小学六年级奥数 抽屉原理(含答案)

2024-09-11 版权声明 我要投稿

小学六年级奥数 抽屉原理(含答案)(共6篇)

小学六年级奥数 抽屉原理(含答案) 篇1

知识要点

1.抽屉原理的一般表述

(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为:

第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。2.构造抽屉的方法

常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,„„13点牌各一张),洗好后背面朝上放。一次至少抽取 张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取 张牌。点拨 对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨 对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。解(1)13×2+1=27(张)(2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内?

点拨 可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解(1)因为37÷12=3„„1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3 有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有? 点拨 首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。解(1)2+4×3+1=15(张)(2)2+13×3+1=42(张)例4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同?

点拨 根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解 借球有6种情况,看做6个抽屉,所以至少要来7名学生借球,才能保证。

例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小数的倍数? 点拨 把1~30这30个自然数分成下面15组:{1,2,4,8,16},{3,6,12,24},{5,10,20},{7,14,28},{9,18},{11,22},{13,26},{15,30},{1 7},{19},{21},{23},{25),{27},{29},在这15组中,每组中的任意两个数都存在倍数关系,故可把这15组看做15个抽屉,至少要取出16个数才能达到题目的要求。

例6 边长为1的正方形中,任意给定13个点,其中任意三点都不共线。试说明其中至少有4个点,以此4点为顶点的四边形面积不超过四分之一。

解:把正方形平均分成四个相同的小正方形,每个正方形的面积为四分之一。

13=4×3+1,13个点至少有4个点在同一个小正方形,以此4点为顶点的 四边形的面积不超过小正方形的面积,即不超过原正方形面积的四分之一。

例7平面上给定六个点,没有三点共线。每两点用一条红线段或黄线段连接起来,试说明由这些线段围成的三角形中,至少有一个三角形,它的三条边同色.解 因为有六个点,每个点都要引出五条线段,据抽屉原理,任意一点引五条线段中至少有三条线段同色,不妨设是红色(如图红色线段为实线,蓝色线段为虚线),这时三角形a2a3a4会出现两种颜色情况(1)若a2a3,a3a4,a2a4中有任意一条线段为红的,那么这条红线段与 它的两个端点与a1引出的两条线段组成一个红三角形。

(2)若a2a3,a3a4,a2a4中没有一条线段是红色的,则a2a3a4为一个 蓝色三角形。综上所述,无论(1)还是(2),题目结论都成立。

说明:若把两种颜色连线换成人与人之间的相识或不相识关系,就可以解决

实际问题:结果可证明6人之间至少有3人互相认识或不认识。

1.要在30米长的水泥台上放16盆花,不管怎么放,至少有几盆之间的距离不超过2米?

解:两盆 30÷2=15段,30米中每两米为一段的有15段,16盆花至少有两盆花在一段,至少两盆之间的距离不超过2米。

3.在一个边长为1的正三角形内随意放置10个点,试说明其中至少有两个点之间的距离不超过1/3。解:把边长为一的正三角形平分成9粉,由每个三角的边长为1/3,必有两点在一个三角形内,则两点的距离小于1/3。

4.用黑、红两种颜色将一个长

9、宽3的矩形中的边长为1的小正方形随意涂色,试证必有两列涂色情况一样。

因为涂色出现八种情况:(红红红),(蓝,蓝,蓝),(红,红,蓝),(红,蓝,红),(蓝,红,红),(蓝,蓝,红),(蓝,红,蓝),(红,蓝,蓝),所以九列中一定有两列是相同的。5.从整数1,2,3,„„,199,200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数。

分数组{1,2,4,8,16,„„128},{3,6,12,24,48^192},{5,10,20,40^200},{7,14,28,56,112},{9,18,36,72,144},{11,22,44,88,176},{13,26,52,104},{15,30,60,120,}„„{99,198},{101},{103},„„{199}共100个抽屉,任选101个数必有两个数在一个抽屉里,即其中的一个是另一个的倍数。6.在10×10方格纸的每个方格中,任意填入1、2、3、4四个数之一。然后分别对每个2×2方格中的四个数求和。在这些和数中,至少有多少个和相同? 1、2、3、4填入后,四个数的和最小为4,最大为16。4-16之间有13个不同的和,2×2的方格在 10×10的方格中可推出81个和,81÷13=6^3,故至少有6+1=7个和。7.从八个连续自然数中任意选出五个,其中必有两个数的差等于4,试分析之。

这八个连续自然数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7,分为四组{ a+4,a},{a+5,a+1},{a+6,a+2},{a+7,a+3},取五个数必有两个数在一个抽屉中,即差为4 8.任意给定七个自然数,说明其中必有四个数,它们的和为4的倍数。

七个数中必有三对奇偶性相同,即满足a1+a2=2k1,a3+a4=2k2,a5+a6=2k3。在k1,k2,k2三个数中又至少有两个奇偶性相同,不妨设k1,k2奇偶性相同,所以k1+k2=2m,即a1+a2+a3+a4=4m, 2k1+2k2=4m,所以其中必有四个数,它们的和是4的倍数。

9.从3,6,9„„81,84这些数中,任意选出16个数,其中至少有两个数的和等于90,试说明之。

分数组{6,84},{9,81},{12,78},„„{42,48},{3},{45},共15个抽屉,故取16个数必有两个数在一个抽屉中,即和为90。

10.任意给定七个不同的自然数,其中必有两个数的和或差是10的倍数,试说明之。

按余数是2或5或两个余数和为10来构造6个抽屉:{0},{5},{1,9},{2,8},{3,7},{4,6}这样7个数必有两个数在一个抽屉里,它们的余数之和是10或余数相同,从而他们本身的和或差为10的倍数。11.能否在10行10列的方格中的每个空格处分别填上1,2,3这三个数,使大正方形的每行、每列及两条对角线的各个数字和互不相同?

10个数的和最小为10,最大为30,10-30中有21个数。10行10列加上两条对角线共22个和,则必有两条线上的和相同。所以不能。

12.能否把1~7这七个数排成一圈,使任意两个相邻数的差等于2或3?

在这7个数中,1,2,6,7都不能相邻,要把它们隔开需要4个数,而现在只剩下3,4,5三个数,所以不能。13.平面上给定六个点,没有三个点在一条直线上,每两点用一条红色线段或蓝色线段连接起来。试说明这些线段围成的三角形中,至少有两个同色三角形。

14.库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少有多少人搬运才能保证有5人搬运的球完全一样?

每人搬得可能是两篮、两排、两足、两手、篮排、篮足、篮手、排足、排手、足手10种情况。4×10+1=41人

15.在一个3×4平方米的长方形盘子中,任意撒入5个豆,5个豆中距离最小的两个豆的最大距离是几米?(这时盘子的对角线长为5米)将长方形分成四份,如放5豆,必有2个豆在一个小长方形内,一个小正方形

内最大的距离是2.5米(如AE),故距离最小的两个点的距离最大值是2.5米。16.一个3行7列的21个小方格的长方形,每个小方格用红或黄中的一种颜色涂色。证明:不论如何涂色,一定能找到一个由小方格组成的长方形,它的四个角上的小方格具有相同的颜色。

第一行有7个方格,因为涂两种颜色,根据抽屉原理二,必有一种颜色涂了4个或4个以上的方格。

设第一行有四个红方格,第二行是在第一行四个红方格下面的四个方格中,如果有两个红色,那么结

论已成立,否则必有三个黄方格。第三行是在第二行3个黄方格下面的3个方格中,至少有两个方格

涂一种颜色。如涂红色就与第一行组成符合条件的长方形,如涂黄色就与第二行组成符合条件的长方形。17.在{1,2,„„,n}中,任意取10个数,使得其中有两个数的比值不小于大值。

由于任取10个数中有两个数在同一个抽屉里,显然最多构造9个抽屉.这9个抽屉中的每一个抽屉 都含有1,2,3,n中的一些数,而且这些数必须满足每两个数的比值都在和之间,这9个抽屉,是:

{1};{2,3};{4,5,6};{7,8,9,10};{11,12,16};{17,18,24,25};{26,27,38,39};{40,41,59,60};{61,62,90,91}. 因此,n的最大值是91.

18.从1,2,3,„,1988,1989这些自然数中,最多可取多少个数,其中每两个数的差不等于4? 把1,2,„„,1989这些数分成四组公差是4的等差的数列; 1,5,9,„„,1989共498个数;2,6,10,„„1986共497个数;3,7,11„„1987共497个数;4,8,12„„1988共497个数;我们发现:1.四行中每一行中任意相邻两数相差为4,不相邻两数相差不可能是4;2.而分属不同两行的任意两个数相差不可能为4,因为如果相差为4的话,两数将被归为一

行,这显然与事实矛盾;故选符合规定的数只要在每组里每隔一个数选一个,每行最多可

选249 个数;最终249×4=996(个)

19.四个人聚会,每人各带了两件礼品,分赠给其余三个人中的两人。试证明:四个人中至少有两对,每对是互赠过礼品的。

将这四个人用4个点表示,如果两个人之间送过礼品,就在两点之间连一条线。由于每人送出2件礼

品,共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线。四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点

可以与前面的点相同)之间也连了2条线。即为所证结论。

20.一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有几人已经就座?

由于,他无论坐在哪个座位上都与已经就座的某个人相邻,求至少有多少人,则有人的位置如图 所示,(“●”表示已经就座的人,“◯”表示空位):◯●◯◯●◯◯●◯„.即有人的位置占全部人数 的1/3,90÷3=30人。即原来至少有30人已经就座。

21.把1,2,3,„„,8,9,10任意摆放在一个圆圈上,每相邻的三个数组成一个和数。试说明其中至少有一个和数不小于17。

(反证)假设任意三个相邻的数之和都小于17即小于等于16。则10组之和应小于等于16×10=160; 10组之和即把10个数分别加了3次,又因为:3(1+2+3+4+5+6+7+8+9+10)=165>160 所以矛盾;故假设不成立,所以其中至少有一个和不小于17。

22.某人步行10小时,走了45千米。已知他第一小时走了5千米,最后一小时走了3千米,其余每小时都走了整数千米。证明在中间8小时当中,一定存在连续的两小时,这人至少要走10千米。

23,且不大于。求n的最32这个人在中间的8小时内走了45−5−3=37(km)假设在中间的8个小时内他相邻2个小时内都走9km,8个小时内一共有7组相邻,其中除去这8个小时内的前后两个小时,其他6个小时都有2次相邻,这8个小时内的路程可得:7×9−6÷2×9=36km<37km一定存在连续的两小时,这人至少走了10千米。23.在1,2,3,4,5,6,7,8,9,10,11,12这12个自然数中,任意选取8个不同的数,其中必有两对数,每对数的差是1。

构造6个抽屉{1,2}{3,4}{5,6}{7,8}{9,10}{11,12}将八个不同的数放入六个抽屉,必有两对数,每 对的差是1。

24.有红、黄、蓝、绿四色的小球各10个,混合放在一个布袋里。一次摸出8个小球,其中至少有几个小球的颜色是相同的。

把红黄蓝绿四个小球看成四个抽屉,一次摸出八个小球放在抽屉里,8÷4=2,其中至少有2个小球颜 色相同。

25.数学奥林匹克竞赛,全世界52个国家的308名选手参加了竞赛。按组委会规定,每个国家的选手不得超过6名,至少有几个国家派6名选手参赛。

每个国家最多派出的运动员不超过6人,假设52个国家每个国家都派了5名,则剩下

308-52×5=48(名)运动员。因为每个国家派出的运动员不超过6名,所以只好把48名运动员平均 分到48个国家中去,也就是说,至少有48个国家派满了6名运动员。

26.某中学有十位老师,每位至少与另外九位中的七位认识,我们必可从中找出几位,他们彼此认识。

用a(1),a(2),...,a(10)表示10个人;a(1)不认识的至多2人,认识的人不少于7个,不妨假定a(1)认识a(2);a(1)、a(2)中至少有一个人不认识的人至多4人,不妨假定a(1)、a(2)都认识a(3); a(1)、a(2)、a(3)至少有一个人不认识人的至多6人,不妨假定a(1)、a(2)、a(3)都认识a(4);

则a(1)、a(2)、a(3)、a(4)互相认识;我们必可从中找出4位,他们彼此认识。

27.袋子里有4种不同颜色的小球,每次摸出2个。要保证有10次所摸出的结果是一样的,至少要摸几次。

把1种不同的结果看成1个抽屉,至少要摸出9×10+1=91(次)

28.某班有27名同学排成三路纵队外出参观,同学们都戴着红色或白色的太阳帽。在9个横排中,至多有几排同学所戴的帽子的颜色顺序不同。

每排三人,每排戴帽子的可能有8种,所以27人排成九个横排,必有两个横排所戴帽子顺序相同,帽子颜色顺序不同的有:9-2=7排

29.在平面内有1994条互不平行的直线。求证:一定有两条直线它们的夹角不大于

180度。1994如果平面内有3条互不平行的线,那么,要将最小的两条线的夹角为最大,就必须先让两条互相垂直,180度,30180 所以我们就说:平面里有3条互不平行的直线,求证一定有两条直线的夹角不大于度,30180 同理,可得平面里有1994条互不平行的直线,求证一定有两条直线的夹角不大于度。

小学六年级奥数 抽屉原理(含答案) 篇2

智慧姐姐:“数字谜,是一种较为有趣问题,可以培养同学们的发散思维。

它是用字母、文字或者其它符号代替数字形成的算式,要求做题者还原出原来的式子。在日本,这种游戏叫做“虫食算”。下面让我们一起来试一试吧!”

【例1】下面每个汉字各代表一个数字。不同的汉字表示不同的数字,相同的汉字表示相同的数字。问:这些汉字各代表什么数字?

世博

世博会

爱世博会

[思维点睛]

解决数字谜题的关键是要善于找到突破口。首先,我们可以从千位突破,三个加数,只有一个加数有千位数,而和的千位上是1,则“爱=1”。

其次,从百位突破。百位“世+世”,没有向千位进1,而十位三个数相加最多向百位进2,如果进2,“世+世=7”,不成立,应该进1,则“世+世=8”,“世=4”。可见是否进位是解决加法数字谜题需要考虑的重要因素。

接着,从十位突破。十位向百位进1,个位三个数相加最多向十位进2,如果进2,“4+博+博=17”,不成立,应该进1,则“4+博+博=18”,“博=7”。

最后解决个位,因为个位向十位进1,“7+会+会=

19”,则“会=6”。

【例2】下面的算式表示一个四位数乘以9,积仍是一个四位数。式中相同的字母表示相同的数字,不同的字母表示不同的数字。问:式中的字母G、H、P、L各代表什么数字?

G

H

P

L

×

L

P

H

G

[思维点睛]

四位数乘以9,积仍是一个四位数,说明被乘数千位上的G乘以9不进位,则“G=1”。

积个位上的G也是1,L与9相乘,积的个位数是1,则“L=9”。

积千位上的L也是9,观察千位,1×9=9,说明百位H与9相乘不向千位进位,则H只能代表1或0,因为G已经是1了,则“H=0”。

再看十位,H是0,由个位进过来8,则“P×9+8”的得数的个位是0,则“P=8”。

【例3】下面式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。问:这些汉字各代表什么数字?

海海海海海海÷美=美丽的上海

[思维点睛]

美丽的上海

将横式转化为竖式(如下图),采用尝试验证的方法,从高位突破(虚框所示),先找到除数美所代表的数。

海海海海海海

尝试:

(√)

()

()

()

(√)

(√)

()

(√)

有四种情况符合除数与商的最高位相同的情况,如“√”所示。

验证:

111111÷3=37037,555555÷7=79365,666666÷8≠整数

888888÷9≠整数

所以只有“美=7”符合题意,“丽=9”,“的=3”,“上=6”,“海=5”。

1.数字谜(难度系数:)

下面算式中,妙

不同的汉字表示不同的数字,相同的汉字表示相同的数字。

福=  ;娃=。

啊=。

2.数字谜(难度系数:)

下面算式中,相同字母代表相同数字,不同字母代表不同数字。

B

A

B

D

C

B

D

C

B

A

A=  ;B=  ;

C=  ;D=。

3.数字谜(难度系数:)

下面算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。

×

爱=  ;动=  ;手=  ;做=  ;报=。

答案:

1.⑴福=5;娃=7

⑵真=1,奇=0,妙=9,啊=8。

2.A=8,B=9,C=0,D=1。

六年级数学下册抽屉原理教材分析 篇3

抽屉原理:把(n+1)个苹果放入n个抽屉中,那么必有一个抽屉中至少含有2个苹果。这个原理就是抽屉原理。

1。原理的证明:首先,若某个抽屉中被放入有2个苹果,那么原理得证;若一个抽屉放入一个苹果,那么n个抽屉中用去了n个苹果。n+1 个苹果还剩一个苹果,这一个苹果也要放入一个抽屉,无论这个苹果放入哪个抽屉中,这个抽屉中就含有2个苹果。原理得证。

2。关于抽屉原理:

(1)抽屉原理是说明一个操作的所有可能结果事件中,恰有一个结果必然存在的说理方法。

(2)做为原理本身,其表述是比较简单的。但是在解决实际问题要去使用这个原理的时候,有几个问题还是要注意处理好的:

[1]造抽屉:在实际问题中,抽屉往往是没有的,并且不同的问题,其抽屉往往也是不一样的。因此,在使用这个原理前,要先去构造抽屉。没有抽屉,抽屉原理是不能用的。

[2]造苹果:在实际问题中,苹果往往是没有的,并且不同的问题,其其苹果往往也是不一样的。因此,在使用这个原理前,也要去构造苹果。没有苹果,抽屉

3。学习抽屉原理的意义

1)培养抽象思维能力。因为对一个实际问题需要我们来说明的结论,我们是不可能把所有的情况一个一个列举出来,再去说明其正确性,而且有时候你想这样做也做不到,做不成。尤其是情况比较复杂、数量又比较大的时候,这样做(列举)几乎是不可能的。所以,在这样的背景下,要把问题解决好,说清楚,说明白,让别人认可你说的,你就必须要有一定的抽象思维能力。做使用抽屉原理解决问题的题目,可以发展我们的抽象思维。

小学六年级奥数 抽屉原理(含答案) 篇4

教学内容:教科书第70,71页 教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

教学难点:

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学准备:

多媒体课件、扑克牌、盒子、铅笔、书、练习纸。教学过程:

一、游戏激趣,初步体验。

在上课前,我们先热热身,一起玩抢椅子游戏好吗?谁愿意参加?请五位同学到前面来,这有四把椅子,老师说:开始!你们几个都要坐到椅子上。听明白了吗?好开始。告诉老师他们坐下了吗?老师不用看,就知道一定有一把椅子上至少做了两名同学。对吗?假设请这五位同学再反复坐几次,老师还敢肯定地说,不管怎么做,总有一把椅子上至少坐了两个同学,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?出示课题:抽屉原理。

二、操作探究,发现规律。1.观察猜测: 多媒体出示例1: 4个苹果,三个抽屉

师:4个人从3个数字中挑一个喜欢的写,不管怎么写,总有一个数字至少有两个同学写了,4个苹果放进三个抽屉里呢?请同学们运用教具放一放,看有几种放法?

(1)学生汇报结果,师板书

(4,0 , 0)(3,1,0)(2,2,0)(2,1,1)

(2)看看这几种放法,你可以怎么用一句话来概括这四种放法?(学情预设:学生可能会说,不管怎么放,总有一个抽屉里至少有2个苹果。)让学生发现并解释“总有”就是一定有,“至少”就是最少有,或者多于

(3)还有什么放法更简捷?引出平均分为下面埋下伏(4)如果把苹果数量和抽屉数量变大呢?会有什么情况发生? 你发现了什么:引导学生,只要放的苹果数比抽屉数多1,不管怎么放,总有一个抽屉里至少有2个苹果。

2,运用抽屉原理解决问题。

课件出示:5只鸽子飞回4个鸽笼,至少有2只飞进同一个鸽笼,为什么?

七只鸽子飞回五个鸽舍,至少有两只鸽子飞回同一个鸽舍里,为什么?

中心小学6(2)班第一组共有13名学生,一定至少有2 学生的生日在同一个月

发现规律,初步建模:我们将学生、鸽子看做物体,12个月、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?

小结:只要物体数量比抽屉的数量多,总有一个抽屉至少有2个物体。这就叫做抽屉原理

3、再次发现规律。课件出示例2:

引导学生用平均分思想,用除法算式表示师板书。

观察板书,你有什么发现吗?让学生通过对除法算式的观察,得出“物体的数量大于抽屉的数量,总有一个抽屉里至少放进商+1个物体”的结论。

(7)创设疑问:课件出示题目。

如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? ÷ 3 =1…..1

明确是(商+1)不是商+余数 4,运用规律解决生活中的问题(课件出示习题)

1. 三个小朋友同行,其中必有三个小朋友同行,其中必有两个小朋友性别相同。

2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在一周。

3.从电影院中任意找来13个观众,至少有两个人属相相同。四,课堂总结

这节课我们学习了什么有趣的规律?请学生畅谈,师总结

五、课堂检测:

1.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

(1)六年级里至少有两人的生日是同一天。(2)六(2)班中至少有5人是同一个月出生的。

小学六年级奥数 抽屉原理(含答案) 篇5

(六)[含答案] 收易拉罐的小男孩

星期天我去美国友人家里玩,喝完饮料,顺手将空罐扔进了垃圾袋。“不,不,别丢掉,放杂物间那个硬纸箱里去。今天是星期天,他们会来收的。”朋友说。“谁?”“两个男孩子。”

过了大约一小时,有人敲门,一个男孩的声音:“可以进来吗?”朋友应(yīnɡ yìnɡ)声道:“进来吧。”听见他们熟门熟路地进了杂物间,又听到叮叮当当一阵空罐儿响。朋友与我在屋里聊天,全然不介意小家伙们在杂物间里折(zhē zhé)腾。

十分钟光景,孩子们在外屋喊了声:“谢谢啦!再见。”接着传来轻轻的关门声。我忍不住好奇,走进了杂物间。几个曾装满空罐儿的硬纸箱空了,一个摞(luòuò)一个地放得整整齐齐。

我推开大门,路上走着那两个小男孩,大的14岁左右,在推一辆装了不少空罐子的手推车;那个小的大约只有10岁,在前面蹦蹦跳跳地走着。朋友讲这是哥儿俩,就住在附近,每个星期天收集邻居家的空易拉罐,已经有一年多了,()是刮风下雨,()大雪纷飞,次次不落。

“这易拉罐能卖多少钱?”我知道回收这种空罐子不会比在中国更赚(zhuàn zhàn)钱。

“是卖不了多少钱,可小哥儿俩讲他们要靠这钱买一辆汽车。”

卖易拉罐买汽车?这中间的距离在我看来无疑比从地球到月球还远。“这能行吗?”“不知道。”他把一个刚喝完的易拉罐放进了一个硬纸箱,“他们说是仔细算过的,哥哥达到法定驾驶车龄时就能买上车了。”

哥儿俩还在路上走着,那小的拉了条绳子在前面拖,一边叽叽喳喳与在后面推车的哥哥说着什么,清脆的童音在静静的街上回荡。

突然,我涌上一个念头,追上这哥儿俩,冲着他们说:“嗨,男子汉们,将来你们这辆车就叫‘易拉罐号’吧!”

1.认真读短文,用“__________”画出文中带点字的正确读音。

2.选择正确的词语填写在文中的()里。

尽管„„还是

无论„„还是„„

3.“介意”的意思是____________________。

4.短文主要讲哥儿俩想用__________买__________,就利用星__________。(3分)

5、你从作者称呼哥儿俩“小家伙们”到“男子汉们”的变化中体会到了什么?作者为什么说“将来你们这辆车就叫‘易拉罐号’”?

_____________________________________________________________________ _____________________________________________________________________

收易拉罐的小男孩

星期天我去美国友人家里玩,喝完饮料,顺手将空罐扔进了垃圾袋。“不,不,别丢掉,放杂物间那个硬纸箱里去。今天是星期天,他们会来收的。”朋友说。“谁?”“两个男孩子。”

过了大约一小时,有人敲门,一个男孩的声音:“可以进来吗?”朋友应(yīnɡ yìnɡ)声道:“进来吧。”听见他们熟门熟路地进了杂物间,又听到叮叮当当一阵空罐儿响。朋友与我在屋里聊天,全然不介意小家伙们在杂物间里折(zhē zhé)腾。

十分钟光景,孩子们在外屋喊了声:“谢谢啦!再见。”接着传来轻轻的关门声。我忍不住好奇,走进了杂物间。几个曾装满空罐儿的硬纸箱空了,一个摞一个地放得整整齐齐。

我推开大门,路上走着那两个小男孩,大的14岁左右,在推一辆装了不少空罐子的手推车;那个小的大约只有10岁,在前面蹦蹦跳跳地走着。朋友讲这是哥儿俩,就住在附近,每个星期天收集邻居家的空易拉罐,已经有一年多了,(无论)是刮风下雨,(还是)大雪纷飞,次次不落。

“这易拉罐能卖多少钱?”我知道回收这种空罐子不会比在中国更赚钱。

“是卖不了多少钱,可小哥儿俩讲他们要靠这钱买一辆汽车。”

卖易拉罐买汽车?这中间的距离在我看来无疑比从地球到月球还远。“这能行吗?”“不知道。”他把一个刚喝完的易拉罐放进了一个硬纸箱,“他们说是仔细算过的,哥哥达到法定驾驶车龄时就能买上车了。”

哥儿俩还在路上走着,那小的拉了条绳子在前面拖,一边叽叽喳喳与在后面推车的哥哥说着什么,清脆的童音在静静的街上回荡。

突然,我涌上一个念头,追上这哥儿俩,冲着他们说:“嗨,男子汉们,将来你们这辆车就叫‘易拉罐号’吧!”

1.认真读短文,用“__________”画出文中带点字的正确读音。

2.选择正确的词语填写在文中的()里。

尽管„„还是

无论„„还是„„

3.“介意”的意思是___在乎_____。

4.短文主要讲哥儿俩想用卖易拉罐的钱买汽车_,就利用星期天的时间收集邻居家的空易拉罐,他们已经坚持一年多了,次次不落。

5、你从作者称呼哥儿俩“小家伙们”到“男子汉们”的变化中体会到了什么?作者为什么说“将来你们这辆车就叫‘易拉罐号’”?

从作者先称他们为“小男孩儿”,到叫他们为“男子汉”的变化中可以体会到: 小哥儿俩的坚持不懈的精神,自强自立精神品质,乐观的态度深深打动了作者,他们的行为是真正的男子汉的行为。

小学六年级奥数 抽屉原理(含答案) 篇6

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?

解:

设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392

电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?

解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做

(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入

(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款

答案

取40%后,存款有

9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)

由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?

答案

加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍 奶糖=30/1.5=20颗

巧克力=1.5*20=30颗 奶糖=20-10=10颗

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?

答案

小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份

4*1/6=2/3(小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)

小亮现有:3+2/3=3又2/3(份)

这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)

小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4

三人共同搬完,需要

× 2÷(6+ 5+ 4)= 8(小时)

甲需丙帮助搬运

(60-6× 8)÷ 4= 3(小时)

乙需丙帮助搬运

(60-5× 8)÷4= 5(小时)

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天, 完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天? 答案

甲乙丙3人8天完成 :5/6-1/3=1/2 甲乙丙3人每天完成 :1/2÷8=1/16,甲乙丙3人4天完成 :1/16×4=1/4 则甲做一天后乙做2天要做 :1/3-1/4=1/12 那么乙一天做 :[1/12-1/72×3]/2=1/48 则丙一天做 :1/16-1/72-1/48=1/36 则余下的由丙做要 :[1-5/6]÷1/36=6天 答:还需要6天

股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?

答案

10.65*1%=0.1065(元)10.65*2%=0.213(元)10.1065+0.213=0.3195(元)0.3195+10.65=10.9695(元)13.86*1%=0.1386(元)13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少

答案

(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助

一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人(40+x)(15-3)=40*15 x=10 所以需要增加10人

仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?

解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?

答案

原来达标人数占总人数的 3÷(3+5)=3/8 现在达标人数占总人数的 9/11÷(1+9/11)=9/20 育才小学共有学生

60÷(9/20-3/8)=800人

小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c c-a=72 解得a=24 b=36 c=96

甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个 6X=5(242-X)X=110 242-110=132(个)

答:甲做了110个,乙做了132个

某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比

答案

设男会员是3N,则女会员是2N,总人是:5N 甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N 丙级有:5N*7/25=7/5N 丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N 那么丙组中男女之比是:N/2:9/10N=5:9 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案

根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份 每份需要的人数:(60+40)÷20=5人

甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人 乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人 丙村需要的人数:5×5=25人 或 20+5=25人 每人应得的钱数:1350÷25=54元 甲村应得的工钱:54×20=1080元 乙村应得的工钱: 54×5=270元

p166 19题

李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案

设以前卖出X 降价a 那么0.2X *(1+0.5)=(0.2-a)* 2x 则0.1X=2aX a=0.05

.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?

解:设哈利波特答对2X题,答错X题 20×2X-6X=68 40X-6X=68 34X=68 X=2 答对:2×2=4题 共有:4+2=6题

爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这 7 些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案

设可免费携带的重量为x kg,则:

(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同; 解方程:x=30

一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?

答案 解法一:

设船数为X,则(15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 答:有9只船。

解法二:

(15+9)÷(18-15)=8只船--每船坐18人时坐了8只船 8+1=9只船

建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨? 答案

设2堆为X吨,则一堆为X+85吨 X+85-30=2(X-30)x=115(2堆)x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几

答案

六个数分别是46 47 48 96 97 98

甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米? 答案

两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8 有x÷120=1 所以x=120

一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人? 设有x个人

x+x/2+x/3=55 x=30

学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?

设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本 x+2x+3x-120=840 6x-120=840 6x=840+120 6x=960 x=960/6 x=160 高年级段为:160*2=320(本)中年级段为:160*3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人? 解 设 原来田径队男女生一共x人 1/3x+6= 4/9(x+6)x=30 1/3x+6=30*1/3+6=16 女生16人

小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?

解:设小华的有x本书

4(x+2)=6x+2 4x+8=6x+2 x=3 6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?

答案 1 设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁

x+x+27+4x+54+4x+16=147,x=5 所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。爷爷+爸爸+(妈妈+小春)

=爷爷+(爷爷-38)+(爷爷/2)=147 爷爷=74岁 爸爸=36岁

妈妈+小春=小春+27+小春=74/2=37 小春=5岁 妈妈=5+27=32岁

小春一家四口人的年龄各是74,36,32,5岁(147+38)÷(2×2+1)=37(岁)36×2=74(岁)爷爷的年龄 74-38=36(岁)爸爸的年龄

11(37+27)÷2=32(岁)妈妈的年龄 32-27=5(岁)小华的年龄

甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。0.2 x=(22-x)×0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12(人)答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%? 答案1 解

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45 答案2 设原有溶液为x千克,加入y千克盐后,浓度变为50% 由题意,得溶质为40%x,则有 40%x/(x+5)=30% 12 解之得 x=15千克

则溶质有15*40%=6千克 由题意,得

(6+y)/(15+5+y)=50% 解之得 y=8千克

故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?

答案

红笔买了x支。

(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8 x=36.甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?

答案

乙的话表明:甲钱5倍与乙钱2/3一样多 所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,而乙多于甲的6倍,所以,乙多于60 13

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15 设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

答案

设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。列式:x*0.12+(30-x)*0.14=4 化简:4.2-0.02x=4 0.02x=0.2 解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?

答案1 根据题意,甲种超过了100本,乙种不到100 本 甲乙花的总钱数比为2:1 那么甲打折以前,和乙的总钱数比为:(2÷0.9):1=20:9 甲乙册数比为5:3 甲乙单价比为(20÷5):(9÷3)=4:3 14 优惠前,甲种每本:1.5×4/3=2元

答案2 答案

设甲买了x本,则乙为3/5x,x>100 买乙共付了:3/5x*1.5=0.9x元 则甲共付了:0.9x*2=1.8x元 所以甲优惠后每本为:1.8x/x=1.8元 则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?

答案

两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的 A蜡烛,两小时烧完,那么每小时燃烧1/2 B蜡烛,三小时烧完,那么每小时燃烧1/3 设过了x小时以后,B蜡烛剩余的部分是A的两倍 2(1—x/2)=1—x/3 解得x=1.5 由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路

答案1 设走的平路是X公里 山路是Y公里

因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时 Y/3-Y/6=1小时 Y=6公里

去时共用3.5小时 则X/4+Y/3=3.5 X=6 所以总路程为2(6+6)=24km 答案2 解:春游共用时:7:00-1:00=6(小时)上山用时:6-2.5=3.5(小时)上山多用:3.5-2.5=1(小时)山路:(6-3)×1÷(3÷6)=6(千米)下山用时:6÷6=1(小时)平路:(2.5-1)×4=6(千米)单程走路:6+6=12(千米)共走路:12×2=24(千米)答:他们共走24千米。

工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:

1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知

1/甲+1/乙+1/甲+1/乙+„„+1/甲=1 1/乙+1/甲+1/乙+1/甲+„„+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个

120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水 18 放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。1/2÷18=1/36 表示甲每分钟进水 最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知: 乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两 19 支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。解:设停电了x分钟 根据题意列方程

1-1/120*x=(1-1/60*x)*2 解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:

4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么? 4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数

三.数字数位问题

1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

依次类推:1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29„„90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+„„+90=450 它有能被9整除 同样的道理,100~900 百位上的数字之和为4500 同样被9整除

也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除; 同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; ***320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:

(A-B)/(A+B)=(A+B2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。对于 B /(A+B)取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。

(A+B)/B = 1 + A/B,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B)的最大值是: 98 / 100

3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375 21 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。当是102时,102/16=6.375 当是103时,103/16=6.4375

4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11 22 因此这个和就是11×11=121 答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963 解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab 根据d+b=12,可知d、b可能是3、9;

4、8;

5、7;

6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;

2、7;

3、6;

4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963 23 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分? 答案是10:20 解:

(28799„„9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20

四.排列组合问题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中 解:

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种

综合两步,就有24×32=768种。若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种 解:

5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有一种正确的所以60-1=59

五.容斥原理问题

1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种

2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25„① 由(2)知:a2+a23=(a3+ a23)×2„„② 由(3)知:a12+a13+a123=a1-1„„③ 由(4)知:a1=a2+a3„„④ 再由②得a23=a2-a3×2„„⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2„„⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)

100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%

六.抽屉原理、奇偶性问题

1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解:

每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?

解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)

如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32

4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。

因为总数为1+9+15+31=56 56/4=14 14是一个偶数

而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。

七.路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。

根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。

可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的 28 份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。解:

600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米

300÷(5-4.4)=500秒,表示追及时间 5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈„„100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。正确的答案是猎犬至少跑60米才能追上。解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离? 解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:

把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30

上一篇:定期专家安全检查制度下一篇:注安安全生产法规试题