的应用
定理初应用
例1如图:三棱锥P-ABC,D,E,F分别是棱PA,PB,PC中点,求证:平面DEF∥平面ABC。D
E
A
B
变式1:若把例1中的“D,E,F分别是棱PA,PB,PC中点”改为“
结论是否依旧成立?请口述原因。
F C PDDAPEEBPFFC”,定理再应用
例2在正方体ABCD-A1B1C1D1中.求证:平面AB1D1∥平面C1BD.D
1A1
D C1 1 C
变式2:若把例2中的“正方体”改为“长方体”,结论是否依旧成立?请口述原因。
方法小结(请总结出证明两个平面平行的一般步骤):
五、达标检测
1.已知α、β是两个平面,在下列条件中,可判断α∥β的是()
(A).l,m,l//,m//(B).l,m,l//m
(C).l//,m//,l//m(D).l,m异面,l ,m,l//,m// 2.已知直线a//平面,过直线a作平面,使//,这样的,()
(A).只能作一个(B).至少可以作一个(C).不存在(D).至多可以作一个
3.已知α∥β,a,b,则a与b的位置关系是()
(A).平行(B).异面(C).相交(D).平行或异面
4.已知正方体ABCD-A1B1C1D1,P,Q,R,分别为A1A,AB,AD的中点。
求证:平面PQR∥平面CB1D1.Q
六、小结与反思
1.通过本节课的学习,判断平面与平面平行的方法有:
2.应用判定定理判定面面平行时应注意:
3.应用判定定理判定线面平行的关键:
4.找平行线的方法有:
怎么证明面面垂直
证明一个面上的一条线垂直另一个面;首先可以转化成
一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面
然后转化成
一条直线垂直于另一个平面内的两条相交直线
也可以运用两个面的法向量互相垂直。
这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE
2
1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。
2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法 两条直线的方向向量数量积为0
2斜率 两条直线斜率积为-1
3线面垂直,则这条直线垂直于该平面内的.所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边
4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。
Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
课题:§ 3.1.2 两条直线平行与垂直的判定
教材:普通高中课程标准实验教科书(人教A版)必修(二)第三章第一节第二部分内容
课时:1课时
下面,我从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析:
1、学习任务分析:
直线与方程是平面解析几何初步的第一章,主要内容是用坐标法研究平面上最基本、最简单的几何图形——直线。学习本章,既能为进一步学习解析几何的圆、圆锥曲线、线性规划、以及导数、微分等做好知识上的必要准备,又能为今后灵活运用解析几何的基本思想和方法打好坚实的基础。
本节课是在学生学习了直线的倾斜角、斜率概念和斜率公式等知识的基础上,进一步探究如何用直线的斜率判定两条直线平行与垂直的位置关系。核心内容是两条直线平行与垂直的判定。它既是直线斜率概念的深化和简单应用,也是后续内容学习的重要基础。因此,我认为本节课的教学重点为:根据两条直线斜率判定两条直线平行与垂直。
用斜率判定两条直线的位置关系,体现了用代数方法研究几何问题的思想,这是贯穿于本节乃至本章内容始终的一种思想方法,它是解析几何研究问题的基本思想,本质还是数形结合。因此体会数形结合的数学思想也是本节课的教学任务之一。
2、学情分析:
在初中数学中,学生已学习过两条直线平行与垂直的判定。对两条直线平行与垂直的几何判断方法并不陌生,并且具备了一些初步推理能力。但用两条直线的斜率判定两条直线平行与垂直,是用代数方法研究几何问题,学生面对的是一种全新的思维方法,首次接触会感到不习惯。按说要学好本节内容,学生还需具备三角函数的有关知识,但此前学生并没有这方面的知识储备。尤其是对诱导公式的认识是有一定困难的。因而要导出两条直线垂直的斜率条件,学生会感到困难。因此,我以为本节课的教学难点为:探究两条直线斜率与两条直线垂直的关系。
二、教学目标设计:
《课程标准》指出本节课的学习目标是:能根据斜率判定两条直线平行或垂直。根据《课标》要求和本节教学内容,并考虑学生的接受能力,我把本节课的教学目标确定为:
1、能根据斜率判定两条直线平行或垂直。
2、体验、经历用斜率研究两条直线的位置关系的过程与方法,通过两条直线斜率之间的.关系解释几何含义即初步体会数形结合思想。
3、感受坐标法对沟通代数与几何、数与形之间联系的重要作用。
三、课堂结构设计:
本节课从总体上讲是一节原理及简单的应用教学,诱思探究教学理论认为高中的数学课堂应该是学生在自主探究、动手实践、合作交流、阅读自学等学习方式下,师生之间、学生之间进行愉快而有效的多边互动。结合本节课知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先让学生回顾上节课学习的内容创设问题情景,通过学生自主探究,归纳和抽象得出两条直线平行与垂直的判定条件。然后通过例题和练习使学生巩固判定条件,接着通过拓展提升,使学生进一步加深对判定条件的理解,最后通过课堂小结提高学生的认识,形成知识体系。
四、教学媒体设计:
根据本节课的教学任务以及学生学习的需要,教学媒体的设计如下:
1、多媒体辅助教学:
制作高效实用的多媒体课件。其一,在探索两条直线垂直的判定条件时,利用几何画板展示探究的过程,让学生直观感知、操作确认自己的猜想是正确的,加深学生对判定条件的理解。其二,改变相关内容的呈现方式,节约课时,增加课堂容量。
2、设计科学合理的板书:为使学生对本节课所学习的内容有一个整体的认识,教学时将重要内容进行板书,如:
§3.1.2两条直线平行与垂直的判定
结论1: 结论2、例1、例2、变式训练1: 变式训练2:
五、教学过程设计:
下面我就课堂教学的各个环节的设计做简单的说明。
(一)创设情景,引入新课:
活动一:
1、什么叫倾斜角?它的范围是什么?
2、什么叫斜率?如何计算呢?
3、已知直线 经过A(1,3)、B(-1,-1),直线 经过C(2,2)、D(1,0)①计算直线 的斜率; ②在直角坐标系中画出直线。
给学生约30秒的时间思考问题1、2,请学生口述答案,老师强调注意的条件。通过解决问题3,学生发现k1= k2,并观察出 是平行的,学生很自然发现两条直线的斜率与位置有着某种联系,从而引出本节课的课题。
设计意图:一方面通过回顾,巩固上节课的教学内容,并为本节课做好知识方面的准备。另一方面也为引出本节课的课题。同时也是为了培养学生发现问题,提出问题的能力,激发学生运用旧知探求新知的欲望。也是为了体现由特殊到一般的认知规律。
(二)新知的探究与应用:
1、两条直线平行的判定:
说明:为了降低难度,设定两条直线不重合且有斜率存在。
(1)设置问题,归纳结论
设两条直线 与 的斜率分别为 与。
活动二:
1、当 时,与 满足怎样的关系?
给学生约30秒的时间思考、整理,请学生表述推导过程,教师板演。
归纳:。
2、反之,当 时,两条直线 与 有怎样的位置关系?
学生通过思考,很快得出直线,但要明确其中的原理势必受到三角函数基础知识的限制,教师可给予适当的讲解。
归纳:
结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
设计意图:(1)培养学生运用已有知识解决新问题的能力;(2)培养学生自主探究问题的习惯;(3)让学生体验探究两条直线斜率与直线的位置关系的过程,更好的理解两直线平行的条件。
(2)应用举例:
例1、已知A(2,3),B(-4,0)P(-3,2),Q(-1,3),试判断直线AB与直线PQ的位置关系,并证明你的结论.给学生约1分钟的时间思考,然后老师进行简要的分析,最后由师生共同完成证明过程。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程做出示范。体会用代数方法解决几何问题的思想方法。
变式训练1:已知四边形ABCD的四个顶点分别为A(-7,0)、B(2,-3)、C(5,6)、D(-4,9),试判断四边形ABCD的形状,并给出证明。
由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.在做完此题时,细心的学生会发现它可能还是一个正方形,如何判断呢?引出下一个探究的问题:斜率之间有何关系时两条直线垂直?
设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)为了发现问题,提出问题。也为下一环节做好铺垫。
2、两条直线垂直的判定:
说明:为了降低难度,设定两条直线的斜率是存在。
(1)设置问题,归纳结论
活动三:
1、当 时,它们的斜率k1与k2有何关系?
探究:(1)直线 且 的倾斜角为300,的倾斜角为1200,k1与k2的关系.(2)直线 且 的倾斜角为600,的倾斜角为1500,k1与k2的关系
由学生自主探究,得出。
猜想:任意两条直线垂直时,此时老师利用几何画板直观演示任意两条相互垂直时直线斜率之积为-1.,验证猜想的可靠性。
提出问题:我们能否证明上述结论呢?
该结论的证明过程涉及到三角函数的相关知识,学生无法完成。教师通过分析、讲解,完成证明过程。
归纳:
2、反之,当 时,直线 与 有怎样的位置关系?
学生思考后得出 与 是垂直的。由于结论的证明涉及三角函数的相关知识,完成证明很困难,老师利用几何画板直观演示,验证两条直线的斜率之积为-1,它们是相互垂直的即可。
归纳:
结论:如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
设计意图:(1)为了更容易突破本节课的教学难点,更好的理解两直线垂直的条件。(2)为了使学生的认识符合从具体到抽象,从特殊到一般的认知规律。(3)充分渗透了数形结合的数学思想。
(2)应用举例:
例2:已知A(-6,0)、B(3,6)、P(0,3)、Q(6,-6),试判断直线AB与直线PQ的位置关系。
给学生约30秒的时间思考,然后老师进行简要的分析,最后由师生共同完成证明过程。接着与学生一同解决变式训练1提出的判断平行四边形ABCD是否是正方形,前后呼应,给学生留下一个完整的影响。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程做出示范。体会用代数方法解决几何问题的思想方法。
变式训练2: 判断下面两条直线的位置关系:
直线 经过两点A(3,1),B(-2,0),直线 经过点P(1,-4),且斜率为-5,则 __。(学生思考,口答即可)。
变式训练3:已知A(5,-1)、B(1,1)、C(2,3)三点,试判断△ABC的形状。
由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)体会用代数方法解决几何问题的思想方法。
(三)拓展提升:
1、若直线 的斜率不存在,则直线 的斜率为多少时?直线 和 :
(1)平行;(2)垂直。
给学生约30秒的时间思考,请一位学生口述答案,教师在黑板上画出相应结论的图像。
归纳(一般情况):
2.若直线 与 的斜率相等,则 与 一定平行吗?
给学生约30秒的时间思考,请一位学生口述答案,教师出示结果。
(此结论是利用斜率证明三点共线的)
变式训练3:
已知A(1,-1)、B(2,1)、C(0,-3),这三点是否在同一条直线上,为什么?
设计意图:对特殊情况做出补充:即直线的斜率不存在时,两条直线平行与垂直的判定方法。使得学生对平行与垂直的判定有更全面的认识。拓宽学生的知识面,使所学的知识系统化。
(四)课堂小结:
1、本节课我们学习了哪些新知识?新方法?
2、在应用这些新知识时应注意哪些问题?
3、在本节课的学习中运用了哪些数学思想?
学生发言,相互补充,教师点评,然后师生共同概括总结:
知识:
1.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
2.如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
方法:代数方法研究几何问题。
思想:数行结合思想。
设计意图:通过对所学内容进行小结,使学生既学习了知识又培养了能力,并对所学内容有一个更全面的认识。
(五)、布置作业:
1、课本p89习题3.1 a组 6、72、思考题:
已知三个点A(2,2),B(-5,1),C(3,-5),试求第四个点d的坐标,使这四个点构成平行四边形。
设计意图:(1)作业1是直接应用,模仿练习。
(2)作业2是供学有余力的学生选做。旨在培养学生创造性的能力。
六、教学评价设计:
评价方式的转变是课程改革的一大亮点。课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、通过学生的自主探究、合作交流、以及与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
2、在学生讨论、交流、合作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、通过应用来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
以上是我对本节课的一些说明,不妥之处,敬请各位老师批评指正。谢谢﹗
【《直线平行与垂直的判定》说课稿】相关文章:
1.直线与平面垂直的判定参赛的说课稿
2.直线与平面垂直的判定说课稿
3.《直线与平面平行的判定》说课稿
4.直线与平面平行的判定说课稿
5.《直线平行的条件》说课稿
6.平行与垂直的说课稿
7.《直线与平面垂直的判定》教学反思
8.《直线平行的条件》说课稿范文
§2.3.2平面与平面垂直的判定
【学习目标】
1.掌握二面角和两个平面垂直的定义
2.理解平面与平面垂直的判定定理并会用判定定理证明平面与平面垂直的关系
3.会用所学知识求两平面所成的二面角.【重点难点】
重点:平面与平面垂直的判定定理.难点:判定定理的应用及二面角的求法.【学法指导】
1.二面角是由两个半平面所成的角,刻画二面角的大小是要看它的平面角的大小,求二面角首先要找到它的平面角,然后解平面角。
2.证明两平面垂直,可以根据定义两平面所成的二面角是直二面角。也可根据判定定理一平面经过另一平面的垂线。很多情况下要做辅助线,在一平面内做一条直线并证明它能垂直于另一平面即可。
【知识链接】
1.平面与平面的位置关系:平行、相交.2.直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.3.直线与平面所成的角是怎么定义的?直线与平面所成的角的范围是?
平面的一条斜线和它在这个平面内的射影所成的锐角。
规定:(1)直线与平面垂直时,所成的角为直角,(2)直线与平面平行或在平面内,所成的角为0°角;由此得直线和平面所成角的取值范围为0,
2
【问题探究】
探究一、二面角及其平面角
引导:修筑水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度;发射人造卫星时也要根据需要,使卫星轨道平面与地球赤道平面成一定的角度。这里所涉及到的就是我们所要研究的两个平面所成的角。
新知:从一条直线出发的所组成的图形叫二面角
(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二
面角的面.记作.简记: P—AB—Q;—l—;P—l—Q
我们常说“把门开大些”,是指哪个角大一些?我们应该怎样刻画二面角的大小呢? 二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,
内分别作,则射线OA和OB构成的AOB叫做二面角的平面角.AOB的大小与点O在l上的位置有关系吗?为什么?
直二面角:.二面角的平面角的作用:衡量二面角的大小; 它的范围:.探究
二、平面与平面垂直的判定
引导:教室里的墙面所在的平面与地面所在的平面相交,他们所成的二面角是直二面角,我们常说墙面直立于地面上。那么怎样才叫两平面垂直呢?
新知:两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.记
作.除了定义,我们能不能找到更简洁的判定两平面垂直的方法?
平面与平面垂直的判定定理:.(线面垂直面面垂直)
符号语言:.【典例分析】
例1.如图,AB是⊙0的直径,PA垂直于⊙0所在的平面,C是圆
周上不同于A,B的任意一点,求证:平面PAC平面PBC.引导:根据平面与平面垂直的判定定理我们只需要能在平面PBC内
找到一条直线垂直于平面PAC即可。根据条件可以分析出BC就是我们要找的直线。证明:
反思:线线垂直线面垂直面面垂直
例2.如图所示,已知三棱锥DABC中,满
足
ABACDBABCD的大小?
BC2,引导:求二面角关键是要找到二面角的平面角,设E为BC的中点,连AE,DE则根据条件易证DEA即为二面
角
ABCD的平面角。
解:
反思:求解二面角的平面角,要根据二面角的定义按照“作”(作图作出二面角的平面角)-“证”(证明作出的角就是二面交的平面角)-“指”(指出二面角的平面角)-“解”(求解出二面角的平面角)。
【目标检测】
一、选择题:
1.对于直线m、n和平面、,的一个条件是().A.mn,m//,n//B.mn,Im,n
C.m//n,n,m//D.m//n,m,n 2.经过平面外一点与平面垂直的平面有()
A.0个B.1个C.2个D.无数个
3.自二面角内任一点分别向两个平面引垂线,则两垂线所成的角月二面角的平面角的关系是()
A相等B 互补C 互余D无法确定
4如图,已知PA⊥矩形ABCD所在的平面.图中互相垂直的平面有()
A.2对B.3对C.4对D.5对
二、填空题:
5.正四面体相邻两个面所称的二面角的余弦值为
6.空间四边形ABCD中,AB=BC,CD=DA,E是AC的中点,则平面BDE与平面ABC的位置关
系是
7(2010四川卷).(15)如图,二面角l的大小是60°,线段AB.Bl,AB与l所成的角为30°.则AB与平面所成的角的正弦值是.三、解答题:
B
A
ABBC,CDDA, E,F,G分别是CD,DA,AC的中点,8.如图, 在空间四边形ABCD中,求证:平面BEF平面BGD.引导:只需证明EF平面BGD即可。易知EF平行于AC,而易证AC垂直于平面BGD。证明:
9*.已知空间四边形ABCD的四条边和对角线都相等,求平面ACD和平面BCD所在二面角的大小.引导:关键找到二面角的平面角,按照“作”,“证”,“指”,“解”四步求解。
【总结提升】:
1、二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面
,内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的AOB叫做二面
角的平面角.2、求解二面角的平面角,要根据二面角的定义按照“作”(作图作出二面角的平面角)-“证”
(证明作出的角就是二面交的平面角)-“指”(指出二面角的平面角)-“解”(求解出二面角的平面角)。
3、平面与平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(线面垂直面面垂直)
【总结反思】
知识
重点.能力与思想方法
※自我评价()
A、课前自主学习认真,学案完成很好;你真棒,继续坚持。B、课前自主学习一般,学案完成良好;下次争取做的更好。
1.如图,M,N分别是底面为矩形的四棱锥PABCD的棱AB,PC的中点,求证:MN∥平面PAD
题型二平面与平面平行的判定
1.在正方体ABCDA、B1C1、C1D、D1A1的中1B1C1D1中,M、E、F、N分别是A1B11
点,求证:
(1)E、F、B、D四点共面
(2)平面MAN∥平面EFBD
题型三线面平行、面面平行的综合运用
1.如图所示,B为△ACD所在平面外一点,点M、N、G分别是△ABC、△ABD、△BCD的重心
(1)求证:平面MNG∥平面ACD
一 学习目标
1.掌握线段垂直平分线的性质与判定方法。
2.在动手感悟、总结、证明中感受知识的产生于发展过程。3.能应用线段垂直平分线的性质与判定解决简单问题。
二 学习重点
掌握线段垂直平分线的性质与判定方法,能应用解决简单问题。
三 学习难点
线段垂直平分线的性质与判定的由来以及应用。
四 教学过程
(一)课前检测
(学生独立完成,小组核对答案)
和点P(-3,2)关于y轴对称的点是()1.A.(3,2)
B.(-3,2)C.(3,-2)
D.(-3,-2)
下列英文字母属于轴对称图形的是()
2.、N B、S C、L D、E A 3.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是)(,折痕所在的直线叫做()
4.在对称图形中,对称轴两侧相对的点到对称轴的()
对称轴_______连结两个对称点之间的线段(引出课题)5.(二)动手感悟
1.动手操作,猜想结论(让学生阅读教材相关内容,后说一说如何做一条线段的垂直平分线,简要做法,然后会做的自己按步骤完成,不会的跟着老师的演示完成,中间调控时间,让学生有足够的时间思考。)
(1)任意画一条线段AB,利用尺规画出这条线段的垂直平分线。
2)在垂直平分线上任取一点C,连接CA,CB((3)沿垂直平分线对折,观察CA,CB的数量关系?(4)你能用一句话来描述刚刚操作观察得出的结论吗?(慢慢把语言趋于简练和准确)
结论:
线段的垂直平分线上的点到线段的两个端点的距离相等。思考:这个结论成立吗?你能证明吗?(先独立思考,再小组讨论)2.总结线段垂直平分线的性质,写出符号语言表达(结合图形,对性质进行理解)
3.你能写出此性质的逆命题吗?它成立吗?
(1)先写出逆命题,小组内进行核对,全班检查。后根据写出的逆命题,画出图形,写出已知,求证。
(2)思考如何证明?四人小组内解析,讲解。(3)形成结论:
线段垂直平分线的判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(画出图形,用符号语言来表示,进一步理解)
(三)基础过关(学生独立完成,核对答案)
A.20°
B.22.5°
C.25°
D.30° 4.如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B的度数为()1.三角形三边的垂直平分线交于一点,且这点到三个顶点的距离_________.
2.到线段两端距离相等的点在这条线段的______.
3.已知线段AB外两点P、Q,且PA=PB,QA=QB,则直线PQ与线段AB的关系是____
(四)巩固提升(学生先独立思考,据情况进行小组讨论交流)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()
A.ED=CD
B.∠DAC=∠B
C.∠C>2∠B
D.∠B+∠ADE=90°
∠CAD=10°,则∠ACB=()
A.80°
B.90°
C.100°
D.110°
2.线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°,3.已知:如图,在Rt△ABC中,∠A=90°,AB=6,AC=10,BC边上的垂直平分线DE交BC于点D,交AC于点E,求△ABE的周长。
(五)学以致用
1.威海市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。
(以A、B、C三点为顶点的三角形三边垂直平分线的交点)
2.在烟威高速公路L的同侧,有两个化工厂A、B,为了便于两厂的工人看病市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?(AB垂直平分线与公路L的交点)(将实际问题转化为数学问题进行解答,渗透建模思想。)
(六)畅所欲言
这节课你有什么收获?给同学一点温馨提示
(七)布置作业
五 板书设计
六 教学反思
线段的垂直平分线
直线与平面的垂直关系是研究空间线线、面面垂直关系的桥梁,它们之间可互相转化。线线垂直概念及判定是中学数学立体几何中的核心概念。“普通高中数学课程标准”要求“几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言”、“在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性质(包括证明)的教学提供形象的支持,提高学生的几何直观能力”、“借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义”、“通过直观感知、操作确认,归纳出直线与平面垂直的判定定理”,由此看到,可以通过对数学学习对象进行多元表征,提高学生的几何直观能力,进而培养学生的逻辑推理能力及空间想象能力。本文根据数学多元表征学习教学设计理念以及优化数学多元表征的信息结构(教学内容)教学设计的原则,对直线与平面垂直的概念及判定的教学内容(或教学信息)进行打包优化设计,为教学实践提供参考。
一、优化数学多元表征学习的教学设计理念概说
1。优化数学多元表征学习教学设计的基本原则和基本任务
优化数学多元表征学习的教学设计的基本原则为“减负增效”:减少工作记忆承受的外在负荷和内在负荷,提高教学策略水平,增进学习者主动积极地参与深度意义的学习,生成足够的有效负荷,提高深层码和整合码的建构效果和效率。
数学多元表征学习的教学设计优化的基本任务:优化多元表征的信息结构和优化教学活动设计,提高或增强认知操作的教学策略水平。
2。优化数学多元表征信息结构(教学内容)教学设计的原则(1)学习材料的打包原则
降低学习材料内在负荷的打包原则:①部分任务原则:把学习材料分为若干的子材料,然后对各子材料进行打包。②整体任务原则:把握整体,注重抽取学习任务本身包含的重要元素,将其压缩成组块或信息单元并加以打包。
增加学习有效负荷的打包原则:①任务变异原则:设计教学任务时,变换任务本身(如表层内容或深层结构的变异)和呈现方式(如变式)。②嵌入支架原则:设计任务时,嵌入一些脚手架(如提供问题、暗示、提示、反馈、过程工作单等),增进学习者投入与编码建构和自动化相关的认知活动,增加足够的有效负荷。(2)空间邻近原则
信息打包时,对同一数学对象的言语化表征和视觉化表征要在空间上邻近或组合,而不要远离或分离。
(3)时间临近原则
信息打包时,对同一数学对象的言语化表征和视觉化表征要在时间上同步或临近,而不要异步或间断呈现。(4)一致性原则
信息打包时,多元表征的信息结构与数学学习对象的结构成分必须保持一致,剔除与学习对象的结构成分不一致的、无关的信息,使多元表征结构保持精简。(5)双通道原则
信息打包时,“信息包”要包含有视觉表征和听觉表征。
二、“直线与平面垂直”概念教学内容的优化 1.教学信息的打包
(1)“直线与平面垂直”概念的现实原型:现实生活中,如桥的立柱与水面,公路上的电线杆与地平面等等,都是“直线与平面垂直”概念产生的现实原型,可以给出相应的图片表征如图l、图2。
(2)“直线与平面垂直”概念的文字语言表征:如果一条直线l与一个平面∏内的任一条直线垂直,那么直线Z与平面∏垂直,记作l⊥∏,直线l叫做平面∏的垂线,平面∏叫做直线l的垂面,它们的唯一的公共点叫做垂足。
(3)“直线与平面垂直”概念的数学符号表征:对学生来说来得有些突然,但却突出了其任意性)。
(4)“直线与平面垂直”概念的动态视觉图形表征:如图3。拖动点J或直线a,可以看到平面∏内直线a的变化,即直线a具有任意性。
(5)概念辨析1:如果一条直线Z垂直于一个平面∏。a是平面∏上的一条直线,那么直线l是否与直线a垂直?
(6)概念辨析2:如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?
(7)概念辨析3:如果一条直线与平面内的一条直线不垂直,那么这条直线与这个平面不垂直吗?
(8)概念辨析4:如果一条直线垂直平面内的无数条直线,则这条直线与该平面垂直吗?如图4。
2。教学信息块的意义
数学对象的产生可以来自于现实世界,也可以来自数学学科本身,直线与平面垂直的概念也一样。通过信息块(1),学生可以根据自己的生活经验直观地感知到直线与平面的垂直关系,进而概括抽象得出信息块(2)的几个概念的文字语言表征的数学定义,模块(3)和(4),是根据优化多元表征的信息结构教学设计及时间邻近的原则、空间临近的原则,对直线与平面垂直概念作进一步的数学语言符号表征和动态的几何图形表征,同时,要注意贯彻双通道的原则和一致性的原则,这样,将减少学生认知的外在及内在负荷,增加认知的有效负荷,特别是两模块中强调平面内的直线a的任意性,可以使学生更好地掌握几何符号语言以及增强空间想象能力,对于模块(5)~(8),尽管我们可以认为是很简单的命题,但是对于刚刚学习“直线与平面垂直”概念的学生来说,却是很容易混淆和不明确的,因而有必要在课堂上作强调加以明晰。(5)与(6)是线面垂直向线线垂直转化,(7)与(8)可以说是对线面垂直的否定以及如何判定的思考,不仅仅增强学生的思维活动,也起到思维导向和为线面垂直判定定理的学习作铺垫的作用。
三、“直线与平面垂直判定定理”教学内容的优化 1.教学信息的打包(1)实验探究:你能将一张三角形纸片ABC竖起放在桌面上吗?折痕与桌面垂直吗?如果要经过点A翻折,如何才能使得折痕与桌面垂直?
(2)必须在某一边上定一点,将纸片打折,使这边上的二点不共线后放在桌面。(3)用几何图形表示探究的各种情形。
(4)“直线与平面垂直判定定理”的文字语言表征:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(5)“直线与平面垂直判定定理”的数学语言
(6)“直线与平面垂直判定定理”的几何图形表征:如图9所示。
(7)命题辨析1:判定定理中,平面∏内的直线只需两条,但必需是相交的,交点也不一定是l与∏的交点(垂足)。(8)命题辨析2:这个定理是需要证明的,在后续的学习中会给出证明。2.教学信息块的意义
信息模块(1)是学生在教师的组织下进行的实验探索,根据学习材料信息的打包的原则:为了增加学习有效负荷——嵌入支架设计策略,在学生操作过程中,教师可以适时地提出一些问题、暗示或提示等,如模块(2),可以促进或增强学习者投入与编码建构和自动化相关的认知活动,增加足够的有效负荷,通过直观感知、操作,概括得到模块(3)中的各种几何图形(图5~图8),教师贯彻优化多元表征的信息结构教学设计的时间临近、空间邻近以及双通道的原则,呈现各模块,与学生共同分析、归纳,进而通过抽象概括确认得到判定定理及其图形表征,如图9。模块(4)~(6)则是判定定理的多元表征,结合教师的讲解,将使学生对命题的特征结构有更深刻的理解,从而,“直线与平面垂直的判定定理”数学模型已然建立。模块(7)与(8)是作为对模型的确认和进一步的强化。
参考文献:
【面面垂直的判定公开课】推荐阅读:
直线与平面垂直的判定教学反思06-10
线面垂直的判定练习题03-05
面面平行判定习题课02-04
面面垂直的性质的习题11-06
面面垂直习题06-19
面面垂直证明例题10-26
怎样证明面面垂直04-22
面面平行判定定理教案01-07
《平行与垂直》的教学反思06-04
线面垂直证明的方法04-03