中考数学几何证明复习题

2024-09-21 版权声明 我要投稿

中考数学几何证明复习题(精选8篇)

中考数学几何证明复习题 篇1

1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线

段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若

不成立,请说明理由.

A(E)图13-1 图13-

2图13-

32.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;

(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;

(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证AF=FD′

A A A A

E E’ E’D’ F’

l B(2)

(3)D’(4)

3.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);

(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。

D

4.用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.

(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.

图②(第5题图)

图①

A图③

B图④

(第5题图)

图⑤

H

A B

F A B

F E

G

C 图甲

C 图乙

5.已知∠AOB=90,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.

当三角板绕点C旋转到CD与OA垂直时(如图1),易证:2OC.

当三角板绕点C旋转到CD与OA不垂直时,在图

2、图3这两种情况下,上述结论是否还成立?若成立,请

给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明。

6.把一副三角板如图甲放置,其中∠ACB∠DEC90,∠A45,∠D30,斜边AB6cm,DC7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与

D1E1相交于点F.

(1)求∠OFE1的度数;(2)求线段AD1的长;

(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.

A

C

(甲)

E(乙)

1B

D

A

D

17.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

MB

E

OC

FN

(第19题图)

8.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP

F

长的最大值.

E

A F

CBBECE

图甲 图乙 图丙

第8题图

9.如图,矩形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边

BC上,BG10.

(1)当折痕的另一端F在AB边上时,如图(1),求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.

H(A)

E(B)E(B)D

A D

C B C

G

图(1)图(2)

10.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的1; 6

(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么

位置时,△ADQ恰为等腰三角形.

11.如图15,平行四边形ABCD中,ABAC,AB

1,BC.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

FD

B C图15

12.已知∠MAN,AC平分∠MAN。

⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;

⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶在图3中:

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。

M

MM

CCC

DDD

ABNABABN N

13.已知,将两块等腰直角三角板ABC和ADE如图放置,再以CE,CB为边作平行四边形CEHB,连DC,CH。a)如图1,连接DH,请你判断△DHC的形状,猜想CH与CD之间有何数量关系?请说明理由。b)将图1中的△ADE绕A点逆时针旋转45°得图2,请你猜想CH与CD之间的数量关

系。

c)将图1中的△ADE绕A点顺时针旋转a(0°<a<45°)得图3,(2)中的猜想是否还成立,若

成立,请给出证明;不成立,说明理由。

14.如图13—1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.(1)若∠BAC=90°,如图13—1.请你猜想线段DE,AM的数量关系,并证明你的结论;(2)若∠BAC≠

90°.

①如图13—2.请你猜想线段DE,AM的数量关系,并证明你的结论; ②如图13—3.请你判断线段DE,AM的数量关系.A D

B

D

中考数学几何证明复习题 篇2

一、几何推理与图形证明教学的现有问题

一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.

二、定理和重要概念的引入及教学

定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.

例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.

证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.

则:GH=DG.

所以:∠1=∠2,

而∠1=∠4,∠2=∠3=∠5.

所以;∠4=∠5,所以:AF=EF.

乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.

三、学会“读题”,明确题中条件要素

在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].

四、培养学生几何推理思维

1. 三种思维的应用

几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].

2.“动手”做题,辅助线的应用

在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.

例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.

求证:△ABC≌△A'B'C'.

证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.

则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.

所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.

所以:BE=B'E',AE=A'E'

所以:△ABE≌△A'B'E'

所以:∠E=∠E'∠BAD=∠B'A'D'

所以:∠BAC=∠B'A'C'

所以:△ABC≌△A'B'C'

这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.

总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.

参考文献

[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.

[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.

初中数学几何证明题教学探讨 篇3

关键词:初中数学;几何证明题;提高质效

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。 对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。 如何針对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。 要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。 教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。 这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。 其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。 这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。 比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。 比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。 同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

中考数学几何证明题「含答案」 篇4

1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE

(1)求证:BE=CE;

(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.

在BG上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则∠ABE=∠DCE,∠AEB=∠DEC

又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,所以∠ABE=∠FBE

在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,BE=BE,故△ABE与△HBE全等

故∠AEB=∠HEB,AE=EH

而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°

所以∠AEB=∠DEC=45°=∠HEB

故∠AEH=∠AEB+∠HEB=90°=∠HED

同理,∠DEG=45°=∠HEG

EH=AE=ED,EG=EG

故△HEG与△FEG全等,所以HG=DG

即BG=BH+HG=AB+DG=DG+CD2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.

(1)当CE=1时,求△BCE的面积;

(2)求证:BD=EF+CE.

4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E

EF∥CA,交CD于点F,连接OF.

(1)求证:OF∥BC;

(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.

(1)求线段CD的长;

(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.

(1)若AB=6cm,求梯形ABCD的面积;

(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.

(1)求证:AE=ED;

(2)若AB=BC,求∠CAF的度数.

8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.

(1)求证:∠DAE=∠DCE;

(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.

9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.

(1)求证:DP平分∠ADC;

(2)若∠AEB=75°,AB=2,求△DFP的面积.

10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;

(1)证明:EF=EA;

(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.

11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.

(1)求证:EB=EF;

(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.

(1)求证:AE=GF;

(2)设AE=1,求四边形DEGF的面积.

13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.

(1)求证:FC=BE;

(2)若AD=DC=2,求AG的长.

14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.

(1)求证:AD=BE;

(2)试判断△ABF的形状,并说明理由.

15、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;

(2)若AD=8,DC=4,求AB的长.

16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.

(1)求证:AE⊥BD;

(2)若AD=4,BC=14,求EF的长.

17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.

(1)求证:CD=BE;

(2)若AD=3,DC=4,求AE.

18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.

19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.

(1)求证:BF=EF﹣ED;

(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.

(1)若EF⊥AF,AF=4,AB=6,求

AE的长.

(2)若点F是CD的中点,求证:CE=BE﹣AD.

21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.

(1)求证:DH=(AD+BC);

(2)若AC=6,求梯形ABCD的面积.

22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.

(1)求证:△AGE≌△DAB;

(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.

23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

(1)试说明梯形ABCD是等腰梯形;

(2)若AD=1,BC=3,DC=,试判断△DCF的形状;

(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.

24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.

(1)证明:△ABE≌△DAF;

(2)求∠BPF的度数.

25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.

(1)求∠ABC的度数;

(2)如果BC=8,求△DBF的面积?

26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.

(1)求证:△AGD为正三角形;

(2)求EF的长度.

27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.

(2)求证:ED=BE+FC.

28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.

(1)求证:△BCE≌△AFE;

(2)若AB⊥BC且BC=4,AB=6,求EF的长.

29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.

求证:

(1)△BFC≌△DFC;

(2)AD=DE;

(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.

30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.

(1)求证:四边形ABED是菱形;

(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.

参考答案

1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE

(1)求证:BE=CE;

(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.

证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;

(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°

∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.

2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.

∴△EBH≌△GFC;

(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.

(1)当CE=1时,求△BCE的面积;

(2)求证:BD=EF+CE.

(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.

(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,∴…(5分)

(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)

4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.

(1)求证:OF∥BC;

(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,∴OF∥BE.

(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.

证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.

∴AC=BD,∴平行四边形ABCD是矩形.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.

(1)求线段CD的长;

(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.

(1)解:连接BD,由∠ABC=90°,AD∥BC得∠GAD=90°,又∵BF⊥CD,∴∠DFE=90°

又∵DG=DE,∠GDA=∠EDF,∴△GAD≌△EFD,∴DA=DF,又∵BD=BD,∴Rt△BAD≌Rt△BFD(HL),∴BF=BA=,∠ADB=∠BDF

又∵CF=6,∴BC=,又∵AD∥BC,∴∠ADB=∠CBD,∴∠BDF=∠CBD,∴CD=CB=8.

(2)证明:∵AD∥BC,∴∠E=∠CBF,∵∠HDF=∠E,∴∠HDF=∠CBF,由(1)得,∠ADB=∠CBD,∴∠HDB=∠HBD,∴HD=HB,由(1)得CD=CB,∴△CDH≌△CBH,∴∠DCH=∠BCH,∴∠BCH=∠BCD==.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.

(1)若AB=6cm,求梯形ABCD的面积;

(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

解:(1)连AC,过C作CM⊥AD于M,如图,在Rt△ABC中,AB=6,sin∠ACB==,∴AC=10,∴BC=8,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);

(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.

7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.

(1)求证:AE=ED;

(2)若AB=BC,求∠CAF的度数.

(1)证明:如图.

∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.

∵DF=CD,∴AB∥DF.

∵DF=CD,∴AB=DF.

∴四边形ABDF是平行四边形,∴AE=DE.

(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.

∴AC⊥BD.

∴∠COD=90°.

∵四边形ABDF是平行四边形,∴AF∥BD.

∴∠CAF=∠COD=90°.

8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.

(1)求证:∠DAE=∠DCE;

(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.

(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE

(SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);

(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);

又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);

而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;

过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.

9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.

(1)求证:DP平分∠ADC;

(2)若∠AEB=75°,AB=2,求△DFP的面积.

(1)证明:连接PC.

∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.

∵BE=DF,∴△ABE≌△ADF.(SAS)

∴∠BAE=∠DAF,AE=AF.

∴∠EAF=∠BAD=90°.

∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.

AD=CD,PD公共,∴△PAD≌△PCD,(SSS)

∴∠ADP=∠CDP,即DP平分∠ADC;

(2)作PH⊥CF于H点.

∵P是EF的中点,∴PH=EC.

设EC=x.

由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.

在Rt△ABE中,22+(2﹣x)2=(x)2解得

x1=﹣2﹣2(舍去),x2=﹣2+2.

∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.

∴S△DPF=(﹣2+4)×=3﹣5.

10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;

(1)证明:EF=EA;

(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.

(1)证明:

∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.

∵E为CD的中点,∴ED=EC.

∴△ADE≌△FCE.

∴EF=EA.(5分)

(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.

∵DG⊥BC,∴四边形ABGD是矩形.

∴BG=AD,GA=BD.

∵BD=BC,∴GA=BC.

由(1)得△ADE≌△FCE,∴AD=FC.

∴GF=GC+FC=GC+AD=GC+BG=BC=GA.

∵由(1)得EF=EA,∴EG⊥AF.(5分)

11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.

(1)求证:EB=EF;

(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)

∵∠DAB=90°,∠EAD=15°,AD=AB(2分)

∴∠FAE=∠BAE=75°,AB=AF,(3分)

∵AE为公共边

∴△FAE≌△BAE(4分)

∴EF=EB(5分)

(2)解:如图,连接EC.(6分)

∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)

由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.

∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.

∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°

∴GE=GB.(8分)

∵点G是BC的中点,∴EG=CG

∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)

∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2

∴CE=,∴BC=(10分);

解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.

12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.

(1)求证:AE=GF;

(2)设AE=1,求四边形DEGF的面积.

(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.

∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.

∴∠DBC=∠ADB=30°.

∴∠BDC=90°.(1分)

由已知AE⊥BD,∴AE∥DC.(2分)

又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.

∴EF∥AD.

∴四边形AEFD是平行四边形.(3分)

∴AE=DF(4分)

∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)

∴AE=GF.(6分)

(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.

在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)

由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)

13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.

(1)求证:FC=BE;

(2)若AD=DC=2,求AG的长.

解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.

∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.

∴AE﹣AB=AC﹣AF,即FC=BE;

(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.

∴AG=CG,∴∠E=30°.

∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.

14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.

(1)求证:AD=BE;

(2)试判断△ABF的形状,并说明理由.

(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°

∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.

(2)答:△ABF是等腰直角三角形.

理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.

15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;

(2)若AD=8,DC=4,求AB的长.

解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)

∴AD=AE;

(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.

说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.

16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.

(1)求证:AE⊥BD;

(2)若AD=4,BC=14,求EF的长.

(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.

(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△GBE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:

EF=CG=(BC﹣BG)=(BC﹣AD)

=×(14﹣4)=5.

答:EF的长为5.

17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.

(1)求证:CD=BE;

(2)若AD=3,DC=4,求AE.

(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.

∴CD=BE.

(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.

∴AE=AC﹣CE=2.

18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.

解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)

∵AB⊥AC,∴∠AED=∠BAC=90度.

∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.

在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)

在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)

在Rt△DEC中,∠CED=90°,∴DC==.(5分)

19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.

(1)求证:BF=EF﹣ED;

(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF﹣ED;

(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.

20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.

(1)若EF⊥AF,AF=4,AB=6,求

AE的长.

(2)若点F是CD的中点,求证:CE=BE﹣AD.

解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;

∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;

在Rt△AFE中,AE==5;

(2)延长AF、BC交于点N.

∵AD∥EN,∴∠DAF=∠N;

∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;

∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD.

.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.

(1)求证:DH=(AD+BC);

(2)若AC=6,求梯形ABCD的面积.

解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)

∵AD∥BC,∴四边形ACED为平行四边形.(2分)

∴CE=AD,DE=AC.

∵四边形ABCD为等腰梯形,∴BD=AC=DE.

∵AC⊥BD,∴DE⊥BD.

∴△DBE为等腰直角三角形.(4分)

∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)

(2)∵AD=CE,∴.(7分)

∵△DBE为等腰直角三角形BD=DE=6,∴.

∴梯形ABCD的面积为18.(8分)

注:此题解题方法并不唯一.

22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.

(1)求证:△AGE≌△DAB;

(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.

(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.

∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;

(2)解:由(1)知AE=BD,∠ABD=∠AEG.

∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.

∴EF=BD,∴EF=AE.

∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.

∴△AFE是等边三角形,∠AFE=60°.

23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

(1)试说明梯形ABCD是等腰梯形;

(2)若AD=1,BC=3,DC=,试判断△DCF的形状;

(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.

解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;

(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;

(3)共四种情况:

∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;

当P与F重合时,△PCD是等腰三角形,∴PB=2;

当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;

当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.

故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)

24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.

(1)证明:△ABE≌△DAF;

(2)求∠BPF的度数.

解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,∴△ABE≌△DAF(SAS).

(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.

∴∠BPF=∠ABE+∠BAP=∠BAE.

而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.

25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.

(1)求∠ABC的度数;

(2)如果BC=8,求△DBF的面积?

解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°

∴∠DBC=30°

∴∠ABC=60°

(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC

∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.

26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.

(1)求证:△AGD为正三角形;

(2)求EF的长度.

(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°

∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.

27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.

(2)求证:ED=BE+FC.

解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C梯形ABCD=3×2+6+3﹣3=9+3,答:梯形ABCD的周长是9+3.

其实也还有一种方法的啦。

(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使MN=BE,∴CN=CE,可证∠NCD=∠DCE,∵CD=CD,∴△DEC≌△DNC,∴ED=EN,∴ED=BE+FC.

28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.

(1)求证:△BCE≌△AFE;

(2)若AB⊥BC且BC=4,AB=6,求EF的长.

(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.

∴△BCE≌△AFE(AAS).

(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.

∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.

∴AF=BC=4.

∵EF2=AF2+AE2=9+16=25,∴EF=5.

29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.

求证:

(1)△BFC≌△DFC;

(2)AD=DE;

(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.

(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.

(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.

∴AD=BG.

∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.

又∵∠3=∠4,∴△DFE≌△BFG.

∴DE=BG,EF=GF.

∴AD=DE.

(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.

∵DG=AB,∴BE=AB.

∵C△DFE=DF+FE+DE=6,∴BF+FE+DE=6,即:EB+DE=6.

∴AB+AD=6.

又∵AD=2,∴AB=4.

∴DG=AB=4.

∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.

又∵DC=BC=5,在△DGC中∵42+32=52

∴DG2+GC2=DC2

∴∠DGC=90°.

∴S梯形ABCD=(AD+BC)•DG

=(2+5)×4

=14.

30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.

(1)求证:四边形ABED是菱形;

(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.

解答:解:(1)证明:∵AD∥BC,DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5

又∵AB=AD,AO⊥BD,∴AD=BE=5,∴OB=OD,∴S梯形ABCD=.

又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD

∴四边形ABCD是菱形.

中考数学几何证明复习题 篇5

1.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.

(Ⅰ)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;

(Ⅱ)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.

2.如图1,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.

(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;

(2)若CE=2,BD=BC,求∠BPD的正切值;

1(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.

3B C P B C P B C

1图2(备用)图3(备用)

3.已知:如图①,在平面直角坐标系xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;

(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;

(3)如图②,现有∠MCN=60°,其两边分别与OB,AB交于点M,N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M,N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.

P

5.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.

(1)若c=a1,求证:a=kc;

(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;

(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.

A

c

1C B1C11

6.如图1,在△ABC中,AB=BC,且BC≠AC,在△ABC上画一条直线,若这条直线既平..分△ABC的面积,又平分△ABC的周长,我们称这条线为△ABC的“等分积周线”.

(1)请你在图1中用尺规作图作出一条△ABC的“等分积周线”;

(2)在图1中过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由;

(3)如图2,若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要说明确定的方法.

C图2 图1

7.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速度沿AC边由A向C运动,点Q以1cm/s的速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s).

(1)若点P以3cm/s的速度运动

4①当PQ∥AB时,求t的值;

②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.

(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB

相切?若能,请求出运动时间t;若不能,请说明理由.

A

备用B

8.如图1、2是两个相似比为1 :2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.

(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4.

求证:AE +BF =EF ;

(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE +BF =EF 是否仍然成立?若成立,请给出证明;若不成立,请

说明理由;

D A B A D

图2 图3 图

1A D B A F

图4 图

5(3)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由. D ;

F

C

9.(河南省)222222B B

(1)操作发现·

如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.

(2)问题解决 保持(1)中的条件不变,若DC=2DF,求

(3)类比探究

保持(1)中的条件不变,若DC=n·DF,求

中考数学几何证明复习题 篇6

【知识巩固】

一、直线、射线、线段和角

(一)几何图形:

1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体

图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看

6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;

⑵点无大小,线、面有曲直; ⑶几何图形都是由点、线、面、体组成的; ⑷点动成线,线动成面,面动成体; ⑸点:是组成几何图形的基本元素。

(二)直线、射线、线段:

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:

7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如上图就是一条射线,记作射线OM或记作射线a. 注意:射线有一个端点,向一方无限延伸.

8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a. 注意:线段有两个端点.

(三)角:

1.角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。如图,角的顶点是O,两边分别是射线OA、OB.

2、角有以下的表示方法:

① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA. ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示. ③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点

处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠1

2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做 这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。

二、相交线

1、相交线中的角

两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角

1叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

2、垂线

两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

三、平行线

1、平行线的概念

在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

2、平行线公理及其推论

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定

平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。平行线的两条判定定理:

(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

4、平行线的性质

(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。

四、命题、定理、证明

1、命题的概念

判断一件事情的语句,叫做命题。

2、命题的分类:按正确、错误与否分为:真命题和假命题 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理

人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理

用推理的方法判断为正确的命题叫做定理。

5、证明

判断一个命题的正确性的推理过程叫做证明。【典例解析】 典例

一、几何图形

(2016·浙江省绍兴市·4分)如图是一个正方体,则它的表面展开图可以是(A. B. C. D.

【考点】几何体的展开图.)【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.

【解答】解:A、含有田字形,不能折成正方体,故A错误; B、能折成正方体,故B正确;

C、凹字形,不能折成正方体,故C错误; D、含有田字形,不能折成正方体,故D错误. 故选:B. 【变式训练】

4分)如图是一个正方体,则它的表面展开图可以是()(2016·浙江省绍兴市·

A. B. C. D.

【考点】几何体的展开图.

【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误; B、能折成正方体,故B正确;

C、凹字形,不能折成正方体,故C错误; D、含有田字形,不能折成正方体,故D错误. 故选:B.

典例

二、直线、射线和线段

(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()

A.点C B.点D或点E C.线段DE(异于端点)上一点 D.线段CD(异于端点)上一点 【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.

【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.

【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置. 【变式训练】

(2016•台湾)如图

(一),=1:3,:

为一条拉直的细线,A、B两点在折向,使得

上,且重迭在: =3:5.若先固定B点,将上,如图

(二),再从图

(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()

A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5 【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决. 【解答】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图

(二),再从图

(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选B.

【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度. 典例

三、角

(2017广东)已知∠A=70°,则∠A的补角为()A.110° B.70° C.30° D.20°

【考点】IL:余角和补角.

【分析】由∠A的度数求出其补角即可. 【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A 【变式训练】

(2017广西河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()

A.60° B.90° C.120° 【考点】IF:角的概念.

D.150°

【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数. 【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C. 典例

四、相交线

(2016·福建龙岩·4分)下列命题是假命题的是()A.若|a|=|b|,则a=b B.两直线平行,同位角相等 C.对顶角相等

D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根 【考点】命题与定理.

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.

【解答】解:A、若|a|=|b|,则a﹣b=0或a+b=0,故A错误; B、两直线平行,同位角相等,故B正确; C、对顶角相等,故C正确;

D、若b﹣4ac>0,则方程ax+bx+c=0(a≠0)有两个不等的实数根,故D正确; 故选:A. 【变式训练】

(2016•贺州)如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()

22A.70° B.100° C.110° D.120°

【分析】先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.

【解答】解:∵∠1=60°,∴∠2=180°﹣60°=120°. ∵CD∥BE,∴∠2=∠B=120°. 故选D.

【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 典例

五、平行线

(2017毕节)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()

A.55° B.125° C.135°

D.140°

【考点】JA:平行线的性质.

【分析】根据平行线性质求出∠CAB,根据角平分线求出∠EAB,根据平行线性质求出∠AED即可.

【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=180°﹣70°=110°,∵AE平分∠CAB,∴∠EAB=55°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣55°=125°. 故选:B. 【变式训练】

(2017湖南怀化)如图,直线a∥b,∠1=50°,则∠2的度数是()

A.130° B.50° C.40° D.150°

【考点】JA:平行线的性质. 【分析】利用平行线的性质得出∠1=∠3=50°,再利用对顶角的定义得出即可. 【解答】解:如图:∵直线a∥直线b,∠1=50°,∴∠1=∠3=50°,∴∠2=∠3=50°. 故选:B.

典例

六、命题、定理、证明

(2017广西百色)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有 ②(填序号)【考点】O1:命题与定理.

【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

【解答】解:①对顶角相等是真命题; ②同旁内角互补是假命题;

③全等三角形的对应角相等是真命题; ④两直线平行,同位角相等是真命题; 故假命题有②,故答案为:②. 【变式训练】

(2017呼和浩特)下面三个命题: ①若是方程组

2的解,则a+b=1或a+b=0;

2②函数y=﹣2x+4x+1通过配方可化为y=﹣2(x﹣1)+3; ③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为 ②③ . 【考点】O1:命题与定理.

【分析】①根据方程组的解的定义,把

代入,即可判断;

②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断; ③根据三角形内角和定理以及锐角三角形的定义即可判断. 【解答】解:①把

代入,得,如果a=2,那么b=1,a+b=3; 如果a=﹣2,那么b=﹣7,a+b=﹣9. 故命题①是假命题;

②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;

③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题. 所以正确命题的序号为②③. 故答案为②③.

典例

七、平行相交的综合应用

(2017呼和浩特)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为 114 °.

【考点】JA:平行线的性质;IJ:角平分线的定义.

【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可. 【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114. 【变式训练】

(2017湖北荆州)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()

A.40° B.45° C.50° D.10° 【考点】JA:平行线的性质.

【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小. 【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D. 【能力检测】

1.(2017贵州安顺)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()

A.100° B.110° C.120° D.130°

【考点】JA:平行线的性质.

【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.

【解答】解:∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°. ∴∠2=180°﹣50°=130°. 故选:D.

2.(2016•荆州)如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()

A.55° B.65° C.75° D.85°

【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数. 【解答】解:∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.

【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.

3.(2017四川南充)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()

A.30° B.32° C.42° D.58° 【考点】JA:平行线的性质.

【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可; 【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.

4.(2016•陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()

A.65° B.115° C.125° D.130°

【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可. 【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.

【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补. 5.(2017日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()

A.120° B.30° C.40° D.60°

【考点】JA:平行线的性质.

【分析】根据对顶角的性质和平行线的性质即可得到结论. 【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.

6.(2017内江)如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()

A.19° B.38° C.42° D.52°

【考点】JA:平行线的性质;IL:余角和补角.

【分析】过C作CD∥直线m,根据平行线性质得出∠DCA=∠FAC=38°,∠α=∠DCB,求出即可.

【解答】解:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°. 故选D.

7.(2016·山东省滨州市·3分)如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()

A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME 【考点】平行线的性质.

【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论. 【解答】解:A、∵AB∥CD,∴∠EMB=∠END(两直线平行,同位角相等); B、∵AB∥CD,∴∠BMN=∠MNC(两直线平行,内错角相等); C、∵AB∥CD,∴∠CNH=∠MPN(两直线平行,同位角相等),∵∠MPN=∠BPG(对顶角),∴∠CNH=∠BPG(等量代换); D、∠DNG与∠AME没有关系,无法判定其相等. 故选D.

【点评】本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.

8.(2016海南3分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()

A.30° B.45° C.60° D.75° 【考点】矩形的性质;平行线的性质.

【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.

【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°. 故选C.

中考数学几何证明复习题 篇7

一、专题复习

综观近几年的中考试题的压轴题, 总是离不开几何知识的参与, 出现的类型为发展题、运动题、操作题、规律探究题、分类讨论题.

1. 发展性试题

例1 (2008年义乌市) 如图1, 四边形ABCD是正方形, G是CD边上的一个动点 (点G与C, D不重合) , 以CG为一边在正方形ABCD外作正方形CEFG, 连接BG, DE我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:

(1) (1) 猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

(2) 将图1中的正方形CEFG绕着点C按顺时针 (或逆时针) 方向旋转任意角度α, 得到如图2、如图3情形.请你通过观察、测量等方法判断 (1) 中得到的结论是否仍然成立, 并选取图2证明你的判断.

(2) 将原题中正方形改为矩形 (如图4-6) , 且AB=a, BC=b, CE=ka, CG=kb (a≠b, k>0) , 第 (1) 题 (1) 中得到的结论哪些成立, 哪些不成立?若成立, 以图5为例简要说明理由.

(3) 在第 (2) 题图5中, 连接DG, BE, 且a=3, b=2, k=1/2, 求BE2+BG2的值.

通过此题的教学要让学生从两题的解题比较中理解发展性试题的解题策略:差异中理解一致性, 从而运用相似策略解决问题.

2. 运动性试题 (点运动、图形运动)

例2如图, 在直角三角形PMN中, ∠P=90°, PM=PN, MN=8, 矩形ABCD的长和宽分别为8和2, C点和M点重合, BC和MN在一直线上, 令直角三角形PMN不动, 矩形ABCD沿MN所在直线T向右以每秒1的速度移动, 直到C点与N点重合为止, 设移动s秒后, 矩形ABCD与△PMN重叠部分的面积为y, 求y与s的函数关系式.

通过此题教学要让学生走一走, 在走的过程中发现各个临界点或变与不变性, 从而找出问题的解决策略.

3. 操作性试题

例3 (2008年湖北省仙桃市) 小华将一张矩形纸片 (如图1) 沿对角线CA剪开, 得到两张三角形纸片 (如图2) , 其中∠ACB=α, 然后将这两张三角形纸片按如图3所示的位置摆放, △EFD纸片的直角顶点D落在△ACB纸片的斜边AC上, 直角边DF落在AC所在的直线上.

(1) 若ED与BC相交于点G, 取AG的中点M, 连接MB, MD当△EFD纸片沿CA方向平移时 (如图3) , 请你观察、测量MB, MD的长度, 猜想并写出MB与MD的数量关系, 然后证明你的猜想;

(2) 在 (1) 的条件下, 求出∠BMD的大小 (用含α的式子表示) , 并说明当α=45°时, △BMD是什么三角形?

(3) 在图3的基础上, 将△EFD纸片绕点C逆时针旋转一定的角度 (旋转角度小于90°) , 此时△CGD变成△CHD, 同样取AH的中点M, 连接MB, MD (如图4) , 请继续探究MB与MD的数量关系和∠BMD的大小, 直接写出你的猜想, 不需要证明, 并说明α为何值时, △BMD为等边三角形.

4. 规律探究题

例4 (2008年湖北省咸宁市) 如图, 在平面直角坐标系中, 直线l是第一、三象限的角平分线.

实验与探究:

(1) 由图观察易知A (0, 2) 关于直线l的对称点A′的坐标为 (2, 0) , 请在图中分别标明B (5, 3) , C (-2, 5) 关于直线l的对称点B′, C′的位置, 并写出他们的坐标:

B′____、C′____;

归纳与发现:

(2) 结合图形观察以上三组点的坐标, 你会发现:坐标平面内任一点P (a, b) 关于第一、三象限的角平分线l的对称点P′的坐标为____ (不必证明) ;

运用与拓广:

(3) 已知两点D (1, -3) , E (-1, -4) , 试在直线l上确定一点Q, 使点Q到D, E两点的距离之和最小, 并求出Q点坐标.

5. 分类讨论题

例5矩形OABC在直角坐标系中的位置如图所示, A, C两点的坐标分别为A (6, 0) , C (0, 3) , 直线y=3/4x与边BC相交于点D.

(1) 若抛物线y=ax2+bx经过D, A两点, 试确定此抛物线的表达式?

(2) 设 (1) 中的抛物线的对称轴与直线OD交于点M, 点Q为对称轴上一动点, 以Q, O, M为顶点的三角形与三角形OCD相似, 求出符合条件的点Q的坐标.

二、老题新考

例6 (2008年宁波市) (1) 如图1, △ABC中, ∠C=90°, 请用直尺和圆规作一条直线, 把△ABC分割成两个等腰三角形 (不写作法, 但须保留作图痕迹) .

(2) 已知内角度数的两个三角形如图2、图3所示.请你判断, 能否分别画一条直线把它们分割成两个等腰三角形?若能, 请写出分割成的两个等腰三角形顶角的度数.

三、压轴题解释

1. 压轴题解题解析

例7 (2008年南京市) 如图, 已知⊙O的半径为6 cm, 射线PM经过点O, OP=10 cm, 射线PN与⊙O相切于点Q.A, B两点同时从点P出发, 点A以5cm/s的速度沿射线PM方向运动, 点B以4 cm/s的速度沿射线PN方向运动.设运动时间为t s.

(1) 求PQ的长;

(2) 当t为何值时, 直线AB与⊙O相切?

解题解析

1.试题考点:

(1) 知识点:直线与圆相切的性质与判定方法;勾股定理;三角形相似的性质与判定方法.

(2) 技能点:实数运算及解方程.

(3) 思想方法点:方程思想、分类思想、数形结合思想和运动变化观念.

2. 试题背景:

(1) 教学背景:直线与圆位置关系是“圆”中考查的重要内容, 其中相切是三种关系中的重要一种.

(2) 命制背景:动态问题的流行趋势与其对学生探究能力考查的重要作用.

3. 解题策略:

(1) 分析基本图形:直角三角形, 直线与圆相切.

(2) 动态问题:让其运动看其几种可能.

(3) 基本策略方法的归纳:相切问题的基本结论 (垂直与d=r) .

(4) 拓展:各种位置关系与t的范围.

2.压轴题形成过程

我们知道:把直线y=2x-1向右平移1个单位得到的新直线方程为y=2 (x-1) -1, 把直线y=2x-1向左平移1个单位得到的新直线方程为y=2 (x+1) -1;把抛物线y= (x-1) 2+2向右平移1个单位得到新抛物线解析式为y= (x-1-1) 2+2, 把抛物线y= (x-1) 2+2向左平移1个单位得到新抛物线解析式为y= (x-1+1) 2+2,

(1) 由上我们可以知道把双曲线向右平移1个单位所得新图像的解析式是什么?并在坐标系中画出新函数的图像;

(2) 在第一象限内的此图像上有一点P, 过点P向x轴、y轴作垂线, 若与坐标轴所构成的矩形面积为S, 则S的取值范围是多少?

(3) 直线y=-x+4与上述图像交于点A, B, 求A, B两点坐标.

(4) 我们知道, 当且仅当a=b时等号取到, 如已知x为正数, 则的最小值为2.由上知识解决下面问题:若在线段AB上有一点M, 过M向x轴作垂线, 与上述函数图像交于点N, 垂足为C, 求MN的最大值.

形成过程:抛物线平移——直线平移——反比例函数平移.

反比例函数矩形面积定值——矩形面积变化——利用给予知识求最值.

中考数学几何证明复习题 篇8

关键词:初中数学;几何证明题;教学模式

在初中数学教学过程中,广大数学教师普遍认为,针对几何证明题的教学一直是其中的难点。因为在解答此类问题的过程当中,学生必须要拥有较强的逻辑思维能力以及对相关定理公式有着熟练的掌握,才能针对问题进行回答。而如何针对学生这方面能力在教学过程中进行锻炼和培养,一直是初中数学教师所思考的一个重要问题。

一、学生在进行几何证明题解答过程当中思维受到阻碍的原因

1、对定理公式掌握不熟练。学生在针对几何的定理公式开展学习的过程当中,不少教师只是单纯要求学生在文字层面进行理解,导致学生对于这些定理公式无法进行深层次运用。一旦遇见几何证明题,他们往往很难利用相关的公式定理来找寻到问题的突破口,不能把文字语言转换成数学语言。

2、无法探寻定理使用需要条件。在学生就几何证明题进行解答的过程当中,很多学生找不到这道证明题所对应需要的公式是什么,也不能找到定理所要求的基本图形。导致这一现象产生的原因是因为学生不熟悉定理与图形之间的关系,在思考的过程当中,没有将问题当中的图形进行正确的分割,一旦证明题稍作一些综合性方面的调整,学生便会丈二和尚摸不着头脑。

二、学生解答几何证明题难点的针对性教学措施

1、教师应关注几何语言以及几何图形的教学。几何语言是学生进行几何知识学习的重要媒介,并且也是学生对相关几何问题进行回答的重要工具。因此从一定程度上来讲,学生针对几何语言的使用能力与学生的几何知识学习能力有着十分密切的关系。所以在教学的过程当中,教师必须要针对学生的几何语言能力开展训练。

第一,关注模仿和学习。教材是学生进行初中几何知识学习的重要根据,因此教师在教学的过程中,应使用教材作为切入点,让学生从模仿教材开始,锻炼自己的几何语言使用能力。

例如,教师可以令学生从课本当中寻找当天所学习的几何知识理论和概念,并尝试就课本当中证明這些几何公式的数学语言使用让学生进行重复练习。这样做的目的不但能让学生对几何语言的使用变得更加规范化,并且能够让学生对于相关公式定理所产生的理解变得更加深刻。

第二,重视针对几何图形的教学。经过长期的调查之后发现,有很多初中数学教师在针对学生进行几何方面知识的教学过程当中,对于基础图形的教学往往没有引起高度的重视,而是将教学的侧重点放到了针对相关问题的解答上。而事实上,这种做法是完全错误的,因为基础几何图形是学生开展几何推理时的一种重要依据,学生对基础几何图形的掌握能力,会对学生在进行的几何问题回答情况产生决定性的影响。所以,教师必须要针对基本几何图形教学进行高度重视,只有学生在充分认识到基本几何图形的有关性质和特征之后,才能让学生在进行几何证明题解答过程中迅速找到问题的突破口,养成思维的惯性。

2、针对几何证明题的教学措施。很大一批学生在初期接触到几何证明题时往往都感觉到了茫然,造成这一现象的原因一方面是几何证明题往往需要进行若干次思维的转化,再有就是学生对于几何证明题的正确学习方式没有进行掌握。因此,针对学生常见几何证明题的解答方式的传授是很有必要的。凭借多年的初中数学教学经验,总结出了几何证明题解答的一套办法。

首先,学生首先針对问题进行阅读,并将题目当中的相关条件,标注与图片当中,这样才更好的帮助学生对问题进行理解,并迅速找寻到问题的突破口。

接下来就是对这道问题的解题思路进行分析。相对于问题的解答过程,实际上教师针对这一道问题的解题思路才更加具有价值,因此在针对几何证明题进行讲解的过程当中,教师必须要将对该问题的解答思维向学生进行阐述。

例如:如下图所示,在△ABC当中,AB=AC、延长CB到D,延长BC到E,并且让CE=BD,试证明AE=AD。

在针对这一证明题进行讲解的过程中,教师首先让学生在图像当中针对已知的条件进行标注。在标注完成之后可以发现,因为△ABC当中,AB=AC,所以△ABC为等边三角形,在得出三角形为等边三角形之后,教师就需要让学生从角度方面进行问题的思考。根据等腰三角形的性质,学生便能够迅速的了解到∠ABC和∠ACB是相同的,又因为∠ABD和∠ABC互补,∠ACB和∠ACE互补,由此便能够得到∠ABD=∠ACE。所以凭借全等三角形证明定理边角边(SAS)就可以证明出△ABD≌△ACE,所以证明了AE=AD。

教师在进行这道几何证明题解答过程当中,将自己对这道问题的思考和学生进行了说明,学生在教师思维的引领下,便可以和数学教师一起进行思考。而在反复多次的练习过程当中,学生也会在潜移默化当中,学会教师的解题思维,由此使得自身对于几何证明题的解答能力得到提升。

三、结语

在初中数学教学过程当中,几何证明题一直属于是教师难教、学生难学的一种类型题,而且在中考考试当中,几何证明题也是必考题型。因此,初中数学教师必须要针对几何证明题的教学方法进行以此深入系统的研究,这样才能让学生在进行几何证明题学习时,以最快的速度找到问题的解决办法。如此才能保障学生在中考当中,取得较为满意的成绩。

参考文献

[1] 费建萍.浅谈初中数学几何证明题教学[J].数学学习与研究,2015,16:36.

[2] 王发生.初中数学几何证明题的教学运用[J].中华少年,2016,08:127.

上一篇:频道标准化建设下一篇:《婚姻法》与《继承法》相关案例解析