定积分在数列和式不等式证明中的应用

2024-08-31 版权声明 我要投稿

定积分在数列和式不等式证明中的应用

定积分在数列和式不等式证明中的应用 篇1

湖北省宜昌市第二中学曹超

邮编:443000电子邮箱:c220032003@yahoo.cn

数列和式不等式aiA(或aiA)的证明通常要用到放缩法,由于放缩法技巧性强,且无固定模式,i

1i1

n

n

在实际解题过程中同学们往往难以掌握。学习了定积分的相关知识后,我们可以利用定积分的定义及几何意义证明此类不等式,下面笔者仅就两例对这种方法加以介绍。

例1

证明:1)1

第2题)

证明:

构造函数f(x)

1

1

1(nN)(高中人教(A)版选修4-5P29,作出函数图象,图(1)中n-1个矩形的面积

1

应为直线x1,xn,x轴和曲

线

f(x)

所围成曲边梯形面积的不足近似值,故



n

x

2dx=2x

2n

=2,所以

图(1)

1



1。

图(2)中n

个矩形的面积和1



应为直线

x1,xn1,x轴和曲

线f(x)所围成的曲边梯形

面积的过剩近似值,故1



n1

x

dx=

图(2)

2x2

n1

=2,不等式得证。

评析:

教材对本题证明给出了提示:

①,实际解题过程中,由于不等式①技巧性强,思维量大,学生如不参考提示很难得到。事实

上,如图(3)所示,根据定积分的定义及几何意义,在区间n,n1(nN)上的曲边梯形的面积大于以区间的右端点n1对应的函数值f(n1)为一边的长,以1

为邻边的长的矩形的面积,小于以区间的左端点n对

图(3)

应的函数值f(n)为一边的长,以1为邻边的长的矩形的面积,即

n1n

x

dx2x2

n1n

代数变形技巧得到,更非“空穴来风”,而是有着明确几何意义的代数表示,数形结合思想在这里得以充分地体现。

例 2对于任意正整数n,试证:(1)当nN时,求证:ln(n1)lnn

(2)

1n1

1n2



1nn

ln

3

1n+1

分析:此题的设计意图是利用第(1)问的结论证明第(2)问。但如果没有第一问作铺垫,第(2)问的证明很难用代数方法得到,如果利用例1所述方法,那么证明变得非常简洁。

证明:(1)证明略。

(2)构造函数f(x)

1x

(x0),作出函数图象,根据yf(x)

在区间n,2n上定积分定义及其几何意义,图(4)中n个矩形的面积和小于由直线xn,x2n,x轴和曲线f(x)围

1x

所,即

成

n的12

边梯形的面积

n1

21n1

ln2nxx

n(n2l

7n)n,l不等式nln

得证。

图(4)

新课标新增的微积分知识有着丰富的数学背景及内涵,所蕴含的数学思想方法为我们问题的解决提供了新的视角,所以我们在平常学习过程中应予以足够的重视。最后提供两道练习题供同学们参考。

1、2、求证:()()(n

n

n

n

n1

nnn)()2nn

1n

1n1

(nN)



1n

证明:对于大于1的正整数n,n2

上一篇:宝山培智护导教师岗位任职条件及职责要求下一篇:我学会了蛋炒饭小学作文