比例正反比例教案

2024-09-16 版权声明 我要投稿

比例正反比例教案(精选11篇)

比例正反比例教案 篇1

教学内容:

教者:包瓛 六年级下册总复习83—85页《正比例与反比例》。教学目标:

1、通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

2、通过具体问题的认识进一步认识正比例、反比例的量。

3、通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。教学重、难点:

进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

一:谈话直接导入:

二:回顾整理:

(一)比的知识:

1、谁来举例子说说什么是比?什么是比例?

2、比和分数、除法的联系

出示:a∶b=()/()=()÷()(b≠0)教师问:(1)、你会填写这个等式吗?学生填好后,再问:

(2)、那么比和分数、除法的联系是什么?

(二)比例尺的知识

什么是比例尺?

(三)正比例,反比例的知识:

1、正比例的定义、判定方法。

2、反比例的定义、判定方法。

三.当堂检测,完善提高:

1—4 题在学案上。

四、合作交流。用比例的知识解答

1、王师傅加工一批机器零件,4分钟加60个。照这样计算,8分钟加工多少个?

2、王师傅加工一批机器零件,每小时加工60个,要8小时完成;如果每小时加工80个,要几小时完成?

(1)学生独立思考(2)小组讨论交流(3)全班交流

五、课堂小结

这节课你有什么收获?

六、作业布置

比例正反比例教案 篇2

关键词: 小学数学 ;比例知识;应用

中图分类号:G623.5

引言

要使学生掌握并理解比例的概念和性质, 知道比与比例的区别, 并在其基础上对其进行巧妙应用, 对于小学生的数学学习技巧的提高有重要的帮助。在小学学习的生活当中, 小学生从学习中学到了很多数学知识, 比如计算、 图形、 统计等各个方面的内容, 其中尤其是比例的知识是一个具有重要意义的内容。下面我们对比例知识在小学数学中的运用进行分析和总结。

一、比例的概念和性质的掌握

(一) 比例的概念

比例在数学中是一个总体中各个部分的数量与总体的数量的比值, 用于总体的构成或者结构的反映。在小学数学中比例的概念为: 当两个比的比值相等的时候, 我们就称这四个量成比例,记作a: b=c: d。比例中的一个量发生了变化, 必定会引起与它相关的另一个量发生变化。

(二)比例的性质

比例的几个常用的性质有以下几种:

1.比例式的内项之积等于外项之积。即若a/b=c/d, 则ad=bc.

2.和比性质。即若a/b=c/d, 则(a+b)/b=(c+d)/d.

3.分比性质。即若a/b=c/d, 则(a-b)/b=(c-d)/d.

4.和比性质。即若a/b=c/d, 则(a+b)/(a-b)=(c+d)/(c-d).

5.更比性质。即若a/b=c/d, 则c/a=d/b.

熟悉比例的基本性质, 并能够对其进行熟练的应用, 在解决小学数学学习中遇到的问题有很大的帮助。

二、 比例知识在小学数学学习中的巧用

在小学数学的教学中, 由于小学生思维方式的不同, 分析角度的差异, 往往同一道题有多种不同的解法。 我们要能够从这些方法中选择将问题简单化的方法进行问题的解答。如果能够转化思维结构, 对比例知识进行巧妙的运用, 就能达到将一些应用题简化的目的。

比例知识在小学数学中的应用主要是用在应用题上的解答。利用比例知识进行问题的解答, 一方面, 能加深学生对于知识的理解程度, 另一方面, 比例知识的巧妙运用也能够使问题变得简单化。比例知识在应用题中的应用主要分为正比例和反比例两大部分。

(一)巧妙转化思想结构对比例知识进行应用

由于思维方式的不同, 分析角度的差异, 往往同一道题有多种不同的解法。我们要能够从这些方法中选择将问题简单化的方法进行问题的解答。如果能够转化思维结构, 对比例知识进行巧妙的运用, 就能达到将一些应用题简化的目的。比如说, 教材中有这样一个题目: 现在要修建一条长20Km的公路, 6天修了3Km, 照这样的速度, 還要多少天才能把这条路修完?在这道题目的解答中我们要把握住其中的不变量, 即修路的速度, 这正是解答这道题的关键。那么经过分析我们知道, 如果假设还要x天才能把这条路修完, 由于其修路的速度是一定的, 那么就能得到其解答式为(20-3)/x=3/6。由此便可得到结果。那么还有没有其他的解答方法呢?我们知道比例的性质中还有一个反比的性质,由更比性质, 我们可以从第一个式子中得出, 修路所用的天数和所修的路的距离是正比的, 即x/6= (20-3)/3。这样题目的解答变得更加简便了。另外, 我们还可以根据比例的和比性质由第二个式子可得(x+6)/6=20/3。这样的解题方式还有很多种。通过这种、 一题多解、 一题多变的学习方式, 有助于对学生创造性思维的锻炼, 使他们能够在学习的过程中尝试从不同的角度, 采用不同的思路对问题进行思考, 这对于培养学生思维的独特性还有灵活性都有很大的帮助, 对学生的数学学习有着积极的影响意义。

(二)正、 反比例在数学中的巧妙应用

在数学中一些问题的解答中, 可以引导小学生使用正、 反比例的角度对问题进行思考和分析。比如有这样一道题目: 现要修一条公路, 原计划每天修500m, 30天可以修完, 实际上前3天修了1800m, 照这样的速度, 修完这条路一共需要多长时间?在这道题目的解答中, 我们知道, 无论按照哪一种方式的修路, 其修路的速率都是一定的, 因此, 所修公路的长度和工作时间成正比例的关系, 由此我们可以得到, 假设修完这条路需要x天, 那么就有1800/3=(500×30)/x。同时我们也可以这样想, 工作量也是一定的, 那么工作时间和工作速率之间就是反比例的关系, 利用这个能不能解答这道题呢。其实也是可以的, 经过分析我们可以得到, (1800÷3) ×x=500×30。这样同样也可以得到问题的正确答案。在运用正、 反比例进行问题解答的时候, 能够加深学生对比例知识的掌握, 同时还有助于学生有意识地将数学学习与生活实际联系起来, 创设一定的情景, 调动学生的学习积极性, 提高学生的学习效率。

在运用正、 反比例进行问题的解答的时候, 能够加深学生对比例知识的掌握, 同时还有助于学生有意识地将数学学习与生活实际联系起来, 创设一定的情景, 调动学生的学习积极性, 提高学生的学习效率。比如有这样一个题目: 小明一本书一共有580页, 已经读过的页数的3/5等于没有读过的页数的4/3, 那么请问他读过的有多少页?在这道题目中, 我们根据题意的分析可知, 已经读过的页数与3/5的乘积等于没有读过的页数与4/3的乘积那么我们就可以知道, 已经读过的页数: 没有读过的页数=(3/5): (4/3)=9: 20。(20:9)接着再用比例的性质即可解出问题的答案。通过这种方式的解答,不仅将问题变得简单, 并且开拓了学生的解题思路, 学生会觉得原来比例的性质也可以这样用, 那还有没有其他的用法呢?学生在产生好奇心的同时增强了对数学的学习兴趣。

结论

利用比例知识进行数学应用题的解答在小学数学教学内容有非常重要的运用。教师在进行教学的时候要注重学生对比例的基本概念和性质的掌握。同时在此基础上引导学生利用比例的性质对其进行灵活的应用和逆应用, 开拓新思路, 开发新视角,帮助学生了解比例知识在不同的解题中的应用之间的联系, 使他们形成相应的知识结构。通过这种探究式的比例知识学习方式,激发他们对数学的学习兴趣, 使他们将学习和乐趣有效结合在一起, 达到更好的学习效率。

参考文献

[1]周贤敏. 浅谈正比例应用题的教学[J]. 贵州教育, 1996.

《正反比例的意义》教学反思 篇3

《正反比例的意义》教学反思

今天上午的第二节课,我试讲了《正、反比例的意义》。这节课上完以后,给我感触最深的是第一层次(认识量、变量,建立两种相关联的量这个概念)的教学。这个环节处理得很不好(具体的下面介绍),学生没有很好地建立“两种相关联的`量”这个概念,也就影响到了对正、反比例意义的理解。

我自己很清楚,不管怎么说,“两种相关联的量”这个概念教学的失误是我造成的,后来我明白了,如果在学生回答了“路程和时间这两种量在变化”后,我顺势说一句“读一读这些数据”,随后再接着问:“谁随着谁变呀?”这样就会很顺畅地得出:路程随着时间的变化而变化(或是时间随着路程变),我们就把这两种量叫做两种相关联的量。最后再用表(2)中的两种量来巩固这个概念。这样的教学设计应该就能够使学生很好地建立这个概念了,也就圆满地完成了这一层的教学内容。

正反比例应用题教学设计 篇4

教学内容:教材第51~52页例1,例2和“练一练”,练习十第1—3题。

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

(2)说明:这道题还可以用比例知识解答。

提问:题里“照这样计算”说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次抽水的总量与时间对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的.数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的?先求总数量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做“练一练”。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方?按过去算术解法都要先求什么量?用比例知识解答有什么相同的地方?(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方?(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量?这两题里两种数量成什么关系,为什么?要按什么相等来列等式?

四、课堂小结

这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

五、布置作业

课堂作业;完成练习十第1、2题的解答。

正比例以及反比例的公开课教案 篇5

重组教材,创编文本。将教材中的例1(结合生活中的实例认识成正比例的量)和例3(结合生活中的实例认识成反比例的量)整合成同一问题情境下有前后联系的两道例题:保存原教材中的例1,引导同学认识成正比例的量;根据例1的情境,创编新的例2,替代原教材中的例3,引导同学认识成反比例的量。将教材中的例2(认识正比例图像)放到认识正比例、反比例之后进行教学。

抓住实质,内联教学。成正比例的量的实质规律是“比值一定”,成反比例的量的实质规律是“积一定”,引导同学探究发现这两种实质规律是教学的主要任务,教学时应掌握好这一点。本设计将例1和例2整合到同一情境下,从同学熟悉的时间、速度和路程这三个量之间的关系动身,引导同学对比研究,在观察、讨论交流中发现:①例1和例2中的两种量都是相关联的量,都是在一定的条件下,一种量随着另一种量的变化而变化。②例1中两种相关联的量的变化方向是相同的,一种量扩大(或缩小),另一种量也随着扩大(或缩小);例2中两种相关联的量的变化方向是相反的,一种量扩大,另一种量反而缩小。③例1中扩大、缩小的规律是“比值一定”,例2扩大、缩小的规律是“积一定”。这样抓住正比例、反比例的实质和联系进行教学,有助于同学加深对正比例、反比例意义的理解,从整体上掌握各种量之间的比例关系。

比例尺教案 篇6

任 斌

教学目标

1、使学生理解比例尺的意义并能正确地求出平面图的比例尺。

2、使学生能够应用比例知识,根据比例尺求图上距离或实际距离。教学重点

理解比例尺的意义:能根据比例尺正确求出图上距离或实际距离。教学难点

设未知数时长度单位的使用。教学步骤

一、铺垫孕伏1、1千米=()米

1分米=()厘米

1米=()分米

1厘米=()毫米2、30米=()厘米

300厘米=()分米

15千米=()厘米

40毫米=()厘米

3、解比例(口述过程):

二、探究新知

导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图。在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上。有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。今天我们就来学习这方面的知识——比例尺。(板书课题:比例尺)

(一)教学例4(课件演示:比例尺)下载

1、出示例4:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离。

求图上距离和实际距离的比。

2、读题回答:这道题告诉了我们什么?要求什么?

(教师板书:图上距离:实际距离)

3、思考:

(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?

(因为图上距离和实际距离单位不同,所以不能直接列式,要先把它们化成相同单位,、再化简)

(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?

(因为把米化成厘米后,实际距离仍是整数,计算起来比较方便,所以把米化成厘米。)

教师板书:10米=1000厘米

4、求出图上距离和实际距离的比。

(教师板书:10 :1000=1 :100或 =)

答:图上距离和实际距离的比是1 :100。

5、揭示比例尺的意义。

教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字——比例尺。(教师在“图上距离 :实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式。

(板书:或)

图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比。

教师强调:

(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位。

(2)求比例尺时,前、后项的长度单位一定要化成同级单位。

(3)比例尺的前项,一般应化简成“1”。如果写成分数的形式,分子也应化简成“1”。

6、巩固练习:

北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺。

(二)教学例5(课件演示:比例尺)下载

1、出示例5:在比例尺是1 :6000000的地图上,量得南京到北京的距离是15厘米。

南京到北京的实际距离大约是多少千米?

教师提问:题目中告诉了我们什么已知条件?要求什么?

根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?

(因为,已知图上距离为15厘米,比例尺为,要求的实际距离不知道,可用x表示,所以可列比例式)

2、讨论:这个比例式中的x指的是实际距离。题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数x应用什么单位? 为什么?

(因为图上距离与实际距离的单位要相同,已知的图上距离是15厘米,所以要先设实际距离为x厘米,等出结果后,再变成千米数。)

3、订正并追问:

①为什么要设南京到北京的实际区高为x厘米?

②这个比例式表示的实际意义是什么?

③解这个比例式的依据是什么?

④在求出x=90000000后,为什么还要化成900千米?

4、反馈练习:

先说出右图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米。

(三)教学例6(课件演示:比例尺)下载

1、出示例6:一个长方形操场,长110米,宽90米。把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

教师提问:题目中告诉了我们什么已知条件?求什么?先求什么?

(1)先求长的图上距离。解:设长应画x厘米。

110米=11000厘米

(2)求宽的图上距离。

教师说明:在这道题中,要分别求出图上距离的长和宽,同一个问题里不同 的未知数,要用不同的字母来表示。因为前面图上距离的长用x表示了,这里就不能再用它来表示宽的图上距离了。因此,我们设宽应画y厘米。解:设宽应画y厘米。

90米=9000厘米

三、全课小结

这节课我们学习了比例尺,知道了图上距离与实际距离的比叫做这幅图的比例尺。并能根据比例尺求出图上距离或实际距离。应注意的是,在计算中,图上距离与实际距离的单位必须是相同的。

四、课堂练习

1、判断下列这段话中,哪些是比例尺,哪些不是?为什么?

把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。

①图上长与实际长的比是()

②图上宽与实际宽的比是1 :400()

③图上面积与实际面积的比是1 :160000()

④实际长与图上长的比是400 :1()

2、在比例尺是1∶5000000的中国地图上,量得上海到杭州的距离是3.4厘米,计算一下,上海到杭州的实际距离大约是多少千米?

按比例分配 (教案) 篇7

1、使学生理解按比例分配的意义。

2、掌握按比例分配应用题的特征及解题方法。

3、培养学生应用所学知识解决实际问题的能力。教学重点: 掌握按比例分配应用题的特征及解题方法。教学难点: 按比例分配应用题的实际应用。教学过程:

一、复习引入

1、填空

已知六年级1班男生人数和女生人数的比是:3:2。(1)男生人数是女生人数的()

(2)女生人数是男生人数的(),女生人数和男生人数的比是()(3)男生人数占全班人数的(),男生人数和全班人数的比是()(4)全班人数是男生人数的(),全班人数和男生人数的比是()(5)女生人数占全班人数的(),女生人数和全班人数的比是()(6)全班人数是女生人数的(),全班人数和女生人数的比是()

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗? 这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

2、提问:分谁?(100平方米)怎么分?(按3 :2分)

求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)

3、思考:由“如果按3 :2分配”这句话你可以联想到什么?(1)六年级的保洁区面积是二年级的3/2倍(2)二年级的保洁区面积是六年级的2/3(3)六年级的保洁区面积占总面积的3/5(4)二年级的保洁区面积占总面积的2/5 … … 小组汇报结果

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的? 方法

一、3+2=5

100÷5=20(平方米)20×3=60(平方米)

20×2=40(平方米)方法

二、3+2=5 100× 3/5=60(平方米)100× 2/5=40(平方米)

方法

三、100÷(1+2/3)=60(平方米)60× 2/3=40(平方米)或100-60=40(平方米)方法

四、100÷(1+3/2)=40(平方米)40× 3/2=60(平方米)或100-40=60(平方米)

5、比较思路:这几种方法中,你认为哪种方法好?为什么?(第二种,思路简捷,计算简便)说说第二种方法的思路? ①求出总份数

②各部分数占总份数的几分之几?

③按照求一个数的几分之几是多少的方法解答。

6、这道题做得对不对呢?我们怎么检验? ①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

7、练习

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?

(学生独立完成,集体订正,演示课件“比的应用”)下载

8、教学例3 学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)讨论:这道题与前面所做的题有什么区别? 分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?(2)学生独立解题

①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:280× 47/140=94(棵)③二班应栽的棵数:280×45/140 =90(棵)④三班应栽的棵数:280× 48/140=96(棵)答:一班、二班、三班各应栽94棵、90棵、96棵。

9、小结:观察我们今天学习的两个例题有什么共同特点?(已知总数量、各部分量的比,求各部分量)怎么解答?

(先求总份数,各部分量占总数量的几分之几,最后求各部分量)

我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,板书(补充课题):按比例分谁?怎么分? 板书:把一个数量按照一定的比来进行分配。

三、巩固练习

1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?

2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?

3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米? 7+3=10

20×7/10=14(厘米)20×3/10=6(厘米)【错,要分的不是20厘米】

4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

按比例分配教案 篇8

教学目标:

1、结合具体情境,理解按比例分配的意义。

2、在具体情境中,通过自学自探、合作交流等学习方式,探索按比例分配的方法;在解决实际问题的过程中,发现这类问题的特点。

3、学生在经历解决简单实际问题的过程中,感受比与日常生活的密切联系,增强自主探索与合作交流的意识,提高学好数学的自信心。

教学重点:理解掌握按比例分配问题的计算。

教学难点:理解按比例分配问题的结构特点,灵活运用,合理解决实际问题。教学过程:

一、创设情境

激趣导入 1.谈话引入:

上节课,我们通过人体的身高,学习了有关比的意义和比的基本性质。这节课我们继续来看看人的体重中的奥秘。

2.下面请看屏幕,出示情境图,这是大头和爸爸的对话。接下来老师要问大家一个问题:

如果把大头的体重平均分成两份,一份是水,另一份是其他物质,通过比和平均分的学习,这时我们就可以说,大头体内的水分与其他物质的比是1:1.但实际上人体内的水分与其他物质不是平均分配的,而是按一定的比来分配的。

课件出示情境图上的旁白。(科学研究表明,儿童体内水分与其它物质的比是4:1;成人体内水分与其它物质的比是7:3.)

提问:仔细观察情境图。,从图上你知道了哪些数学信息? 学生回答,教师适时评价。

那么你能根据这些信息提出一些数学问题吗?

学生口答。学生可能提出的问题:

教师板书出本节课要解决的问题。

《设计意图》:通过课件分布呈现爸爸和大头的体重的情境,找准知识的生长点,从学生已经学过的平均分问题入手,使学生体会到按比例分配问题是平均分问题的发展。帮助学生初步理解按比例分配的含义,激发了学生提出新问题,促进学生产生探索新知的欲望。

二、分析素材 理解概念 1.自主探究,尝试解决

解决第一个问题:大头体内的水分及其他物质各有多少千克?(1)你能把解决这个问题的信息和问题连起来读一读吗?

(2)你对“儿童体内的水分与其他物质的比是4:1”是怎么理解的?

多引导学生说一说。

(3)能用线段图表示出他们之间的联系吗?

学生同位合作完成,然后小组交流自己的想法。教师巡视。展示交流:

学生展示交流线段图及画法。

(4)线段图画出来了,你能试着解答一下这个问题吗?

学生独立解答,教师巡视的过程中指明不同解答方法的同学到前面板书:

2、交流思路,探究算理

解法一:

4+1=5

解法二:

30÷5×4=24(千克)

30×4/(4+1)=24(千克)30÷5×1=6(千克)

30×1/(4+1)=6(千克)

(1)让两种不同解法的学生说一说这样做的理由,每一步表示的含义。(2)小组讨论:观察比较这两种方法有什么区别?

相同点:两种方法都算出了总份数。都是用线段图表示出来

体重是有水份和其他物质组成的,求水和其他物质的重量也就是把30按照4:1的比例分配。

不同点:一是把比看作平均分得的份数,用平均分的方法先求出一份再来解答;(整数思维)。二是把比化作分数,转化成分数乘法问题来解答。

(3)优化算法:他们的方法你喜欢哪个?为什么? 说给你的同位听一听。第一种比较直观,好理解。第二种用了我们刚刚学习的分数乘法

(4)小结:像这种,把一个数量按照一定的比进行分配的问题,就是我们今天学习的按比例分配。(板书课题)

《设计意图》:通过以上两种方法,让学生感受解决问题的方法是多样的,有利于调动学生参与探索学习的主动性和积极性。同时又进一步说明了比与分数、除法之间的内在联系,使学生的认知结构更完整、更合理。

3、应用模型,解决问题

解决第二个问题:爸爸体内的水分和其他物质各有多少千克?(1)师:你能用我们想到的方法解决这个问题吗?(2)学生独立完成,同位交流自己的想法。(3)谁愿意说说自己的解题思路。课件出示

怎样知道我们解答的是否正确呢?你们有什么检验方法吗 谁能检验一下?

相加法

写成比的形式,化简后看是否是7:3 检验能够帮助我们检查自己的解答是否正确,所以养成检验的习惯非常重要。4.同学们都很棒,都能灵活的运用我们学过的方法解决按比例分配的题目,下面我们来分析一下按比例分配的题型结构:

已知:总数量

各部分的比

求:各部分的数量

谁能说说在计算按比例分配的题目时应注意什么问题?(1)要看清题目分配的是什么,分配的量是谁(2)按照怎样的比分配(3)分数关系要找准。

教师总结板书:比中各部分的总数

各部分的比

《设计意图》:归纳基本方法,还要让学生谈一谈检验的过程和方法,让学生学会在反思中检验,在反思中发现,在反思中进步。

你们都学会了吗,下面我们做一些相应的练习

三、巩固练习

拓展应用

1、做自主练习第1题

学生独立做后交流解题思路及方法。

2、做自主练习第3题。

学生独立做后交流解题思路及方法,注意隐藏条件。

3、做自主练习第4题

这是一道按比例分配拓展应用的题目,让学生在独立思考,悟出解答方法。

四、课堂小结:这节课你有哪些收获?

五、课堂小测:课本自主练习第2题。

课后反思:

解比例教案 篇9

解比例教案

教学内容 教科书第50页例3,练习十一3~6题。 教学目标 1.使学生理解解比例的意义。 2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的.兴趣和自信。 教学重点 使学生掌握解比例的方法,学会解比例。 教学难点 建立解比例和解方程之间的联系。 教学过程: 一、出示课题:解比例. 二、出示目标: 1.使学生理解解比例的意义。 2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。 三、出示自学指导 看书35页:1、什么叫做解比例?2、重点看例2、例3、例2列出的比例中,X :320=1 :10转化成10x=320x1依据是什么? 3、例3中,1.5/2.5=6/x个比例和前面几个比例有什么不同?指出它的内项和外项。想:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解. 5分钟后检测 四、先学、认真看书 检测 :自学指导 五、后教: 1、更正 2、讨论:怎样解比例?根据是什么? 3小结:像上面这样求比例中的未知项,叫做解比例。 六、当堂达标: (一)解下面的比例. 1.2/8=9/x 2、x/25 =1.2/75 (二)根据下面的条件列出比例,并且解比例. 1.5和8的比等于40与x 的比. 2.x 和3/4的比等于1/5和2/5的比. 3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8. 七、拓展练习: 1、如果一个比例中两个外项的积是最小的合数,其种一个内项是3/4,另一个内项是多少? 2、、如果一个比例中两个内项互为倒数,一个外项是2另一个外项多少? 八、回归目标:

用比例解决问题教案 篇10

教学内容:教材第59—60页例

5、例6。教学目标:知识与技能

(1)使学生进一步熟练地判断成正、反比例的量。(2)使学生能用比例方法正确解答比较简单的应用题。(3)培养学生的分析、判断、推理能力。

过程与方法

经历用比例方法解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维。情感态度与价值观

感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养肯动脑思考的良好学习习惯。教学重点、难点:

重难点:

会用比例知识解决实际问题。

突破方法:通过问题引导学生合作探究解决问题。教法与学法:教法:创设情景,质疑引导。

学法:理解分析与合作交流相结合。教学准备:小黑板(或课件)教学过程:

一.复习准备

(1)判断下面每题中的两种量成什么比例关系。

① 单价一定,总价和数量。

② 每小时耕地的公顷数一定,耕地的总公顷数和时间。

③ 全校学生做操,每行站的人数和行数。(2)引入新课

教师:我们已经学习了比例、正比例和反比例的意义,还学习了解比例。这节课我们就应用这些比例的知识来解决一些实际问题。(板书:用比例解决问题)二.探究新知(1)创设情境。

①教师:出示教材第59页的情景图,引导学生观察。

学生:描述图上的内容

②从图上你了解到那些数学信息?指明学生说一说。(2)教学例5。(学生读题)

张大妈家上个月用了8吨水,水费是12.8元。李奶奶家用了10吨水,需要多少钱?

①想一想:怎样计算呢?引导学生寻找条件,独立思考,列式算一算,在小组中交流。②指名说一说计算方法。学生可能的计算:12.8÷8×10

=1.6×10

=16(元)

③还有其他的解决方法吗?

引导学生思考,教师说明:这样的问题可以应用比例的知识来解答。

④教师:问题中有哪两种量?它们成什么比例关系?你是根据什么判断的?根据这样的比例关系,你能列出等式吗?

⑤指名汇报。说一说解答方法。汇报时显示可能会说出: 因为每吨水的价钱一定,所以水费和用水的吨数成正比例。

也就是说,两家的水费和用水的吨数的比值是相等的。⑥组织学生设未知数,根据正比例的意义列方程解答。指名板演,集体订正。⑦指名检验。⑧教师:王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水? 组织学生独立思考、独立练习,然后交流。(3)教学例6。

①教师出示例6题目,组织学生读题,弄清题意。

②组织学生在小组中讨论、交流解答方法。指名汇报可能说出:

因为书的总数一定,所以包数和每包的本数成反比例,也就是说,每包的本数和包数的积相等。

③指名板演,其余同学在练习本上解答,集体订正。

解:设要捆x包。

30X=20×18

30X=360 X=360÷30 X=12

答:要捆12包。

④如果要捆15包呢,每包多少本?

组织学生独立思考、独立练习,然后在全班进行交流。三.应用反馈

教材第60页“做一做”第1、2题

(1)先组织学生读题,理解题意。

(2)指名学生板演,集体订正。四.课堂作业

教材第62页练习九第5题。板书设计

用比例解决问题

例5

解:设李奶奶家上个月的水费是X元。

例6 解:设要捆X包。

12.88=X10 30X=20×18

8X =12.8×10

30X=360

X=128÷8 X=16 答:李奶奶家上个月的水费是16元。

X=360÷30 X=12

比例尺参赛教案 篇11

一、教案背景:

【面向学生】小学六年级学生

【学

科】数学

【课

时】第1课时

【教学准备】

1、学生了解《比例尺》的相关知识

2、利用百度搜集相关的资料,制作《比例尺》教学课件。

二、教学课题:

【课

题】《比例尺》

【教学目标】

1、能够应用比例的知识,理解比例尺的意义。

2、能够正确求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

三、教材分析:

1、比例尺表示图上距离和实际距离的比,因此可以把它理解为比的应用;另一方面,图上距离和实际距离是成比例的,根据比例尺求图上距离或实际距离都可以列出比例式来求解。所以,教材把比例尺安排在比例之后教学。本节课主要是认识比例尺,知道比例尺有两种形式——数值比例尺和线段比例尺。例题结合图形的缩小来教学比例尺,通过计算南京到北京的图上距离和实际距离的比来引出比例尺,会用不同的说法说图上距离和实际距离之间的关系,相机呈现线段比例尺。

“练一练”的第1题让学生说说每幅图的比例尺的实际意义,既帮助学生加深对比例尺的理解,又沟通了数值比例尺和线段比例尺的联系;第2题判断题,加深对比例尺的意义的理解,帮助学生巩固对比例尺计算公式的理解。第3题选择题,利用公式求比例尺,进而达到对公式的熟练程度。

四、教学重点

理解比例尺的意义,会求平面图形的比例尺

五、教学难点

能正确求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

六、教学方法:

本堂课教师引导学生在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的用途。

七、教学过程:

七、课后反思

《比例尺》是小学数学第十二册第三单元中的教学内容。这一知识是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。反思整个教学过程,我认为成功的关键有以下几点:

1、在生活中引入新课。现代学习心理学认为,知识并不能简单地由教师或其他人“传授”给学生,而只能由每个学生依据自己已有的知识和经验主动地加以“建构”。在引入阶段,我让学生们在纸上分别画一条5厘米、1分米、10米的线段,激发矛盾冲突,为学生学习本课知识激发兴趣。

2、在画线段图揭示比例尺的意义时,浪费了很多时间,这样就会感觉前部分的教学不紧凑,学生的表现也比较懒散。在这部分教学中出现了一个不足,比例尺的书写形式没强调,放在课的最后强调好像效果不是很好。在本节课中,图上距离与实际距离的比,学生写出1:10也有学生用分数表示,当时强调了分数形式的读法,但是学生在后面又出现读十分之一时我没及时强调,所以这块我引导的不是很好,还需要在下节课中继续强调读法。

3、在自学中学到知识。在学生理解了比例尺的概念和作用后,怎样求比例尺和图上距离这一部分知识教简单。因此我选用了自学的方式,体现了学生学习的自主性,大胆的放手让学生自己学习,自己思考,自己与其他学生交流,在交流中学到新的知识。

我觉得上好一节课是需要很多准备工作的,认真钻研教材,深入挖掘教材中的宝贵资源,使教材的内涵更有广度和深度;备课一定要备学生,要考虑学生的知识结构水平与认知心理,预设课堂的生成,预设应设置一定的空间,给予一定的弹性,这就是驾驭课堂的能力和应变能力,我还要自我加压,不断磨练,提高课堂教学水平。

“冰冻三尺非一日之寒”,作为一个数学老师,我会不断地探索适合学生的教学模式。一节课是否上得好,并不是因为这位老师上得有多精彩,而是因为学生真正掌握了才是真的好。

教师个人介绍:

省 份: 江西省

学 校: 赣州市赣县城关小学

姓 名:蔡启辉

职 称:小学高级教师

上一篇:乡镇民政年度工作总结下一篇:珍惜青春中考的话题作文