动力电池行业分析报告

2024-12-18 版权声明 我要投稿

动力电池行业分析报告(精选7篇)

动力电池行业分析报告 篇1

【报告来源】前瞻网

【报告内容】2013-2017年中国动力锂电池行业市场需求预测与投资战略规划分析报告(百度报告名可查看最新资料及详细内容)

报告目录请查看《2013-2017年中国动力锂电池行业市场需求预测与投资战略规划分析报告》

电动汽车是动力锂电池最大的应用市场,世界各国政府都在积极鼓励发展电动汽车,这对动力锂电池的发展是极大的利好。伴随着行业的快速发展,行业竞争也日趋激烈,企业成功的关键就在于,是否能够在需求尚未形成之时就牢牢的锁定并捕捉到它。那些成功的公司往往都会倾尽毕生的精力及资源搜寻产业的当前需求、潜在需求以及新的需求!这些优秀的动力锂电池生产企业越来越重视对行业市场的研究,特别是对行业发展环境和产品购买者的深入研究。

本报告利用前瞻资讯长期对动力锂电池行业市场跟踪搜集的一手市场数据,采用科学的分析模型,全面而准确的为您从行业的整体高度来架构分析体系。报告主要分析了中国动力锂电池行业的发展背景;动力锂电池相关的锂矿资源、锂电池、电动汽车等行业的发展状况;正极材料、负极材料、电解液和隔膜各锂电池材料市场状况;中国动力锂电池发展状况及专利情况;动力锂电池行业主要应用市场现状及前景预测;动力锂电池市场的领先企业经营状况。同时,佐之以全行业近5年来全面详实的一手市场数据,让您全面、准确地把握整个动力锂电池行业的市场走向和发展趋势,从而在竞争中赢得先机!

本报告最大的特点就是前瞻性和适时性。报告根据动力锂电池行业的发展轨迹及多年的实践经验,对行业未来的发展趋势做出审慎分析与预测。是动力锂电池相关生产企业、科研单位、销售企业、投资企业准确了解动力锂电池行业当前最新发展动态,把握市场机会,做出正确经营决策和明确企业发展方向不可多得的精品。也是业内第一份对动力锂电池行业上下游产业链以及行业重点企业进行全面系统分析的重量级报告。

本报告将帮助动力锂电池相关生产企业、科研单位、销售企业、投资企业准确了解动力锂电池行业当前最新发展动向,及早发现行业市场的空白点,机会点,增长点和盈利点……,前瞻性的把握行业未被满足的市场需求和趋势,形成企业良好的可持续发展优势,有效规避行业投资风险,更有效率地巩固或者拓展相应的战略性目标市场,牢牢把握行业竞争的主动权。

本报告在撰写过程中得到了中国电池工业协会、国家经济信息中心、国家统

计局、海关总署、国际信息研究所、中国商务部研究院、清华大学图书馆以及国务院发展研究中心市场经济研究所等机构的大力支持,在此我们表示特别感谢!

特别说明:本报告中的大量市场数据,特别是企业排名数据,仅供企业经营参考用,望客户不要用于企业广告排名比较。否则,由此产生的一切后果前瞻资讯将不予承担!

特别提示:忽视剧烈变化的外部环境中出现的某些细微征兆,不能及时地随着环境变化而更新战略决策,最后导致竞争优势丧失。真正成功的企业,都自觉不自觉的对企业外部环境进行科学分析,从而制定至关重要的科学的经营战略!

前瞻真诚的祝福每一家志向远大的企业都能制定出高品质经营决策,从而有效规避行业风险,不断获得成功!

动力电池行业分析报告 篇2

1 国内外动力锂电池政策

1.1 美国

2008年9月, 美国设立了一个“先进汽车技术贷款项目”以拯救身陷金融危机之中的美国汽车制造业, 项目是为了促进汽车制造商改造生产线, 生产先进技术汽车而设立的, 旨在支持混合动力车、插电式混合动力车和柴油车, 并将燃料效率提高25%。

2013年3月, 美国能源部部长朱棣文宣布启动“工作场所充电计划 (Workplace Charging Challenge) ”, 鼓励企业在工作场所建设电动汽车充电设施。借此推动电动汽车在美的普及, 并为电动汽车在全球的推广树立样板。

目前, 已有13家大型企业和8家协会加入了该计划, 其中包括通用汽车、福特、尼桑、克莱斯勒等汽车制造企业, 西门子、通用电器、3M、杜克能源等制造和能源企业, 还有谷歌、Verizon等高技术企业。

美国总统奥巴马于2011年3月30日表示, 到2015年美国政府将只采购混合动力和电动汽车等新能源汽车。

1.2 日本

日本经济产业省将扩大2010年01月推出的“低碳型创造就业产业补助金”制度, 把补助总额从2009年度第二次补充预算的每年300亿日元, 扩大到每年1, 000亿日元。经济产业省之所以紧急推出该计划, 是为了防止日本具有优势的低碳产业流出日本, 到别国投资建厂。据了解, 之前在电动汽车和动力锂电池领域, 已有日产汽车和户田工业获得了美国政府的资助, 携带核心技术到美国投资建厂。

“低碳型创造就业产业补助金”制度度实施以来, 日本经产省已经对42家企业补贴了297亿日元, 目前已经享受到这一补贴的电动汽车和动力电池企业有:日产汽车、丰田汽车、本田汽车、松下、昭和电工、东芝、NEC等。

目前, 混合动力汽车的销量已经达到除轻型汽车之外的新车销量的三分之一。日本各大汽车公司把混合动力汽车视为现阶段环保汽车的主力车型, 纷纷采取措施加强研发和销售工作。

其中, 本田公司和三菱汽车工业公司准备首次推出可以利用家用电插座进行充电的插电式混合动力汽车。另外, 富士重工业公司和马自达公司也打算在2013年打入混合动力汽车市场。丰田汽车公司推出采用新型发动机的混合动力汽车, 并计划今后3年内在国内外共推出20款混合动力汽车。日产汽车公司则计划在2017年春季之前新推出15款混合动力汽车。

日本汽车研究所预计, 按现在混合动力车的普及程度推算, 到2020年, 日本国内的混合动力车将达到约360万辆。如果高性能锂电池得到更多推广, 使用量有可能进一步达到720万辆的水平。

1.3 韩国

日本的侧重点在于实现锂电技术的突破, 希望能够在大型锂离子电池领域 (混合动力、纯电动汽车等) 取得领先;韩国更加注重对市场的占领, 在消费电子领域超越日本成为世界第一之后, 大型锂离子电池领域同样保持强势。

在以三星SDI、LG化学、SK Energy等为代表的企业带领下, 韩国锂离子电池继在消费电子品领域打败日本企业之后, 在具有巨大发展潜力的汽车电池领域也将领先日本。

韩国电池厂商积极出击面向混合动力车和电动汽车等电动车辆的锂离子充电电池市场, 三星SDI和LG化学分别表示2015年将在该市场上“确保30%的市场份额”和“获得20%以上的份额”。LG化学已开始向韩国现代汽车的混合动力车供应锂离子充电电池。此外, LG化学与通用共同开发的锂离子充电电池配置在插电式混合动力车“Volt”上。Volt配备的锂离子充电电池的容量, 每辆车高达16k Wh。

1.4 中国

国家出台了很多扶持新能源汽车的政策, 锂离子电池研发项目是国家“863”的重点项目, 国家在研发上也投入了大量财力、物力。目前, 我国的汽车锂电池产业发展很快, 生产能力仅次于日本。

我国的比亚迪、万向集团、深圳比克电池、天津力神电池与美国迈尔斯的合资企业等都置身于锂电池的研究。中国的比亚迪和天津力神计划将动力电池生产容量提升至10亿Wh。近期全国在动力电池方面的投资总额为22亿美元左右。

2012年, 我国新能源汽车不仅迈过万辆大关, 配套设施也得到了同步加强。25个试点城市共示范和推广节能型2.74万辆, 其中公共服务领域2.3万辆, 私家车4400万辆。建成充电桩8107个, 充换电站174个。到财政补贴清算的时候, 预计示范推广的规模会达到3.97万辆将近4万辆的规模。

2 我国动力锂电池产业现状

全球汽车锂电池生产企业主要有二十多家, 日本则走在全球前列。有美国的A123、江森自控, 中国的比亚迪, 韩国的LG化学, 而仅仅日本就有日立制作所、东芝、日本电气、日本汤浅、丰田汽车和松下电器产业的合并公司松下电动车能源公司等十来家相关企业。

2.1 国外动力锂电池企业现状

不仅是类似菲斯科这样的小型制造商遇到市场阻力, 其他主流品牌的电动车销量也不及预期。有数据显示, 聆风2012年在美销量最终停留在9819辆, 较2011年仅提高了145辆, 未能突破10000辆大关。通用汽车增程式电动车雪佛兰沃蓝达Volt因库存过多, 不得不在去年停产5周。

同时, 电动车产业相关公司都受到直接冲击。太阳电池板生产商Solyn-dra宣布破产, 电池制造商A123和Ener Del公司也申请了破产保护。与中国车企有合作的电动车企CODA也处在裁员待售状态, 最被看好的豪华电动车制造商特斯拉过去三年一直未能摆脱亏损。

东风和吉利竞购菲斯科公司之前, 万向集团成功收购了美国电池制造商A 123。日本松下计划在年内关闭位于大阪府贝市的贝锂离子电池工厂, 并将生产业务转移至中国江苏省苏州市的工厂。世界500强企业--日本三菱化学株式会社独立投资3900万美元设立的青岛雅能都化成项目, 与此同时, 另一世界500强企业、韩国最大的能源企业--GS加德士株式会社也与青岛市达成协议, 投资5000万美元建设锂电池阴极材料项目。

2.2 我国动力锂电池企业现状

由于新能源汽车的推广和锂电池的研究, 国内很多企业投入了很大资金生产锂电池, 以及地方政府对于锂电池产业乐此不疲, 整车企业、传统汽车零配件企业、非汽车领域电池生产企业、锂电池上游材料生产企业纷纷进入动力锂电池生产领域。但是由于缺乏有效的订单及市场, 国内很多动力电池工业园及基地都处于停产或半饱和状态。

加拿大动力锂电池厂商MNKE旗下的江苏伊思达电池公司由于长期市场萎缩, 2011年6月被协鑫动力收购, 但一年半后, 协鑫动力又被迫停产。

天津产业园的动力锂电池企业主要有比克电池, 力神和天津市捷威动力工业3家动力电池厂家。比克电池天津生产基地原本是用来生产汽车动力锂电池, 但自投产以来, 只生产了部分电动自行车用锂电池和电动工具用电池, 汽车用电池并未批量生产, 捷威动力工业的现状与比克电池情况一样。北京安华联合、锦州佳得、山东英耐时、深圳天劲通和深圳联科等30多家锂电芯企业处于停产或者转产状态。

3 对我国锂电行业的建议与展望

我国作为锂电池的需求大国和生产大国, 国内生产电池的企业很多, 但是达到一定规模的却很少, 行业里鱼龙混杂的现象十分严重, 技术水平相对落后。目前国际性的动力锂电池企业亏损已经成为一种常态。最主要的原因是下游应用市场根本还未启动。目前动力锂电池在电动自行车行业的市场渗透率只有3%左右;另外一块最大的潜在市场, 纯电动汽车2011年的销量仅仅5579辆, 还不足以为动力锂电池厂家带来收益。

另外, 由于动力电池行业缺乏有约束力的国家标准, 也是动力电池发展失序的根源之一。相当一部分动力电池厂家对安全性重视不足, 生产水平也与国际巨头存在较大的差距, 还有成本等因素均制约了中国动力电池产业的发展。

在此阶段, 动力电池企业应不断加强技术创新, 政府继续补贴和提倡融资锂电企业, 提倡个人购买新能源汽车, 提升相应的市场份额。锂电企业努力提高国产锂电池产品的品质及安全性能, 使锂电池在新能源汽车领域广泛应用。

摘要:目前, 美国、日本、韩国等国家和地区出于抢占清洁能源领域制高点的战略考虑, 都特别重视锂离子动力电池产业的发展, 纷纷出台各种政策支持鼓励本国发展相关产业。全球大汽车企业积极研发锂电池, 但是大多数企业面临被迫从组或破产的困境, 文章将对此行业现状提出建议。

动力电池行业分析报告 篇3

锌电池行业标准或出台

近日有媒体报道称,《电动汽车用锌空气电池行业标准》有望出台。这种以空气作原材料的锌空气电池开始正式走入大众视野。该标准涵盖电动汽车用锌空气电池的要求、试验方法等多方面内容。据悉,锌空气电池是以活性炭吸附空气中的氧气作为正极,以金属锌作为负极,以氯化铵或苛性碱溶液为电解质的一种原电池。湖北泓元锌空电池有限公司总经理陈国庆表示,和传统锂电池相比,锌空气电池储存能量要大一倍,价格也更便宜,而且安全又环保。一名研究锌空气电池的专家则认为,一个砖块大小的锌空气电池能量可媲美一纸箱传统电池,应用前景广扩。

尽管锌电池的研发还未完全产业化,但目前已有一些迹象显示锌电池的产业开始在国内有所发展。2012年3月,中国航空工业集团公司宣布,与北京长力联合能源技术有限公司联合成立中航长力联合能源科技有限公司(下称“中航长力”),以及北京锌空气电池研究中心,共同推动北京市锌空气电池产业化。据相关媒体报道,今年3月17日,中航国际(香港)集团与天津融蓝实业集团有限公司、北京长力投资北京中航长力有限公司签约暨金属燃料电池研究中心落成揭牌活动,在天津空港经济区举行。

据了解,该研究中心的落成,将以京津地区这一中国核心发展区为平台,紧紧围绕国际领先的锌空气电池的运行经济性进行深入研究,建立国内第一个有经济效益的、以锌空气电池为动力的电动汽车公交运行示范线,生产出具有高动力性能和有效物质利用率的锌空气电池产品,从而在民用领域及军用领域开拓全新的绿色环保新能源市场。业内人士表示,金属燃料电池研究中心落户空港,标志着金属燃料电池研究中心迈出了成功的第一步。

锌电池前景广阔

众所周知,作为一种金属,锌相比锂更加稳定,不容易发生化学反应。在电解质当中,从微观层面观察,锌会呈现出像树枝一般的形态,从一个电极蔓延到另外一个电极,缩短电池电量。而目前薄膜锂电池可以反复充电,但因为包含了易起反应的物质,从而限制了其储电能力,而且制造起来十分昂贵。与此同时,印刷电池虽制造起来很便宜,而且拥有很高储电能力,但无法反复充电。也就是说未来锌电池,既能制造成薄膜的样子,又可以反复充电,而且拥有很高的储电能力。

PowerGenix是一家高性能、可充电镍锌电池领域顶尖开发商。2014年宣布与亚洲电池制造商-新能源科技有限公司(ATL)签署合作备忘录。ATL将成为PowerGenix合作伙伴,为其批量制造镍锌电池,面向全球汽车起停应用和工业储能市场。

镍锌电池具有更低成本和更优越性能,使其成为满足汽车起停应用和其他高性能应用领域最为理想化学体系。业内人士指出,这种合作关系标志着PowerGenix转折点。汽车起停应用和其他市场都在寻找更好铅酸电池替代品。ATL具有大批量生产镍锌电池能力,这是镍锌电池能够广泛应用于全球市场第一步。此外,ATL在工程设计和批量生产方面,也將为镍锌电池铺好一条康庄大道。

其实,早在2013年8月28日,高性能镍锌电池的领导者PowerGenix就宣布其生产的电池获得了中国国家试验室天津汽车测试中心的认证。在此前的几个月内,天津汽车测试中心就完成了先进微混车的全面测试,验证了镍锌电池在潜在性能改善。天津汽车测试中心的认证表明PowerGenix的镍锌电池已通过所有的企业标准和微混车应用要求。微混车指的是在传统汽油汽车和柴油汽车基础上配备自动的电池供电起停系统。许多当地汽车制造商均认为,天津的认证是一个质量基准,这使得PowerGenix进入中国日益增长的微混车市场具有极大的竞争优势。

此外,PowerGenix也在此前宣布了一份与欧洲标致签订的创新合同。全球主要的几家汽车制造商都正在测试镍锌电池在起停系统应用的表现。通过此次漫长的测试期,经历了不同温度,在滥用的电气和环境条件下,天津汽车测试中心发现镍锌电池符合或超出所有的安全、产品性能、机械结构和储存标准。在仿真条件下,镍锌电池表现出超过六年的使用寿命,且几乎没有性能衰减。锌电池未来的应用前景广阔。

动力电池行业分析报告 篇4

导语

兴业证券在最近的一篇动力电池深度报告里提到,相较有限的压缩原材料成本,电池企业通过扩大产能实现规模效应降成本更为切实可行。这也是国内企业近期集中堆砌释放产能的关键因素之一。

1、全球趋势不可逆转 合纵连横龙头结盟

根据兴业证券之前的全球电动汽车深度报告分析,电动车全球化已不可逆转,两大趋势需要高度重视,其一是继北汽与国轩携手深度合作之后,上汽与宁德时代成立合资公司,标志着动力电池行业将从春秋时代百家争鸣快速进入后战国时代,逐渐形成强强联合、寡头割据的新格局;其二是继江淮大众合资之后,北汽与戴姆勒合资启动奔驰电动车国产化计划,此举将推动海外(尤其是欧洲)传统车企加紧电动汽车在华布局,合资与自主的较量将在电动车领域再次上演,国内核心零部件供应商迎来历史性发展机遇。当前时点,市场对动力电池价格下降及销售放量存在较大的担忧,兴业证券维持短期不悲观,长期依然乐观的态度,理由是:今年电池环节进入行业快速洗牌期,短期来看成本下降尚未被市场完全预期,通过采取全产业链分摊降本压力以及规模化生产等“增效”措施,中游环节盈利能力将好于市场预期;中期看,随着国产三元高比能电池渗透率不断提升,未来几年内电池有望复制“摩尔定律”,成本快速下降;长期来看,在未来高镍与NCA时代,技术领先、成本与规模优势突出的龙头将脱颖而出。

一切爆发都有片刻的宁静,一切进步都有冗长的回声。兴业证券试图通过对动力电池降本潜在途径进行全方位梳理,描绘未来电池降本增效的发展轨迹。三重途径全面降成本: 改进工艺,降低材料成本

扩大规模效应与提升良率,降低生产成本 其他:梯次利用与模块化设计降低生命周期成本 双重途径提升比能量:

物理方法:采用大容量电芯&提升PACK成组效率 化学方法:应用高镍正极材料与硅碳负极

回顾过去十年,动力电池价格经历大幅的下降,日韩电池龙头价格已从2010年的600-800美元/KWh降至目前150-200美元/kWh,国内龙头厂商在2016年底也降至300美元/kWh左右,目前已进入到200-250美元/kWh。

三元路线仍是最佳选择,目前锂电池基本体系已经较为成熟,几大主流方向三元路线、磷酸铁锂、锰酸锂与钛酸锂已经确定,各条路线可以改进的方向与存在的缺陷都较为明确。三元路线的优势在于极限比能量密度高,单体可达350wh/kg,其他无一例外达不到要求,因此三元将是未来几年主流乘用车商业化应用的首选,但其也有明显缺陷,如安全性的相对不足以及材料成本较贵(钴)。磷酸铁锂由于安全性优势,近几年被广泛应用于客车领域,劣势则是其改进空间不大,比能量较低。锰酸锂的优势在于成本,劣势是比能量已达极限,因此只能用于特定应用领域的专用车型。钛酸锂优势在于能够实现快充(5min充满),但成本达到其他路线的数倍,因此只能应用于续航里程相对不敏感的客车等领域。

2、降成本势在必行 看龙头各显神通

短期与中期两方面因素驱动下,动力电池降成本刻不容缓:

短期:补贴退坡敦促全产业链降成本,动力电池环节首当其冲,率先实现成本下降的企业将在下一轮退坡中占得先机

中期:实现“油电平价”需电池价格降至1元/WH以下,目前国内1.6元/WH左右价格仍有较大下降空间。

2020年长期规划明确,龙头企业全力降本:

日本、美国与中国均提出到2020年实现电池性能的大幅提升与成本的大幅下降,中国目标为1元/WH;产业界龙头目标更为激进,特斯拉、通用与大众纷纷宣布降成本计划,2020年目标最低低至93美元/KWH。

2.1、短期因素:补贴退坡敦促电池降本

补贴退坡敦促全产业降成本,动力电池首当其冲。2016年12月30日,新版补贴政策正式落地,乘用车、专用车补贴退坡20%,客车退坡30%-50%。此外国补与地方补贴配比普遍由此前1:1下调至1:0.5,整体补贴退坡幅度较大。补贴下调使得动力电池环节首先受到冲击,一季度销售价格下滑明显,对毛利率造成一定冲击,电池企业短期内压缩成本的意愿十分强烈。此外,新一轮补贴退坡将在2019年到来,率先实现降成本的电池企业将在一年半后的再次退坡中占得先机。

2.2、长期因素:实现“油电平价”仍需大幅降本

根据测算,动力电池价格在100美元/KWh附近时,电动汽车与燃油车的竞争焦点就将转变为其他制造成本方面,即实现油电平价,进而电动汽车才能脱离补贴与燃油车竞争。目前日韩电池龙头价格已从10年前的1000美元/KWh以上降至250-300美元/kWh,距离这一目标越来越近,但进一步降本的难度变得更大。2.3、政策目标:中国计划2020年电池成本降至1元/Wh

结合各国颁布的动力电池技术路线来看,到2020年将实现电池性能的大幅提升与成本大幅下降。各国拟定的系统比能量目标值普遍集中在200-250kg/wh之间,中国颁布的《促进汽车动力电池产业发展行动方案》提出到2020年电池单体比能量超过300Wh/kg,系统比能量达到260Wh/kg,成本降至1元/Wh以下,大致相当于150美元/kwh。日本在100美元/kwh,美国要求是90-125美元/kwh,欧洲是120美元/kwh,与油电平价目标的100美元/WH均十分接近,亦即各国政策要求到2020年左右电动汽车要实现和燃油车相近的性价比水平。

2.4、产业目标:国际巨头全力降本

从产业界角度来看,各家巨头不遗余力专注降本。特斯拉提出其超级工厂投产将使得电池成本降低35%,从一开始的“成本低于190美元/千瓦时”直降至“不足125美元/千瓦时”。大众计划将其电池采购成本由2016年的180美元/KWH压缩48%至2020年的93美元/KWH,其中制造与模组成本压缩一半,材料成本压缩40%。

3、降成本路径之一:产能释放突破瓶颈,材料成本有望下降

近几年动力电池激增需求推动上游原材料价格暴涨,而长期来看,绝大部分原材料并不稀缺,当原材料价格恢复理性后,下游能够削减一定的成本。而即便原材料价格依旧保持坚挺,部分高价材料占电池成本比重也在逐渐变小,预计不会对整体降成本造成太大影响。同时,动力电池行业的生产模式与商业模式依然可以继续优化,商业成本仍有一定的下降空间。

未来动力电池产业商业成本将从三方面着手下降:

原材料成本端:价格相对动力电池需求弹性较大的碳酸锂、氢氧化锂等锂盐供需达到再平衡后价格将步入长期下降通道;钴盐尽管未来存在供给缺口,但预计涨价带来的影响有限。

工艺改进与规模经济:动力电池产量进一步提升,规模效应与良率提升,同时整车端爆款车型出现带来单车电池研发、设计(如BMS)等成本下降;其他路径:梯次利用、模块化设计与纵向一体化。

3.1、锂盐供给端逐渐释放,价格将步入长期下降通道

目前正极材料成本占到电芯25%-30%,而正极材料主要由碳酸锂和各种对应的前驱体材料构成,高镍NCM(NCM811)与NCA正极则多由氢氧化锂替代碳酸锂。前驱体中,钴价对于NCM材料的价格影响较大。

锂盐占电池价格比例在4.5%-8.5%之间,钴盐在3%以内。锂盐方面,选取各条电池主流技术路线的主流车型,对于氢氧化锂/碳酸锂成本占电池价格比例进行测算,结果在4.5%-8.5%之间,NCM与NCA路线锂盐占比较高,NCA路线达到8.44%,而磷酸铁锂与锰酸锂占比较低。钴盐方面,NCM111路线所含钴元素比例最大,按目前40万元/吨钴价测算,占电池售价比例为2.84%,其余路线钴含量皆达不到这一水平,因此判断钴盐占电池价格比例在3%以内,目前量产的主流NCM523与NCM622占比在1.5%左右。

3.1.1锂盐:碳酸锂等待产能释放,氢氧化锂持续吃紧

预计碳酸锂未来几年内将保持供需平衡,长期来看价格处于高位回落通道中。氢氧化锂直到2020年仍将维持紧缺状态,2020年以后可能存在供应过剩风险,产能释放速度取决于原料供应,特别是锂辉石的供应量。氢氧化锂产能紧缺将成为制约高能量密度电池成本下降的主要因素。氢氧化锂可通过碳酸锂转产得到,代价在2万元/吨的水平,因此与碳酸锂价差将保持相应的平衡态势。

锂盐价格对于电池成本影响有限。假设未来碳酸锂/氢氧化锂价格下跌20%,电池价格将下降0.9%-1.7%,下降幅度较为有限。而即便需求端超预期增长,导致锂盐价格保持坚挺,由于其占电池成本比重较小,预计不会给降成本造成太大障碍。

3.1.2钴盐:供给面临缺口,涨价或将持续但影响有限

供需缺口将使钴价维持高位。钴盐供应缺口2017年持续扩大:2017年缺口将达到4300吨的量,预计将持续至2019年。目前3C电子产品依然是钴下游最重要的领域,3C电子出货量若下降则对钴价造成较大压力。整体来看,供需缺口将使钴价在未来几年维持在高位水平。

预计钴价上涨对三元电池影响有限。虽然目前高镍三元材料市场份额逐步提高,但绝大部分厂商已进入从532向622转移的阶段,未来过渡到811后,单位用钴量将明显减少。根据前述测算,高镍NCM811路线中钴盐占售价比不到1%,因此未来高镍三元时代到来后,钴价上涨将不会对降成本起到太大影响。

3.2、规模效应带来成本进一步下降

兴业证券认为相较有限的压缩原材料成本,通过扩大产能实现规模效应降成本更为切实可行,这也是国内企业近期集中堆砌释放产能的关键因素之一。规模效应不仅包括电芯环节产能利用率与良率提升带来的电芯成本下降,也包括整车端单车出货提升带来的研发投入、设计成本以及PACK和BMS等环节下降。

3.2.1电芯规模化生产与良率提升

经对比分析,电池售价与良率几乎呈线性关系,随着良率提升,电池价格直线下降。目前我国自动化程度较好的高端产能良率在90%,劳动密集型的低端产能良率在80%,随着行业逐渐淘汰低端过剩产能与高端产能良率进一步提升,未来成本会有小幅下降空间,大约对应良率每提升1%,成本同幅度下降1%左右,提升至95%对应5%成本降幅空间。

电池售价与产能利用率(下称Ut)的关系分为几个阶段,产能利用率小于20%时,电池价格随着Ut提升快速下降,而之后相对平缓,Ut在50%时对应价格在350美元/KWH,90%对应330美元/KWH。考虑到15/16年Ut已经达到相对的高点,这一块未来的空间比较有限。兴业证券认为不必过度担忧产能过剩导致Ut下降,原因在于未来几年的产业高景气度使得Ut保持在50%以上问题不大,而50%-100%区间内售价相对于Ut的敏感性已经不强。3.2.2爆款车型实现PACK与BMS定制成本摊薄

电池组中的PACK与BMS环节需根据不同车型需要进行针对性研发,具备较强的定制化属性,难以像电芯环节一样通过规模化量产来实现成本下降。要降低PACK与BMS环节的成本,切实可行的路径是打造爆款车型,从而摊薄附加在每辆车的研发与定制成本。

Model3成为爆款是特斯拉降低单车成本实现盈利的先决条件。以特斯拉Model3为例,由于Model3电池组选用高比能量的NCA正极材料,并采用20700单体电芯,整体散热性能较差,其安全性能需要在PACK与BMS环节加以保障。为此,特斯拉采用尖端BMS技术,自主研发单体电荷平衡系统,并通过严格的锂电池检测实验检测每一颗单体电芯的一致性,在PACK环节采用复杂的多级串并联工艺并使用更为昂贵的液体冷凝系统达到实时的温度监控,而这部分昂贵的前期研发与设计成本已经反映在特斯拉财报的亏损中。Model3能够以3.5万美元的平民价格发售,其核心原因在于40万级别的订单量大大摊薄电池组的定制化成本,从而实现电池成本的迅速下降。

3.3、其他路径:梯次利用、模块化设计与纵向一体化

现有的动力电池行业的商业模式依然有很多值得优化之处,比如在即将到来的退役电池潮中,退役电池合理的梯次利用将大大增强电池的经济效益,又比如各大车企力推的模块化设计将是电池实现规模效应的前提,再如企业通过打通上下游形成类似于比亚迪的商业闭环,这些举措均能实现电池成本的进一步下降。

3.3.1梯次利用:机遇与挑战并存

动力电池退役潮将在今明两年爆发。2014年为我国动力电池放量元年,出货量达3.9GWh,早期的这批电池一般在3~5年左右即将达到设计的寿命终止条件,部分一致性不好或使用工况较恶劣的,甚至达不到3年的使用寿命。以此推算,我国将在今年迎来动力电池退役的放量潮,此后逐年快速递增,预计到2019年,最晚不会超过2020年,会有超过10GWh的退役动力电池规模。

一般而言,动力电池容量低于初始容量的80%时,动力电池不再适合在电动汽车上使用。而80%以下还有很大利用空间,国家也支持和鼓励梯次利用。但是目前在理论研究和示范工程方面较多,在商业化推广方面还处在初期的探索阶段。商业化的方式有两种:一是梯次利用,如应用于储能与低速电动工具;二是资源化,提取废电池中的镍、钴等金属,但是利用率不高、浪费较大。

储能与低速电动工具市场是梯次利用的两个主要面向市场。

1)储能市场:据测算,储能电池市场化应用的目标成本为180美元/kwh,约合1.2元/wh,使用新型动力锂电池无法达到成本要求,投资回报率偏低,这也是制约储能产品大规模应用的最大障碍。梯次利用的动力电池能够较好地权衡成本与性能因素,如电动大巴退役的动力电池由于能量密度较低,比较适合作为储能基站使用。

2)低速电动工具市场:低速车与电动自行车主要采用铅酸电池,相比锂电池,铅酸电池更为便宜(0.6元/WH),但问题在于污染大。如果采用梯次利用的动力电池,可以在价格、行驶里程(能量密度)、和寿命之间达到一个较好的平衡,从而更快速的推动锂电池在低速车与电动自行车市场的应用。

3.3.2模块化设计:电池发挥规模效应的前提

模块化就是在相同的基本架构上进行定制化组合,使得设计、生产车辆就像搭积木一样简单、快捷。这一概念的运用将极大地节省研发成本、验证周期及生产成本。模块化设计在传统车领域已经非常成熟,随着新能源汽车产销的逐渐扩大,这一模式也将被植入。以大众为例,其宣布旗下所有新能源车型将采用统一的电池单元,这一计划将节省66%的成本。

未来电池企业的供应将以模组为最小单元。目前动力电池行业存在的一大问题是尚未模块化,包括尺寸在内的诸多标准尚未统一,圆柱、方形与软包路线未有真正意义的主流出现并且各体系内标准也参差不齐。未来随着行业集中度提升,电池将通过主流企业制定标准,进行标准化生产。过对电池单体的串联、并联或串并联混合的方式,确保电池模块统一尺寸,并综合考虑电池本体的机械特性、热特性以及安全特性。在安装设计不变的情况下,根据不同的续航里程和动力要求,提供不同电池容量,以满足不同的需求。这种模块化应用,在单体、模组端都可实现大规模自动化生产,大幅降低生产成本。

3.3.3纵向一体化:降低交易成本

纵向一体化也能够实现交易成本的下降。如比亚迪所采取的从上游矿石、电池材料、到PACK、BMS、电芯到下游整车的一体化路线,实现了成本的有效下降。特斯拉选择自建电池超级工厂也有类似考虑。对于动力电池企业来说,切入电池材料等上游环节,特别是成本下降有较大空间的隔膜、电解液等环节是成本控制的较好路径,如国轩与星源材质合作的隔膜产线。

4、降成本路径之二:工艺改进见成效,比能量缓步提高

兴业证券认为动力电池能够持续降成本的关键因素在于其类似于半导体,存在电池“摩尔定律”,以比能量的持续提高来实现单位Wh成本的不断下降。目前来看动力电池系统能量密度提升空间主要来自高镍三元NCM与NCA的普及应用。未来动力电池比能量将主要从电池的物理性能与化学性能两方面着手提高,物理性能方面主要从材料轻量化、相互之间的搭配衔接突破,化学性能则主要通过新型材料的试用以实现电池电化学性能的最佳状态。

物理方法:工艺改进仍有空间 电芯环节:

圆柱路线目前成本最低,主要通过18650向20700与21700等大容量单体切换实现进一步降本;

软包路线成本最高,主要通过规模化生产降成本以及改进工艺提升能量密度; 方型路线主要通过大容量与铝壳轻量化实现降成本,潜在降本空间在三类封装路线中最大。

PACK环节:

目前的重点突破环节,主要通过提升成组效率提升系统比能量,产业目标为由目前65%水平提升至85%,对应30%比能量提升空间。化学方法:提升正极材料性能最为关键

正极材料:高镍NCM材料与NCA材料,高比能量的正极材料能够大大减少负极、隔膜与电解液等材料的用量; 负极材料:硅碳负极替代切换; 隔膜:薄型化隔膜; 电解液:新型电解液LiFSI。

4.1、物理方法:工艺改进仍有空间

4.1.1电芯环节:轻量化+大容量

电芯封装方式按软包、方形与圆柱分,成本也有所区别。其中,圆柱最低,软包最高。主流大厂中CATL与比亚迪走方形路线,力神、比克走圆柱路线,国轩高科同时走方形与圆柱路线,同时CATL也在积极拓展软包路线。圆柱路线:大容量电芯

圆形锂电池是指圆柱型锂电池,最早的圆柱形锂电池是由日本SONY公司于1992年发明的18650锂电池,因为18650圆柱型锂电池的历史相当悠久,所以市场的普及率非常高,圆柱型锂电池采用相当成熟的卷绕工艺,自动化程度高,产品传品质稳定,成本相对较低。

圆柱的优点包括1)结构成熟,产业化程度高,且只有卷绕这一条技术路线,不用纠结其他方法;2)设备自动化程度高,一致性高;3)结构稳定,可以支持高能量密度材料使用;4)应用范围广,产品消耗渠道丰富,整体成本有优势。同时,其缺点也包括:1)高温升、充电倍率是普遍诟病;2)循环次数上限在1000多次,使用寿命较短,应用场景局限在中低端。

降成本方向:做大单体电芯。特斯拉已经Model3中用20700替代18650电芯,20700电池增加的尺寸大概为10%,而体积和能量储存确是18650的1.33倍。根据特斯拉的估计,在达到与18650同样的良率和产能后,20700能带来能量密度增加3-4%,同时实现成本下降5-10%。软包路线:规模化生产

软包电池,又称聚合物锂电池,是使用高分子胶态或固态电解质的类方型电池,它们的制作工艺相似度很高,多用于手机、平板等高端3C产品上,因为高分子电解质全凭人工合成,所以成本较高,目前应用到动力电池上,还没有成本优势。软包锂电池所用的关键材料—正极材料、负极材料及隔膜—与传统的钢壳、铝壳锂电池之间的区别不大,最大的不同之处在于软包装材料(铝塑复合膜)。

软包电池的优势主要在于安全性能好。软包电池的优点:1)安全性:在结构上采用铝塑膜包装,发生安全问题时,软包电池一般会鼓气裂开,而不像钢壳或铝壳电芯那样发生爆炸;2)重量轻,软包电池重量较同等容量的钢壳锂电池轻40%,较铝壳锂电池轻20%;3)内阻小,软包电池的内阻较锂电池小,可以极大的降低电池的自耗电;4)循环性能好,软包电池的循环寿命更长,100次循环衰减比铝壳少4%~7%;5)设计灵活,外形可变任意形状,可以更薄,可根据客户的需求定制,开发新的电芯型号。软包电池的不足之处是一致性较差,成本较高,容易发生漏液。未来成本下降主要通过规模化生产解决,漏液则可以通过提升铝塑膜质量来解决。方形路线:大尺寸与铝壳轻量化

方形锂电池通常是指铝壳或钢壳方形电池,由于结构较为简单、能量密度较高,在国内普及率很高。方形硬壳电池壳体多为铝合金、不锈钢等材料,内部采用卷绕式或叠片式工艺,对电芯的保护作用优于于铝塑膜电池(即软包),电芯安全性相对圆柱型电池也有了较大改善。

铝壳轻量化与统一规格是未来发展重点。锂电池铝壳在钢壳基础上发展而来,与钢壳相比,轻重量和安全性以及由此而来的性能优点,使铝壳成为锂电池外壳的主流。锂电池铝壳目前还在向高硬度和轻重量的技术方向发展,间接提升比能量。此外,由于方形锂电池可以根据产品的尺寸进行定制化生产,所以市场上有成千上万种型号,而正因为型号太多,工艺很难统一,未来成本下降还需要方形路线实现型号上的统一。

方形路线在通过增大尺寸降成本的空间大于圆柱路线。美国卡内基梅隆大学的一项研究分析了圆柱形电池和方形电池的成本情况,发现在目前的技术水平下,圆柱形进一步降低成本的空间很小,通过提升圆柱形电池的尺寸和增加电极厚度的方式来降低成本已经收效甚微,而方形电池则有很大的潜力去降低锂离子电池的成本,因此未来电芯封装环节成本快速下降的机会很可能会出现在方形领域。

4.1.2 PACK环节:提升成组效率

电池PACK系统利用机械结构将众多单个电芯通过串并联的连接起来,并考虑系统机械强度、热管理、BMS匹配等问题。PACK是衔接整车、电池、BMS的纽带,而BMS则是动力电池组的核心技术,是电池PACK厂的核心竞争力,也是整车企业最为关注的环节。

PACK环节的成组效率是提升系统比能量的关键。同样150Wh/kg级别的电芯,65%与85%成组效率下系统比能量分别为97.5Wh/kg与127.5Wh/kg,前者是目前国内的平均水平,而后者是工信部拟定到2020年的目标。成组效率从65%提至85%对应30%以上的系统比能量提升与较大幅度的成本下降,在各条路径中显得尤为关键。PACK环节成组效率提升主要有以下方法:

1)提升集成效率。通过去除赘余组件以及关联组件的集成来最大限度地减少组件数量来提高集成效率。2)减重,采用轻量化的材料和设计。3)电池包与底盘一体化。PACK体系经历了第一代的T字或者工字型,再到第二代的土字型和田字形,目前已经来到第三代的一体化平台,国际一线的特斯拉与大众已经在这么做。一体化平台的好处是把部分电池包的承重转移到底盘上,从而实现轻量化。

大众的MEB平台是其电池组未来实现成本大幅下降的关键。以大众为例,大众的针对电动车专属研发的MEB(MEBElectrictoolkit)平台是以大众目前的MQB平台为基础,适用于电动车的全新的模块化平台。MEB平台的构架是由底部的电池组而展开,打造更长的轴距和更短的前后悬,营造出更大的内部空间,从A到C级全系列乘用车或轻型商用车都可基于该平台打造。电池组PACK与BMS设计也根据平台打造,根据不同车型仅需要做一定的修缮与升级,设计与研发成本被最大化的摊薄。未来国内车企自主搭建PACK产线或由电池企业深度集成是趋势

目前国内的PACK产业是整车厂、电池厂、独立第三方三足鼎立,且PACK企业之间水平差距很大,不少PACK企业的技术水平都还仅仅停留在简单的电芯串并联上,无法实现结合整车设计来进行PACK设计和组装,真正能达到下游整车厂商需求的优质PACK厂商屈指可数。

未来PACK将以整车企业主导。我国电动汽车市场未来一定是以乘用车为主要驱动,而乘用车电池PACK远比商用车复杂,需要大量研发投入。电池企业技术储备主要集中于电池本身的研发,在PACK体系的关键环节如BMS、热管理等不具备较强实力。因此,未来的格局将是整车企业主导,第三方PACK企业凭借专业能力也能得到一定空间,但仍然需要依附于整车企业或产业联盟。

4.2、化学方法:提升正极材料性能最为关键

兴业证券认为,相比物理改进,动力电池的关键性突破仍然大概率要从提升电池电热化学性能着手,通过新型的电池材料以及相互间的搭配、工艺的改进实现能量密度的进一步提升。而本土企业在未来几年内研发与产业化的路径也非常清晰,就是三元高镍NCM电池与NCA电池。

本土三元龙头企业正在加速实现高比能三元电池量产。以本土高比能电池的代表企业比克电池为例,其16年三元出货量0.9GWh,在本土企业中位列第2,仅次于CATL,其商业规划具备一定代表性。根据其规划,比克的NCM与NCA电池量产计划齐头并进,目前能量密度达248WH/KG的NCA电池已实现量产,而下一代285WH/KG的NCA电池将于年内量产。就能量密度来看,已经达到特斯拉与松下水准。

4.2.1正极材料:高镍NCM材料与NCA材料

正极材料是电池能量的短板,提高正极材料比容量是提高电池能量密度的最佳方式,未来高比容量的NCA和高镍NCM是大势所趋。正极材料的比容量一般为100-200mAh/g,而石墨负极材料的比容量高达400mAh/g,所以电池中负极和电解液等一般采用冗余配置,电池的最终能量密度由正极材料决定。采用高容量的正极材料,能够带来负极、隔膜、电解液用量的大幅减少,电池最终能量密度的提升幅度远大于正极材料比容量提高的幅度。所以采用高容量的正极材料对于减轻电池重量,提高电动车的续航性能具有重要意义。本土正极材料龙头企业正在加速实现高镍三元正极材料量产。目前国内NCM111和NCM523型三元正极材料产品相对成熟,而622NCM于2016年开始逐步在部分动力电池企业中推广,未来将逐步拓展至811NCM以及NCA材料。以材料龙头杉杉股份为例,公司现有三元材料以NCM532、NCM523和NCM622为主,目前正在积极推进高镍三元产线,在建产能包括宁乡二期1万吨NCM622产能,预计2017年年底投产,以及宁夏5000吨NCM811产能,预计2018年投产。

4.2.2 负极材料:硅碳负极

硅负极的理论能量密度超其10倍,高达4200mAh/g,通过在石墨材料加入硅来提升电池能量密度已是业界公认的方向之一,但其也有技术难点,主要在于在充放电过程中会引起硅体积膨胀100%~300%。据报道特斯拉将在Model3中采用了电池新材料,“特斯拉采用的松下18650电池此次在传统石墨负极材料中加入了10%的硅,其能量密度至少在550mAh/g以上”。

本土进展方面,国内前几大负极材料生产厂商陆续对硅碳负极材料进行布局,深圳贝特瑞和江西紫宸已率先推出多款硅碳负极材料产品,上海杉杉正处于硅碳负极材料产业化进程中,星城石墨已将硅碳新型负极材料作为未来产品研发方向。贝特瑞研发的S1000型号硅碳负极材料的比容量更是高达1050mAh/g,尽管离硅的理论比容量4200mAh/g仍有较大差距,但已经是人造石墨负极材料比容量的3倍,性能大幅度地提高。

4.2.3隔膜:薄型化隔膜

隔膜工艺主要分干法与湿法两类。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。隔膜技术路线主要分为干法与湿法两种,干法成本较低但不适合大功率电池,湿法更薄能够满足大功率的要求,但是成本较贵。最早的主流是干法;2015年三元产量上升后湿法使用较多,预计2020年干湿法占比50%,分别应用于中低端与高端领域。

国产隔膜距离海外一线龙头仍有距。日本的旭化成是隔膜行业的龙头,市占率在50%以上。过去1-2年,中国还有不少企业进入市场,但无法对龙头地位构成撼动。旭化成干法现在可量产出货的是12微米,湿法还是6-7微米。由于原料、技术、工艺与制备设备的差距,目前国产隔膜一致性较差,且厚度无法达到要求,干法20-40微米仍为主流。

未来发展:薄型化隔膜。随着动力电池比能量快速提升,16微米、12微米甚至8微米的隔膜开始应用,而湿法工艺制成的隔膜能够达到要求。而干法隔膜随着工艺的逐步改进近几年也能够应用于低比能量的三元电池中。

4.2.4电解液:新型电解液LiFSI 电解质中添加LiFSI后,可提高离子导电率及电池充放电特性。比如,反复充放电300次后,1.2MLiPF6的情况下放电容量保持率会降至约60%,而在1.0MLiPF6中添加0.2MLiFSI后,保持率可超过80%。目前LiFSI已经被行业中大部分企业进行过性能测试,特别是行业排名靠前的企业,如松下、LG、三星、索尼,以及日本的主流电解液生产商,如宇部化学、中央硝子等,同时其年使用量也处于趋势性上上升阶段。

5、他山之石可以攻玉 放眼海外上下求索

兴业证券认为,动力电池从电池材料、电芯的生产、电池模组化再到电池PACK,整条产业化路径并不是相互割裂的,而是有机的整体。未来要实现成本下降,不论是通过生产模式与商业模式上的改进还是通过物理与化学手段提升电池能量密度,都并非由某几个环节单向突破能够达成,而是基于全局角度设计达到最终优化。例如,高比能量正极材料的使用需要相应负极、电解液与隔膜的升级配合,同时需要PACK成组系统中的BMS的升级,同时配合性能更好的温控系统。比能量的提升是以成本上升为代价的,对应到单位Wh的成本是否下降则需要不断地调试与优化,这方面海外已经走在前列。因此本章聚焦海外实现成熟商业化的车型与对应的电池技改降本之路,以窥未来国产高比能时代的降成本前景。

全球动力电池产业集中在东亚

目前,动力电池产能90%以上集中在日本、韩国与中国等东亚国家,松下、LG、三星、比亚迪、CATL等企业供应了全球绝大部分的锂电池。日本早在上世纪90年代就大力投入锂电池研究,韩国与21世纪初跟进,而中国虽然进入时间较为滞后,但巨额补贴资金的投入也带来了巨大的收效。日韩企业在技术上具备优势

国际一线车企主要车型的电芯供应几乎由日韩电池企业包办。2016年销量排行前20车型中,对应的电池供应商有日本的松下和AESC,韩国的LG化学、三星SDI和SKI,北美电动汽车电池的供应商基本被日本和韩国垄断。本土暂时由于政策因素使得日韩巨头未能大规模进入,但是仍然不能掩饰本土企业在技术储备上相较日韩巨头的劣势。本土企业在成本方面具备优势,未来中国将成世界电池工厂

然而,单就成本而言,中国在主要的产地已经展现出优势,在包括四大材料在内的主要电池材料供应环节均涌现一批规模化的企业,具备价格优势同时具备一定技术能力。根据CEMAC的测算,由于在劳动力成本与材料成本上的优势,截止2015年底,中国动力电池不论在成本还是在售价上均已处于全球最低水平。考虑到今年以来本土电池掀起的新一轮降价潮(20%降幅),成本已经成为中国动力电池的核心优势所在。未来动力电池产能持续向中国转移是大趋势,而中国也将成为世界的动力电池工厂,培育出一批具备国际竞争力的动力电池龙头企业。本土模仿吸收海外成熟技术是必由之路

兴业证券认为国内动力电池企业在成本上较日韩巨头有优势,但在技术储备上处于劣势。国内企业未来的降成本提技术之路必然是在对于国外的模仿基础上实现超越,模仿的对象不应局限在电芯级别,而是目前已在全球畅销车型中实现商业化的主流电池包及其采取的技术路线。兴业证券对三款最为主流的车型电池组进行剖析,而这三款电池也正好对应三家日韩巨头电池企业,松下、LG与三星;以及三种主要的封装形式,圆柱、软包与方形路线。

特斯拉Model3电池组:松下21700圆柱NCA电芯+BMS+液冷 通用Bolt电池组:LG软包三元电芯 宝马i3电池组:三星SDI方形三元电芯

5.1、开启圆柱三元大众化路线的先锋:特斯拉系列车型 电芯端:松下独供电芯,特斯拉负责PACK 松下只为特斯拉提供电芯。2019年以前投资2000亿日元到电池单体的生产线上(超级工厂),由特斯拉负责土地、建筑、pack。电芯价格下降,跟特斯拉议定,未来三年公司预计整个pack价格要下降30%。公司的NCA里面增加添加剂,改进了安全性,所以特斯拉才会使用。

松下认为主要降低成本的路径是1)优化Cell和Pack的生产工艺,以及通过产能扩张获取经济效益2)通过与客户工厂接近来降低包装,物流,报关,库存等运营成本3)提升良率,降低运营费用。

从行业的角度来讲,现在没有统一标准,因为18650的只有松下在做。为特斯拉供应圆柱形电池,特斯拉也在分享技术,公司希望圆柱形电池能得到更多推广,不过还是要看装在整车上什么位置。

成组电池端:设计闭环+规模化降成本

特斯拉的电池成本主要分为三个阶段,目前电池成本占比接近60%,未来投资50亿美金的超级电池工厂投产,成本有望下降30%以上。

阶段1:2013年以前:18650电芯价格较低仅为$2,但是BMS和PACK成本较高,电池成本占比为57%。此前松下一直为特斯拉的电池独家供应商,提供的电池为18650的NCA电池,单个电芯为3.1Ah,能量为11.47Wh,单价为$2左右,预计该价格为松下抢占市场而有意放低的价格。以85kwh的ModelS为例,采用7263颗电芯,电池成本为$15246,特斯拉公告的BMS和PACK成本为$20000,总电池成本为$35246,2013年特斯拉年报显示其毛利为22.5%,车子售价为$79900,其成本为$79900×(1-22.5%)=$61923,电池成本占比为$35246/$61923=57%。

阶段2:2013年至特斯拉的超级电池工厂Gigafactor投产前:受商业因素的而影响,电芯单体价格大幅上升为$3.5,得益于BMS和PACK成本下降,电池成本占比为59%。2013年10月30号特斯拉与松下签订了高达70亿美元合同,此时18650NCA电芯的价格上涨到了$3.5,涨幅高达75%,同样85kwh的7263颗电芯成本为7263×3.5=$26680,但是特斯拉单独出售的电池包价格和年报显示的毛利却没有太大的变化,估测BMS+PACK成本已经大幅降低为$10000,因为BMS和PACK主要成本为设计费,本身的电子元器件和制造成本很低,整个电池包的成本为$26680+$10000=$36680,成本占比为$36680/$61923=59%。

阶段3:为超级电池工厂建成之后(2017~):电池成本下降30%以上。预计21700单体价格为$3.3,折合0.14美元/w。由于Model3电芯数量较少且容量较少,预计Model3BMS+PACK成本为$2880左右,综合电池包成本为$6960,电池包成本占比29%。特斯拉实现圆柱路线大幅降本的秘诀在于设计闭环。兴业证券在前述分析中提到圆柱路线的电池包降成本空间已经非常有限,Tesla能够实现圆柱路线大幅度成本下降是一个例外。Tesla的电池、系统、整车一体化,全产业链覆盖,可以做到设计的闭环,这与其它企业有根本性的区别,Tesla可以全面评估更改的利弊,而这是国内18650电池厂目前所不具备的。

5.2、率先实现软包三元电芯成本迅速下降:通用bolt 电芯端:LG独供软包电芯

通用汽车在2015年曾经披露过Bolt电动车采用LGChem的电池,电芯cell的价格为145美元/kWh左右。在全球商业会议上,通用汽车进一步对外展示了Bolt的电池电芯cell的成本预测。其中2016年的成本为145美元/kWh,这个数值持续到2019年,2020年会下降到120美元/kWh。到2022年,该数值继续下降到100美元/kWh。合理推算得到通用bolt电池组成本在200美元/kWh,到2020年降至170美元/kWh。成组电池端:爆款单车实现规模化降成本

BoltEV与一代和二代Volt非常相似,采用了LG“袋状电池”,也就是像食品真空袋那样的尺寸和形状,并且在两代Volt车型上分别只使用了288和196个,显然效率高了很多。

这种袋状电池相对于18650有几个优点,首先是冷却效果更好,温控更加均匀,每个点的温度也很容易达到一致性,随后我在实验室里看到了它的散热系统,就像主板的印刷电路那样,遍布袋状电池的每个部位,通用的工程师使用了水冷散热的方式,由于扁平的袋状电池有着更大的面积,因此印刷电路一般的水冷管路密布,确实更容易温控;其次它的寿命更长,也更加可靠,在极端环节下也相对稳定。

5.3、方形三元主流:宝马i3 电芯端:三星SDI独供方形电芯

宝马i3一直使用的电芯是方形铝壳,三元NCM材料,由三星SDI提供,额定电压在3.7V,电压限值区间为2.8-4.1VDC,电芯的比能在120Wh/kg以上,电芯的内阻在0.5mΩ左右。i3电池包共有8个模组组成,每个模组有12个电芯,共计96个电芯,串联。在动力电池方面公司现在celllevel成本210-220usd/kwh左右,目标是2020年降到120-130usd,有40%左右的成本下降。主要来自于规模效应,良率提升,产能增加带来的采购价格下降 供应链方面现在消费电池的正极材料大部分来自中国,动力电池只有不到10%来自中国,隔膜和负极主要来自韩国,电解液有少部分由中国工业,大部分来自日韩。同时,公司表示未来将产业链从日韩向中国转移也是未来costreduction重要的机会。过去三年第一代到第二代产品能量密度有50%的增加,2018年的第三代产品会有20-30%的提升。

成组电池端:宝马自主研发模块化与热管理

i3是宝马真正意义上量产的一款电动车,在去年9月份就已全球销量突破6.6万辆。i3很多领域的技术都为宝马后续电动汽车开发做了充实的积累和探索,比如整车轻量化技术、电池系统模块化技术、热管理技术等。

从动力电池系统角度来看,i3自2013年11月份上市以来至今进行了一次升级,即在2016年电量由22kWh,提升为33kWh,电量提高50%,这一次升级,保持了电池包体积、结构不变。升级之前的i3续航里程在81英里/130公里(升级后33度电续航在114英里/183公里),电池包总电量为22kWh,容量60Ah,总电压353V;电池包的总重量约为235kg,比能为93.6Wh/kg(33度电的比能约为140.4Wh/kg)。

i3的电连接,高压线束(科士达Kostal提供)采用插接式与模组连接,与电极间的连接则通过超声焊实现,采样线先超声焊再点胶的方式与连接片相连。宝马i3的热管理采用直冷方案(也有液冷方案),制冷剂为R134a。

6、潜在降本空间广阔 技术突破仍需等待

兴业证券认为三元体系之外的非主流技术路线同样存在技术突破的可能性,如以钛酸锂为负极材料的钛酸锂快充电池路线以及新型锂电体系,如锂硫电池。潜在的技术突破有望打破现有体系,实现动力电池性能提升与成本下降的快速跃迁。以钛酸锂为负极材料的钛酸锂快充电池路线; 新型锂电体系有望大幅突破现有比能量极限。

6.1、快充电池:成本是目前最大制约

快充电池已实现成熟的商业化应用。目前快充类电动车已超过15000台,累计运行超过10亿公里,在公交车等对于充电时间要求较为严格的领域应用较为广泛。快充主流技术路线有两类,一类是以钛酸锂替代石墨作为负极材料,代表企业有微宏、银隆等,另一类是在磷酸铁锂体系下采用快充型石墨作为负极,代表企业为CATL。

成本是快充电池进一步拓展应用领域的最大制约。国内快充电池度电成本约为5000元,补贴还不足以覆盖该部分成本,因此快充仍未成为真正意义的主流。如果快充电池能够实现较大幅度的成本下降,将迅速拓展其市场空间。潜在方向包括1)能量密度提升;2)批量化生产降成本;3)提高标称电压,目前只有2.3V,而三元在3.7V。

6.2、新型锂电体系:大幅突破现有比能量极限

现有体系下,电池能量密度有理论极限,如果要进一步突破400Wh/kg比能量,目前的可选方案包括固态锂电池,以及锂空气电池、锂硫电池等新的电化学体系电池。固态电池:高比能量+不燃烧。工作原理上固态锂电池和传统的锂电池并无区别,只是电解质从液态变为固态。固态电池的优势在于:1)能量密度:固态电池不再使用石墨负极,而是直接使用金属锂负极,大大减轻负极材料的用量,使得整个电池的能量密度有明显提高。目前实验室已经可以小规模批量试制出能量密度为300-400Wh/kg的全固态电池。2)安全性:固态电池不会在高温下发生副反应,不会因产生气体而发生燃烧。目前丰田、松下、三星、三菱以及国内的宁德时代等电池行业领军企业都已经积极布局固态电池的储备研发。

锂硫电池:比能量有望超过500Wh/kg。硫作为正极理论比能量高达2600Wh/kg,且单质硫成本低、对于环境友好。但是,硫具有不导电、中间产物聚硫锂溶于电解质、体积膨胀严重等缺点,这些问题使得锂硫电池的大规模应用面临诸多挑战,包括安全性、倍率性能和循环稳定性等。

金属空气电池:比能量有望超过700Wh/kg。金属空气电池是以金属为燃料,与空气中的氧气发生氧化还原反应产生电能的一种特殊燃料电池。锂空气电池的比能量是锂离子电池的10倍,体积更小,重量更轻。不足之处在于,仍处于实验室阶段,实现商业化尚需等待。投资建议:降成本有途可寻,看中期龙头突围

兴业证券认为短期来看,降成本因素未被市场完全预期,根据测算电池毛利率下滑幅度在10%以内,盈利能力将好于预期;中期来看,未来高镍与NCA时代到来后,技术领先、规模优势的龙头将有成本优势,但短期行业迎来较为激烈的厮杀,中期来看,龙头突围。

7.1、短期:降成本有途可寻,盈利能力好于预期

产业逐渐走出底部,市场将迎预期差修复。市场目前对于动力电池板块存在较为强烈的悲观预期,认为补贴退坡将显著影响下游景气度并且打压电池环节毛利率。兴业证券认为17年动力电池的主线逻辑是“以量换价”:一方面,下游已经逐渐走出产业底部,景气度持续回升,乘用车与物流车加速放量下,电池全年出货增长仍值得期待。另一方面,退坡确实造成电池环节价格下降,但可以通过向上游隔膜、电解液等环节压价等“降本”措施,以及提高能量密度、标准化规模化生产等“增效”措施来尽可能弥补,兴业证券认为动力电池行业盈利能力将好于市场预期,且有望持续超预期。

7.1.1电池端价格展望

磷酸铁锂:电池产能过剩将现,新一轮谈判价格落地,降幅约20%。17年磷酸铁锂电池市场跟随电动客车调整,增速趋缓,2017年需求18GWh,结合产能供给(28GWh)来看出现一定过剩。结合国轩、CATL等一线龙头订单价格来看,17年铁锂电池新一轮价格较去年年底降幅在20%左右。

三元:高景气叠加正极材料价格上涨,预计价格下降空间不大。乘用车+物流车搭载三元比例提升叠加客车解禁三元,预计2017年三元电池需求将实现近120%的增幅,2017需求达到16GWh,产能供给20GWh,保持持续景气。目前从正极材料价格来看,高端三元材料NCM价格在2017年后甚至出现小幅上涨,而LFP正极材料价格小幅下跌,也印证了高端三元材料与电芯的高景气度。价格方面,18650型2000mAh三元电芯价格2017年后仅小幅下调,结合pack+bms环节小幅降成本来看,判断三元动力电池价格降幅将在10-15%。

7.1.2电池成本降价空间展望

1、PACK:降价空间不大。PACK环节主流大厂目前均为自行加工,不进行外包,成本控制已经做得相当到位,降价空间不大。而就第三方外包pack公司来看,由于进入壁垒较低,pack业务的毛利率只有15%,压价空间也不大。此外,由于安全性的考虑,成本较高的软包pack路线被应用的比例越来越大,未来单体pack成本还可能上升。但是考虑到技术改进下系统能量密度的逐渐提升而pack的花费相对较为固定,单位能量的pack成本会有所下降。按照17年提升10%计算,单位能量的pack成本降幅可以达到5%。

2、BMS:主要为设计成本,存降价空间。BMS成本主要为设计成本,制造成本相对固定。设计成本前期投入大,后期随着规模扩张能够得到一定摊薄。由于此前市场以客车BMS为主,技术要求相对较低,电芯厂大多能够自行解决。未来市场重心迁移至乘用车后,BMS环节可能需交由更为专业的汽车电子设计企业外包完成,这块成本可能会上升,但判断17年这一趋势可能还不明显。综合规模摊薄、系统能量密度提高等因素,判断17年BMS环节降成本空间达到10%。

3、正极材料:LFP材料存在降价空间,NCA与NCM材料降价空间不大。正极材料价格与两块相关,一块是主要的原料电池级碳酸锂,另一块是前驱体,磷酸铁锂与铁矿石相关、三元路线则与镍、猛、钴等有色金属价格相关。电池级碳酸锂价格从16年年底开始保持平稳,在13万元/吨的水平。从龙头天齐锂业与赣锋锂业最新披露的情况来看,17年市场需求稳定增长20%左右,中高端级别需求更大,考虑到上游仍较高的毛利率水平(天齐毛利率60%、赣锋35%)与下游强烈的压价意愿,电池级碳酸锂价格可能缓缓回落至10万/吨的水平。

前驱体方面,镍价与锰价保持稳定,但钴价17年以来出现暴涨。三元材料价格也因此跟随上涨,NCM523已从年初14万元/吨上涨至目前的19万元/吨。随着市场回归理性与电池级碳酸锂的平稳降价,预计未来三元材料价格将有所回落,但判断17年仍将保持5%左右中枢的涨幅。磷酸铁锂正极材料17年价格逐月下滑,目前已在8.5-9万元水平,较年初10万元水平下降了10%-15%,预计17年中枢降幅在20%。

4、电解液:毛利率较高,六氟磷酸锂降价后,电解液存降价空间。电解液价格主要跟随六氟磷酸锂价格变动,目前六氟磷酸锂价格已从去年年末高点38万元/吨,回落至28万元/吨。

动力电池电解液价格走势与六氟磷酸锂基本一致,由去年3季度高点8.5万元/吨降至目前6.9万元/吨。目前电解液龙头的毛利率在30%左右(新宙邦)也存在压价空间。随着六氟磷酸锂降价与下游对于电解液企业的压价,预计电解液17年降价幅度将达到20%。

5、隔膜:高毛利率叠加工艺改进,存降价空间。隔膜种类较多,从高端到低端价格差异很大,但17年普遍存在降价空间。从全球隔膜龙头星源材质的情况看,16年干法隔膜均价为4.2元/平米,今年降至3.7-3.8元/平米,湿法去年5元/平米,今年4.5元/平米,能够锁定较长时间。星源16年隔膜毛利率在60%,这块压价空间很大。且隔膜龙头本身也存在通过技术改进进一步降成本的能力与诉求。结合星源调价与上述因素来看,判断隔膜17年价格下降幅度在10%左右。

6、负极:产能长期过剩,价格持续稳定下降。负极价格受动力电池需求端影响不大,近年来处于平稳降价轨道,且毛利率较低。判断17年继续稳定降价,幅度在10%。

7、其他材料:整体降价空间不大。壳体盖板由于钢价与铝价的上涨,17年价格可能上涨,判断在5%左右。制造成本摊销这一块与产线自动化水平与产能利用率相关,随着规模扩张带来单位成本下降与产能利用率维持在平均水平以上,制造成本摊销有望下降10%。劳动力成本按照工资上涨5%计。其他材料包括正极方面用的粘结剂PVDF、溶剂NMP、集电体铝箔,负极方面用的粘结剂CMC、溶剂去离子水、集电体铜箔,用于极耳的铝带、镍带等等,预计降幅有限,在5%左右。其他成本包括环保成本,判断这块难以下降。整体来看,除四大材料之外的其他成本降幅在3%-5%之间。

7.1.3动力电池业务毛利率降幅测算

根据上文拟定的各环节成本下降中枢,对于PACK、正极材料、电解液与隔膜等变化可能性较大,同时对于动力电池盈利能力潜在影响较大的环节进行展开模拟测算,给予下述假定,得到磷酸铁锂动力电池业务毛利率受影响的幅度在7%-10%之间,三元动力电池受影响的幅度在4%-7%。假定:

1)2016年磷酸铁锂电池价格2.3元/WH,17年下降20%,三元电池价格2.1元/WH,价格下降20%,三元由于能量密度提升,综合成本降幅设定为10%。

2)2016年磷酸铁锂电池毛利率40%,三元电池毛利率30%。

3)PACK环节成本下降3%、7%两档,BMS环节固定下降10%。

4)正极材料,磷酸铁锂下降15%、25%两档,三元材料分不变与上涨10%两档。

5)电解液分为下降15%与下降25%两档。

6)隔膜分为下降5%和下降15%两档。

7)负极下降10%,前天成本加权平均下降3.5%。

8)各环节成本比例按照下述拆分的18650圆柱型测算。莫为价跌遮望眼,关注盈利能力持续改善。补贴退坡确实造成电池环节价格下降,但可以通过向上游隔膜、电解液等环节传导成本压力,以及提高能量密度、标准化规模化生产等“增效”措施来尽可能弥补。目前时点电池谈判价格已落地,实际降幅(20%)好于市场悲观预期。根据上述测算动力电池毛利率17年下滑幅度在8%-10%,三元下滑幅度在4%-7%,当前板块估值下对于动力电池盈利能力过于悲观。此外,随着降本增效进一步带动,动力电池盈利能力有望环比持续改善,后续存在持续超预期可能。

7.2、中期:高比能时代即将来临,龙头抢先卡位志存高远

动力电池行业分析报告 篇5

在新能源汽车火爆的今天,作为动力汽车锂电池四大正极材料之一的磷酸铁锂,成了炙手可热的概念。

今年年初以来,有关磷酸铁锂电池技术专利争夺战升级的报道不断见诸报端。来自欧美的几大跨国公司称其拥有磷酸铁锂电池核心技术专利,大打专利之战。不仅如此,近期更有媒体报道,来自加拿大的Phostech公司与中国的电池生产企业谈判,并提出“入门费”1000万美元、每生产1吨磷酸铁锂交2500美元的苛刻要求。

专利之战似乎又给这项技术增加了更为神秘的光环。然而,似乎社会对磷酸铁锂过早地寄予了厚望,有关专家指出,磷酸铁锂动力电池不是电动汽车动力的有效解决方案。

“不要把磷酸铁锂在电动汽车动力电池中的作用夸大了。”国家科技部973计划电动汽车储能项目首席科学家、上海交通大学马紫峰教授说,“学术界的观点认为,磷酸铁锂不可能是未来新能源汽车主要的动力电池。目前锂离子电池正极材料主要有四种,磷酸铁锂、钴酸锂、锰酸锂以及三元材料。从单电池电压来看,磷酸铁锂比钴酸锂等材料低很多,磷酸铁锂电池的能量密度偏低,电池系统体积很大,大规模运用未必合适,还需要做更多技术论证。我们很多企业一窝蜂争上磷酸铁锂项目,容易被外国企业钻空子。”

切忌盲目上马

近几年,新能源汽车市场正在蓬勃地发展起来。数据显示,到2012年,中国将形成50万辆新能源汽车产能,以单车使用2万元电池(综合考虑混合动力和纯电动汽车)的平均水平测算,国内汽车动力电池市场规模可达到100亿元,相当于目前锂电池市场规模增长1倍。到2020年,新能源汽车带动的全球车用动力电池市场需求将超过2000亿元。不可否认的是,中国车用动力电池产业将迎来快速发展的黄金时机。

相对的,在炙手可热的新能源汽车市场背后,相应的电池技术也被日益提上日程。目前,我国新能源汽车研发布局呈现出纯电动车、燃料电池车和混合动力车并驾齐驱的局面。纯电动汽车目前市场上主要使用的电池有镍氢电池、铅酸电池以及锂电池。应该说各种技术都还不纯熟,存在一些缺陷,很多实验室和企业也还在对此不断改进。

目前从整体上来看,锂电池还存在一个安全性的问题。不管是锰酸锂还是磷酸亚铁锂,从循环寿命、可靠性、安全性、充放电性能来讲还存在各种缺陷。“国内最近一两年上电池项目的企业非常多,可真正突破的没有。锂电池里的五部分:正极材料、负极材料、电解液、隔膜、外包装,每一项都是很重要的,都是有核心技术的。研究其中一样已经了不得了。”常熟市合众环保能源技术研究所所长沙永康说。

由此,对磷酸铁锂的狂热部分地反映了现在大多数中国企业的心态。在一项技术尚未成熟的前提下,不把更多的精力和金钱花在技术研究上,而是选择迅速上马,这实在是浪费资源。

此外,目前国内锂电池的品质与国外还有很大的差距,主要是生产方式不同决定的。浙江工业大学化学工程与材料学院教授王连邦说:“中国企业机械化、自动化跟国外差别很大,很多都是手工的。一个电池还看不出来,上百个电池串联在一块,差别就非常明显。品质上的差距主要是电池的一致性。从原材料到产品,里面有非常多的工序。一批不同品质的产品都不一样。100个电池,有2个可能不是很好的。这是生产方式的问题,不是一两年能弥补的。”

沙永康也认为,不能保证一致性是很大的问题。“这种方式做手机电池是可以的,因为手机电池容量小。一个电动汽车开150公里,储电量要15千瓦时、20千瓦时的电池组,手机电池可能就1瓦时,相当于1.5万倍。我们大部分企业采用的是机械加手工的方式,一致性程度不高。现在的成品率还非常低。”

未来技术路径

如果锂电池不能担当起未来新能源汽车的发展重任,那么谁能唱主角呢?

虽然国内还有很多企业大力推广铅酸电池,但是由于污染高这个特点,使得这个产品并不被看好,发展时也多有无奈的感觉。“铅金属的提炼、制造电池、回收电池的过程中都有污染,只有汽车在路上跑的时候没有污染。因此不能说这是清洁能源。铅酸电池不是一个值得大力推广的技术。目前铅酸电池在中国已经有45%的产量,欧美国家会使用,但是不制造、不回收,污染在中国。”沙永康说。

相反,燃料电池是目前很多专家认准的方向,也有很多国际巨头不断在这个领域发力。燃料电池是一种将氢气和空气中的氧通过电化学过程结合成水并产生电能的发电装置。燃料电池工作不需燃烧,无转动部件,具有能量转换效率高(实际使用效率为普通内燃机的2~3倍)、无噪声、运行寿命长、可靠性高、维护性好等优点;它的唯一产物是水,真正符合清洁、可再生要求。从1994年第一辆燃料电池汽车问世到现在短短十几年的时间,技术的发展非常迅速。

实际行动显示,目前世界各个国家对燃料电池的发展、燃料电池汽车技术的发展给予了非常高的关注。丰田已经宣布,第一辆燃料电池汽车将在2015年面市。去年9月,丰田、本田、现代、福特、通用、戴姆勒、起亚等知名汽车公司共同发表声明,呼吁各国政府在2015年前建立更多的氢燃料基础设施。如果这一目标能够实现,从2015年起,全球范围内将会有几十万辆氢动力汽车逐渐实现商业化生产。虽然现在燃料汽车的成本还非常高,但这是真正符合清洁标准的技术,业内人士认为,随着生产规模不断扩大,成本的降低只是一个时间问题。

与此同时,氢气的安全问题也成了大家担心的重点,对此,马紫峰回答说,全世界对氢气安全问题的技术研究力度很大,氢气作为石油化工、冶金和制药等行业的重要原料,对其储运安排已经有了很好的解决方案。我们973项目团队正在参与制定车载储氢的国家标准和国际标准,目前实验室做的氢气钢瓶已经达到70兆帕,而商业用时大概只需35兆帕,安全系数大大提高了。另外,氢气的来源是多元化的。目前在上海,峰谷电的差异很大,夏天供电比较紧张,而春秋的电力供应富裕,利用峰谷电可以电解成氢气。而对于上海宝钢、上海石化等大企业来说,氢气已经是大规模的副产品了,所以说未来前景很广阔。

就大方向来看,新能源汽车的推陈出新势必促使电池技术的拓宽。马紫峰认为,未来将燃料电池和蓄电池,或者燃料电池和电容器加以组合,结合二者的优势,是很好的方向。“我们知道,对于设计好额定功率的燃料电池,受氢氧电化学反应的制约其输出功率是稳定的,如装载60千瓦燃料电池的汽车,在减速或停车时燃料电池始终在工作,这时多出来的就给蓄电装置充电,当汽车加速或爬坡时,燃料电池的功率不可能从60千瓦变成70千瓦,这个就用蓄电装置来补充,这种组合有利于动力性能的改善。总之,要多选择一些方向,向更前沿的地方看。比如我们现在和美国密歇根大学合作研究锂-空气电池等最新技术,这个相对比较遥远,要15年之后才会有大的发展。”

沙永康也认为,新能源汽车的技术是非常多样的,不应该把全部目光都聚焦在电池本身。新能源的概念一定要宽,有了宽的概念才有新的思路。也许不久的将来就能找到一种新的液体燃料,能够代替甲醇和乙醇。再比如将无线供电技术用在汽车上。虽然现在远距离应用还有一定问题,但是麻省理工学院在2007年时便可以通过这种技术点亮2米之外的60瓦灯泡,这给了人们无限的遐想。未来,将无线供电技术与汽车结合未尝不是一个可行的办法,省却了插电等繁琐的步骤。

新能源汽车无疑是未来的发展方向,可能50年后便是传统内燃机车淡出历史舞台之时。不过正如沙永康所说的:“新能源汽车发展要扩宽思路,不能盯着一个不成熟的技术盲目上马生产。不能不看市场搞项目,单纯为了科研经费、为了国家补贴而行动。”日本丰田、本田等厂商十几年如一日潜心研究一项技术,一旦成熟,大力推向市场,其他企业只能在后面远远追赶。相较之下,中国企业想要在新能源汽车领域弯道超车,尚需静下心来。

动力电池驱动新能源汽车 篇6

目前扎根中关村的中航长利、中信国安盟固利、当升材料、北大先行等以车用动力电池生产为核心的高新技术产业群正在兴起。这些动力电池“明星企业”的崛起,除企业的自身努力外,还在于依托中关村深厚的自主创新基础和前瞻技术的产业导向。

动力电池产业是新能源汽车实现低碳应用的核心环节,而发展新能源产业已上升为国家战略。

业内人士认为,2010年将成为中国新能源汽车元年,而以动力电池为主的新能源产品将率先爆发性增长。

新能源动力电池项目是国家中长期科技发展规划纲要重点支持的专项,已然纳入中国“十二五”期间重点布局的战略新兴产业。

而北京市政府提出到2012年实现本市新能源汽车达到5000辆的示范规模的目标,则为中关村动力电池企业提供难得的发展机遇。

此前,中关村已在动力电池相关技术研发与产业化等方面拥有较好的基础,并且在奥运会历史上首次成功实现了大规模示范应用,受到了世界瞩目,在国内外同行业中具有领先优势。

但打通完善的产学研产业链、突破关键技术还尚需时日,这也是日前旨在“打造北京新能源汽车产业‘驱动之家’”的北京动力电池联盟成立的原因。

动力电池:产业链待突破

近日我国政府宣布,将节能与新能源汽车示范运营试点城市由原来的13个扩大到20个,这是我国进一步推进新能源汽车产业发展又一重大举措。

在新能源汽车产业发展中,整车企业离不开零部件,零部件离不开整车。电池、电机、电控等关键技术应用和突破是关系到新能源汽车产业化和未来健康发展关键。在过去的100多年中,新能源汽车技术停滞不前和未能普及的主要原因就是电池技术不成熟、成本太高。

“当然,目前动力电池产业尚处于早期发展阶段,涉及产业链比较长,包括关键材料、动力电池、关键设备、系统集成、示范应用等诸多环节,还存在着研发力量分散、产业化规模较小、商业化模式不成熟、行业技术和产品标准缺乏等问题。”北京动力电池联盟理事长、中信国安盟固利新能源科技公司总经理王雅和在3月31日清华科技园举办的“中关村动力电池和电动汽车主题研讨暨北京市动力电池产业联盟成立大会”上表示。

“电池比容量大小、循环寿命等电化学性能指标直接决定了新能源汽车的性能,同时其成本的高低也决定了新能源汽车的整体价格和市场竞争力。电池及其管理系统的成本一般占整车成本的40%。”北京新能源汽车产业联盟秘书长、北汽福田汽车股份有限公司党委副书记赵景光强调。

“要开发出适用于车用环境、性能优良的车用动力电池,就需要了解更多与新能源汽车有关的专业技能。”赵景光犀利地表示,目前国内从事车用动力电池研发的企业基本上没有汽车零部件生产的背景和经验,同时由于国家标准的缺失,这些企业对车用动力电池的产品理念、开发流程、生产工艺设计乃至成本计算的方法均与汽车行业不一致,甚至差距很大。

对此,王雅和给予了解答,联盟职责第一位就是通过联盟整合材料、电池、设备、系统集成、示范应用等产业链上下游资源,合力支撑北京新能源汽车的示范应用和产业发展。

创新先行:解关键技术

在中国汽车业迅猛发展的势头下,如何使得我国在动力电池新能源领域占据技术和市场先机,显然离不开自主创新和技术研发。

专家表示,动力电池成组技术及管理系统是当前急需解决的最关键技术问题,目前扎根中关村的中航长利、中信国安盟固利、当升材料、北大先行等以车用动力电池生产为核心的高新技术产业群正在兴起。这些动力电池“明星企业”的崛起,除企业的自身努力外,还在于依托中关村深厚的自主创新基础和前瞻技术的产业导向。

如北大先行以北京大学雄厚科研力量优势为依托,在锂离子电池材料方面在国内处于领先地位,成功地创新研制出具有国际先进水平的正负极材料磷酸铁锂电池。据了解,磷酸铁是业界公认的新一代动力或储能锂离子电池首选正极材料之一,由于其性能优良,受到各方面的重视。由于我国生产时间不长,规模还不大,造成供不应求的情况。且由于对设备精度要求高、工艺复杂,其产业发展一直受制于少数几家美国公司。

不过,在北大先行总经理隋忠海眼里,这种情况在近几年内得到改变,磷酸铁锂动力电池将更便宜,并且其应用将更普遍。

隋忠海在接受记者电话采访时说,北大先行与北京大学合作,从2001年开始磷酸铁锂方面的研究,并获得了国家863计划和北京市科委的支持。经过多年的努力,终于在2009年解决了磷酸铁锂材料改性和规模生产方面的难题,自主设计建成了年产500吨的磷酸铁锂生产线,在国内率先实现磷酸铁锂的规模化生产。

另一位“电池大户”则是锌空气电池,它的发明已经有上百年的历史。中国是锌储量大国,开采及应用成本很低,有着比能量大、容量大、能量高、安全可靠等优点。北京中航长力整合了原北京长力联合在锌空气电池研究领域的资源优势,与清华大学成立了国内第一家专业研究锌空气电池研究中心,在技术创新上拔得头筹。

“今年北京街头将可以看到锌空气电池驱动的汽车。”总经理周跃民告诉记者,锌空气电池作为新能源有着极大的优势,在价格上比锂电池便宜一半,单位储能却高出一倍,同时由于采用新型催化剂配方,使得空气电极的成本大大降低。

据了解,在长达8年的锌空气金属悠料电池的研发利用中,中航长力已摸索出这种电池在新能源汽车上应用的经验,拟在八达岭新能源产业基地购地150亩,打造一条年供2000辆新能源汽车用的电池生产线,以及世界上第一条利用锌空气金属燃料电池作为储能的还原站,调节因风能发电、太阳能发电并网给国家电网造成的不稳定。

产业联盟:支撑新能源汽车发展

全国清洁汽车行动协调领导小组办公室专家组组长王秉刚表示,目前国内纯电动车的自主创新研发进展顺利,与国际先进水平已经非常接近。“未来一种重量更轻、价格更便宜、技术更先进的电池将会诞生,取代目前蓄电池储能装置驱动和氢气燃料驱动,成为新能源汽车的主流。”

赵景光强调,另外,电池的安全性是首要指标。研发出安全性能高、容量大、循环寿命长、成本低的动力电池将是新能源汽车技术发展的关键因素。换句话说,没有电池技术的根本性突破,就没有新能源汽车的产业化和商品化。

“在动力电池技术方面,我们还有很多功课要做。”新能源汽车的“超级发烧友”北京美髯公科技董事长朱荣辉接受记者电话采访时认为,电动汽车维修必须面对高电压问题,需要去专门的维修店修理,非常不便。他继而表示,动力电池在充电过程中的高压电火花十分危险,这给电动汽车的普及带来难点。另外,一些技术难题还有待攻关,例如锌空气电池工作时要消耗一定的能量用于清除空气中的二氧化碳、滤清、通风,还需要限制放电电压等。

针对上述种种问题,来自北京市科委先进制造与自动化处副处长秦颖则给予了解答:“2010年,北京市科委将安排2亿元左右的资金,支持北京相关单位在新能源汽车动力电池领域进行创新攻关和产业化,以求推动突破相关关键技术。”

与此同时,“北京动力电池产业联盟”成立之初即确定了以应用为导向、以技术为核心、以产业为主线的活动宗旨。并且把目标锁定在力争使北京发展成为国内动力电池及关键材料的研发中心、标准制定中心和生产基地。

“为此,联盟理事会还聘请了国内外知名专家组成专家委员会,积极对接动力电池相关领域的国家重大专项。”王雅和表示,搭建北京动力电池基础研发平台,对接动力电池及相关领域的国家重大科技攻关项目,协助国家有关部门制定行业技术标准及实施。

动力电池行业分析报告 篇7

为应对气候变化, 环境污染, 资源枯竭等世界性难题, 发展新能源汽车成为工业发达国家的共识。目前, 我国也面临着严重的环境污染、原油对外依赖度居高不下、传统汽车产业发展面临困境的诸多问题, 因而发展新能源汽车也成为我国国家战略的必然选择。据2015年发布的《新能源汽车蓝皮书》介绍[1], 随着扶持政策和市场环境的双重驱动, 我国新能源汽车的产销量快速攀升。我国于2009 年开始大规模推广应用新能源汽车, 按照新能源乘用车动力蓄电池的设计寿命一般为6-8 年计算, 2015 年后动力蓄电池逐渐步入大规模报废期。预计到2020 年前后, 我国纯电动乘用车和混合动力乘用车动力电池的累计报废量将会达到12 万吨-17 万吨[2]。

2 加强废旧动力蓄电池综合利用的必要性

作为循环经济的重要组成部分, 加强废旧动力蓄电池综合利用, 不仅能带来巨大的环境效益, 同时也将产生显著的经济效益和社会效益。

2.1 降低新能源汽车高价位, 促进市场消费

从新能源汽车的成本构成看, 电池驱动系统占据了电动汽车成本的30-45%, 而动力蓄电池又占据电池驱动系统成本构成的约75-85%[3]。动力蓄电池综合利介于新能源汽车和动力蓄电池生产的中间环节, 通过对废旧动力蓄电池进行拆卸、拆解、检测和分类后的二次使用, 实现动力电池梯级再利用, 从而可实现动力蓄电池成本降低30-60% 的目标。因此, 推动废旧动力蓄电池的综合利用, 对于大幅降低电池成本, 并加快新能源汽车的推广应用尤为重要。

2.2 实现能源梯级利用, 缓解能源危机

新能源汽车对动力蓄电池的性能要求较高, 当电池容量衰减至初始容量的80% 以下时, 将不能满足动力需求, 导致车辆续驶里程会明显减少, 但仍然可满足其他性能要求较低的应用领域, 如电动自行车、游览车、场地用车、充换电站储能、移动基站、家庭电能调节等, 即实现动力蓄电池的梯级利用。通过建立动力蓄电池的梯级利用体系, 避免资源低效率再生利用, 充分利用剩余能源, 可降低新生电池的资源能源消耗, 缓解我国日趋严重的能源危机。

2.3 节约自然资源, 促进循环经济发展

动力蓄电池由于性能的特殊要求, 不仅含有铁、铝、石墨等常见自然资源, 还含有锂、钴、镍等贵金属, 同时含有电解液、稀土元素等宝贵资源。这些材料均来源于不可再生的自然资源, 随着我国新能源汽车的快速发展, 以上资源消耗量逐年增加, 资源供给日益紧张。废旧动力蓄电池作为“城市矿产”的重要组成部分, 所含贵金属的比例通常比原矿高, 回收利用价值显著。因此, 开展废旧动力蓄电池综合利用, 不仅可以节约宝贵的自然资源, 更可成为资源循环利用产业中的新增长点, 开启循环经济发展的新领域。

3 我国动力蓄电池综合利用政策法规介绍

我国历来高度重视环境保护和资源综合利用等问题, 并通过立法加强引导和监督管理, 相继颁布了《中华人民共和国固体废物污染环境防治法》、《中华人民共和国清洁生产促进法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国循环经济促进法》等法律。为了有效解决动力蓄电池报废及综合利用问题, 国务院于2012 年6 月28 日发布了《节能与新能源汽车产业发展规划》, 明确提出要制定动力蓄电池回收利用管理办法, 建立梯级利用和回收管理体系;2014 年7 月21 日, 国务院办公厅又发布《关于加快新能源汽车推广应用的指导意见》, 提出研究制定动力蓄电池回收利用政策, 探索利用基金、押金、强制回收等方式促进废旧动力蓄电池回收, 建立健全废旧动力蓄电池循环利用体系的建议。

3.1 新能源汽车动力蓄电池回收利用技术政策

为引导电动汽车动力蓄电池有序回收利用, 保障人身安全, 防止环境污染, 促进资源再生, 国家发展改革委、工业和信息化部联合组织研究制定了《电动汽车动力蓄电池回收利用技术政策 (征求意见稿) 》 (以下简称《技术政策》) , 于今年9 月正式向社会公开征求意见, 有望年底正式发布实施。首次针对动力蓄电池行业提出了以下引导性管理政策[4]:

(1) 明确了动力蓄电池回收利用工作的责任主体。基于生产者责任延伸制度, 电动汽车生产企业和动力蓄电池生产企业 (含进口商) 、梯级利用电池生产企业及报废汽车回收拆解企业分别承担各自领域内废旧动力蓄电池的回收利用的主要责任。

(2) 明确动力蓄电池回收利用企业的规范条件, 规范行业秩序。规定只有相关授权资质的企业可开展回收业务, 只有满足一定拆解、热解、破碎分选、冶炼等相关要求的企业才可开展综合利用业务, 严格把控市场准入门槛, 规范行业秩序, 保障产业健康发展。

(3) 鼓励进行废旧动力蓄电池梯级利用, 引导技术进步。国家支持动力蓄电池生产企业或具备相应技术条件的再生利用企业开展废旧动力蓄电池梯级利用, 适时建立相应的质量管理体系和梯级利用产品的认证制度。

3.2 行业规范条件

2015 年3 月, 工业和信息化部编制并发布了《汽车动力蓄电池行业规范条件》, 采取公告管理方式, 加强对汽车动力蓄电池产业发展的引导和规范, 从设计、生产源头支撑后端的回收及综合利用。目前, 已完成《新能源汽车用废旧动力蓄电池综合利用行业规范条件 (征求意见稿) 》的编制, 该文件从规模、设备设施、技术能力、环保、安全等方面提出具体要求, 正在广泛征求行业意见, 即将发布实施, 以推动该行业规范化、专业化发展。

3.3 标准体系

为了适应我国新能源汽车发展形势, 目前全国汽车标准化技术委员会车用动力电池回收利用标准起草工作组已完成国标《车用动力电池回收利用拆解规范》、《车用动力电池回收利用余能检测》技术审查工作, 并正在开展废旧车用动力蓄电池拆卸、包装运输、储存、梯次利用、材料回收等方面的前期研究和立项推动工作, 以完善促进废旧动力蓄电池再生利用标准支撑体系。

4 提高废旧动力蓄电池综合利用的对策与建议

针对我国废旧动力蓄电池综合利用现状及存在的问题, 为缓解我国汽车工业发展面临的资源与环境制约压力, 促进新能源汽车的推广应用。本文尝试从政府、企业、科研以及社会公众四个层面, 对提高我国废旧动力蓄电池综合利用水平和规范行业健康发展提出一些建议。

4.1 政府方面

(1) 健全相关法律法规, 提供法律依据。作为新兴产业的废旧动力蓄电池综合利用发展需要有良好的政策法律加以引导, 相关政策应对研究方向、成果运用和标准化管理给予规范, 使该行业步入法制化轨道。同时, 出台一系列鼓励政策和制约措施, 鼓励企业积极开展综合利用的转型升级, 发挥优惠政策的导向作用。

(2) 加强资源科学管理, 做好区域整体规划。针对废旧动力蓄电池的回收、综合利用, 主管单位及有关部门要主动协调、密切配合。各地方政府要结合自身区域的实际特点, 因地制宜的调整相关政策规划, 稳步推进相关工作。

4.2 企业方面

(1) 加强新设备、新技术和新工艺的开发、推广与应用。目前, 我国废旧动力蓄电池综合利用在分类、拆解、破碎、冶炼等环节的技术和工艺设备还比较落后, 某些企业的工艺流程能耗高、污染大。企业应加大相关技术、设备和工艺的投入, 并注重科研成果向现实可行技术的转化及推广应用工作, 重视引进国外高科技成果或关键设备, 促进国内企业的技术进步, 不断提高科技在废旧动力蓄电池综合利用中的贡献率。

(2) 提高综合利用产品技术含量和附加值, 增加经济效益。伴随我国经济发展步入新常态, 废旧动力蓄电池综合利用必须以市场为导向, 开发研制市场急需的产品, 积极探索资源循环与艺术融合、延伸资源综合利用产品等发展模式, 提高矿产品中的技术含量, 增加经济效益。

4.3 科研方面

(1) 加强基础理论研究, 提高科技在综合利用中的应用。我国目前废旧动力蓄电池综合利用水平低, 关键在于工艺技术水平低下, 而根本原因则在于基础理论研究薄弱。必须加强动力蓄电池单体一致性、残余寿命预测、安全性能指标评价等方面的基础理论研究, 重视将大数据等尖端技术不断渗透到综合利用过程, 实现科研成果技术的转化与应用, 例如大数据平台在动力蓄电池全生命周期信息实时监控和追溯中显示出诱人的前景。

(2) 进一步推进我国废旧动力蓄电池综合利用标准化工作。为相关职能部门的管理提供科学的可操作的技术指标, 便于从技术角度明确范围, 需要进一步推进矿产废旧动力蓄电池综合利用技术标准体系的建设。在标准的制定过程中, 应将当今国内外先进的科技成果适当地纳入到标准之中, 同时注意协调各方面的意见和建议, 提高标准之间的协调性、配套性及可操作性, 以奠定扎实的技术基础。

4.4 社会公众方面

公众的环保意识对废旧动力蓄电池综合利用也起到十分重要的作用。充分发挥电视、广播、报纸、微信、网络等媒体的作用, 加强对社会公众进行宣传教育, 增强群众的资源危机、环境保护意识, 奠定良好舆论环境, 促使积极参与到综合利用的回收活动中来。同时, 发动广大人民群众的监督作用, 确保相关政策方案落实到位。

5 结语

我国正处于新能源汽车发展的成长初期, 作为核心零部件的动力蓄电池即将步入大规模报废期, 我们必须从培育新兴产业、规范行业发展、保护环境的角度的去看待废旧动力蓄电池综合利用, 才能实现该行业绿色持续发展。

参考文献

[1]中国汽车技术研究中心, 日产 (中国) 投资有限公司等.新能源汽车蓝皮书2015[M].社会科学文献出版社, 2015.

[2]黎宇科.有效利用并完善我国车用动力电池回收体系[J].低碳世界, 2012, 3:31-31.

[3]电动汽车价格之高源于动力电池, http://www.ddc.net.cn/ev.

上一篇:描写冬天的太阳句子下一篇:讲规矩方面