高中数学推理与证明测试题

2024-09-21 版权声明 我要投稿

高中数学推理与证明测试题(推荐10篇)

高中数学推理与证明测试题 篇1

山东淄博五中孙爱梅

一 选择题(5×12=60分)

1.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什

么颜色的()

A.白色B.黑色C.白色可能性大D.黑色可能性大

2.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)

是3的倍数(P).”上述推理是()

A.小前提错B.结论错C.正确的D.大前提错

3.F(n)是一个关于自然数n的命题,若F(k)(k∈N+)真,则F(k+1)真,现已知F

(7)不真,则有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不

真;⑥F(5)真.其中真命题是()

A.③⑤B.①②C.④⑥D.③④

4.下面叙述正确的是()

A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法

C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定的5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是()

① 各棱长相等,同一顶点上的任两条棱的夹角都相等;

② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等;

③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。

A.①B.①②C.①②③D.③

6.(05·春季上海,15)若a,b,c是常数,则“a>0且b2-4ac<0”是“对x∈R,有ax

2+bx+c>0”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.不充分不必要条件

17.(04·全国Ⅳ,理12)设f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f2

(2),f(5)=()

5A.0B.1C.D.5 2

111118.设S(n)= + + ++„+,则()nn+1n+2n+3n11A.S(n)共有n项,当n=2时,S(2+

311

1B.S(n)共有n+1项,当n=2时,S(2)=+ +

234111

C.S(n)共有n2-n项,当n=2时,S(2 ++

234111

D.S(n)共有n2-n+1项,当n=2时,S(2 ++

4x

9.在R上定义运算⊙:x⊙y=,若关于x的不等式(x-a)⊙(x+1-a)>0的解集

2-y是集合{x|-2≤x≤2,x∈R}的子集,则实数a的取值范围是()A.-2≤a≤2B.-1≤a≤1C.-2≤a≤1D.1≤a≤2

10.已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2,若n∈N,an=f(n),则a2006=()

A.2006B.4C.D.-4

11.函数f(x)在[-1,1]上满足f(-x)=-f(x)是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是()A.f(sinα)>f(sinβ)B. f(cosα)>f(sinβ)C.f(cosα)<f(cosβ)D.f(sinα)<f(sinβ)

12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则奖的歌手是()A.甲B.乙C.丙D.丁

二 填空题(4×4=16分)13.“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给1131

5出一组数:,-,-,它的第8个数可以是。

228

43214.在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BDBC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为。

15.(05·天津)在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,n∈N*,S10=____________.16.(05黄冈市一模题)当a0,a1,a2成等差数时,有a0-2a1+a2=0,当a0,a1,a2,a3成等差数列时,有a0-3a1+3a2-a3=0,当a0,a1,a2,a3,a4成等差数列时,有a0-4a

1012

+6a2-4a3+a4=0,由此归纳:当a0,a1,a2,„,an成等差数列时有Cna0-Cna1+Cna2-„+Cnnan=0.如果a0,a1,a2,„,an成等差数列,类比上述方法归纳出的等式为___。三 解答题(74分)已知△ABC中,角A、B、C成等差数列,求证:18.若a、b、c均为实数,且a=x2-2x+

*

x

.11

3+=(12分)a+bb+ca+b+c

πππ

b=y2-2y+c=z2-2z+,求证:a、b、236

c中至少有一个大于0.(12分)

19.数列{an}的前n项和记为Sn,已知a1=1,an+1n+

2n(n=1,2,3,„).n

Sn

证明:⑴数列{Sn+1=4an.(12分)

n

20.用分析法证明:若a>0,则

a22≥a+-2.(12分)

aa

121.设事件A发生的概率为P,若在A发生的条件下B发生概率为P′,则由A产生B的概率为P·P′.根据这一事实解答下题.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、„、100,共101站,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次.若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站.直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束.已知硬币出现正、反面的概率相同,设棋子跳到第到第n站时的概率为Pn.(1)求P1,P2,P3;

(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列(12分)

ACAE22.(14分)在ΔABC中(如图1),若CE是∠ACB =.其证明过程:

BCBE作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F

∵CE是∠ACB的平分线,∴EG=EH.又∵

ACAC·EGSΔAEC

=,BCBC·EHSΔBEC

AEAE·CFSΔAEC==,BEBE·CFSΔBEC∴

ACAE=.BCBE

(Ⅰ)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是______

(Ⅱ)证明你所得到的结论.B HC

1A

A G

B

2h11C

答案:

一 1 A 2 C 3 A 4 A 5 C 6 A 7 C 8 D 9C10C 11B 12 C

πππ分析:因为锐角三角形,所以α+β>,所以0<-α<β<,222

π

sin(-α)<sinβ,0<cosα<sinβ<1,函数f(x)在[-1,1]上满足是减函数

所以f(cosα)>f(sinβ)。12分析:先猜测甲、乙对,则丙丁错,甲、乙可看出乙获奖则丁不错,所以丙丁中必有一个是对的,设丙对,则甲对,乙错,丁错.∴答案为C.1.二 13-14(S△ABC)2= S△BOC S△BDC15.3

3216a

00n

C

·a

1-C

1n

·a2 n·„·an(-1)nn=1.2C

C

n

[解析]解此题的关键是对类比的理解.通过对所给等差数列性质的理解,类比去探求等比数列相应的性质.实际上,等差数列与等比数列类比的裨是运算级别的类比,即等差数列中的“加、减、乘、除”与等比数列中的“乘、除、乘方、开方”相对应.三 解答题

317(分析法)要证+=

a+bb+ca+b+c

a+b+ca+b+c需证:+ =3

a+bb+c

即证:c(b+c)+a(a+b)=(a+b)(b+c)即证:c2+a2=ac+b

2因为△ABC中,角A、B、C成等差数列,所以B=600,由余弦定理b2= c2+a2-2cacosB 即b= c+a-ca 所以c+a=ac+b

3因此 + =

a+bb+ca+b+c(反证法).证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,πππ

而a+b+c=(x2-2y)+(y2-2z+z2-2x+

236

=(x-2x)+(y-2y)+(z-2z)+π=(x-1)+(y-1)+(z-1)+π-3,∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.19(综合法).证明:⑴由an+1

2222222

n+2

n,而an+1=Sn+1-Sn得 n

Sn+

1n+12(n+1)n+1Sn∴Sn=Sn+1-Sn,∴Sn+1Sn=2,∴数列{}为等比数列.nnSnn

n

SnSn+1Sn-14an(n-1)⑵由⑴知{2,∴=4·,∴Sn+1=4an.nn+1n-1n-1n+120(分析法).证明:要证

a2+2-≥a+2,只需证

aa

a22+2≥a+aa

∵a>0,∴两边均大于零,因此只需证(a2+22)2≥(a+)2,aa

只需证a2+24+

4a

a2+2≥a2+22+2(a+,aaa

a2+2≥(a+,只需证a2+2≥(a2+2+2),a2aa2aa

即证a2+2≥2,它显然是成立,∴原不等式成立.111131131

521.(1)解:P0=1,∴P1=, P2× +=,P3= ×+× =.2222422428

(2)证明:棋子跳到第n站,必是从第n-1站或第n-2站跳来的(2≤n≤100),所以Pn

Pn-1Pn-2

∴Pn-Pn-1=-Pn-1+Pn-1 Pn-2=(Pn-1-Pn-2),22211

∴an=-an-1(2≤n≤100),且an=P1-P0.22

故{an}是公比为-,首项为-的等比数列(1≤n≤100).2222.结论:

SΔACDSΔAECSΔACDSΔAEDAESΔACD= 或 =SΔBCDBESΔBCDSΔBECSΔBCDSΔBED

证明:设点E是平面ACD、平面BCD的距离分别为h1,h2,则由平面CDE平分二面角A-CD-B知h1=h2.又∵

SΔACDh1SΔACDVA-CDE

= SΔBCDh2SΔBCDVB-CDE

VA-CDEAESΔAEDVC-AED = =BESΔBEDVC-BEDVB-CDESΔACDAE∴ =SΔBCDBE

A G

B

C

2图2 A hB HC

高中数学推理与证明测试题 篇2

一、几何推理与图形证明教学的现有问题

一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.

二、定理和重要概念的引入及教学

定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.

例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.

证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.

则:GH=DG.

所以:∠1=∠2,

而∠1=∠4,∠2=∠3=∠5.

所以;∠4=∠5,所以:AF=EF.

乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.

三、学会“读题”,明确题中条件要素

在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].

四、培养学生几何推理思维

1. 三种思维的应用

几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].

2.“动手”做题,辅助线的应用

在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.

例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.

求证:△ABC≌△A'B'C'.

证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.

则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.

所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.

所以:BE=B'E',AE=A'E'

所以:△ABE≌△A'B'E'

所以:∠E=∠E'∠BAD=∠B'A'D'

所以:∠BAC=∠B'A'C'

所以:△ABC≌△A'B'C'

这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.

总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.

参考文献

[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.

[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.

初中数学推理与证明阶段教学探究 篇3

一、在图形与证明中,理解命题

1.关于命题的两个定义

关于命题,初中的定义是:判断一件事情的语句叫命题。高中的定义是:可以判断真假的语句叫命题。这两个定义都不严格。两个定义中使用的“判断”一词,与语文中通常的意义不尽相同。在逻辑学上,它的意义是:判断是对客观事物有所肯定或否定的思维形式,判断有真有假。所以,初中和高中的两个定义在意义上是完全相同的:命题是这样一个语句,这个语句能够判断真假。例如语句“4的平方根是2”,作为一个判断它是错误的,所以它是命题,是假命题。

2.关于“或”、“且”的含义

复合命题“p或q”与“p且q”是用逻辑联结词“或”与“且”联结两个命题p与q,既不能用“或”与“且”去联结两个命题的条件,也不能用它们去联结两个命题的结论。

二、数学课程当中对学生推理能力的要求应该是什么

中学数学课程标准当中,对于学生推理证明的要求,是从几个角度来谈的。首先,数学课程就要考虑数学的特色。数学教育一方面要使学生掌握这个现代生活学习当中应该具有的数学的知识和技能;另一方面,它要培养人的能力。从数学的特点来说,它在培养人的科学推理和创新思维方面,是有它特殊的作用的。这和数学本身的特点有关,也就是数学有这方面培养的优势。

在数学中,思维过程是一个逐步发展的过程体现得是比较突出的。研究一个对象,往往是先从内涵、外延,对它有一个认识,给出一个定义,形成一个概念。再对这些概念之间的关系,性质做出一个判断,形成一个命题,比如说对顶角相等。然后,我们又把这些命题,概念,更多地联系在一起,对更多的结论来进行推理,证明新的一些命题。在这个逐步发展过程中,确实把人类思维的这几个层次都综合在一起了,而且体现得比较清晰。

三、举反例,推理论证

1.反例是简明有力的否定方法

利用反例否定一个命题是十分简明而又极具有说服力的。义务教育课程标准实验教科书苏教版数学八年级下册中,有许多众所周知的命题,都被反例所否定。对于“一个数的绝对值一定是正数”被这个数是零所否定; “如果两个角互补,那么这两个角中,一个是锐角,另一个是钝角”被两个角都是直角所否定等。

2.反例是加深理解的重要手段

在新学习一个定义、定理或公式的时候,常常容易想到:其中的条件能不能减少?能不能变更?这时反例就成了加深记忆和理解的重要手段。例如:对于定义“在同一平面内不相交的两条直线叫做平行线”。学生常常对“不相交”这点印象深刻,而容易忽略“在同一平面内”的条件。我们总是引导学生找出在空间中虽然不相交,但并不平行的实例,去加深对这个定义的理解和记忆。

对于定理“有两边和一个夹角对应相等的两个三角形全等”,学生在应用时有的容易忽略夹角中的“夹”字,把它误记为“有两边和一个内角对应相等的两个三角形全等”。像图1这样作出BC=BC′,虽然∠A=∠A,AB=AB,但是△ABC和△ABC′它们显然不全等。由于这个反例将使学生明白一个“夹”字,不可忽视。但“有两边和一个钝角对应相等的两个三角形全等”,简写为边、边、钝角,可以作为两个钝角三角形全等的判定定理。

四、推理探究——关于平行线的一般性命题得出结论

已知:如图,AB//CD,AE、EF、FC是首尾相连的线段。

试求:∠A+∠E+∠F+∠C的度数。

解:在AB、CD上分别取点M、N,连接MN。在六边形AEFCNM中根据多边形内角和公式得∠A+∠E+∠F+∠C+∠CNM+∠AMN=720°

因为AB//CD

所以∠CNM+∠AMN=180°

所以∠A+∠E+∠F+∠C=540°

这个命题的一般性结论是:

如图所示,A1B平行于AnC,则∠A1+∠A2+……+∠An=(n-1)180°

高中数学推理与证明测试题 篇4

lzh 第 2 页 2013-5-311、下面是按照一定规律画出的一列“树型”图:经观察可以发现:

图(2)比图(1)多出2个“树枝”;图(3)比图(2)多出5个“树枝”;

图(4)比图(3)多出10个“树枝”;

(1)(2)(3)(4)(5)…照此规律,图(7)比图(6)多出_______个“树枝”.1用火柴棒摆“金鱼”,如图所示:

③ ② ①

13、按照上面的规律,第n个“金鱼”图需要火柴棒的根数为.

x2y

2若P则过Po作椭圆的两条切线的切点为P1、P2,则直线P1P2(称0(x0,y0)在椭圆221外,ab

为切点弦P1P2)的方程是x0xy0y21.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线a2b

x2y

21(a>0,b>0)外,则过Po作双曲线的两条切线的切点为P1、P2,则切点弦P1P2的a2b

2直线方程是.

14、下列是关于复数的类比推理:

①复数的加减法运算可以类比多项式的加减法运算法则;

②由实数绝对值的性质|x|2x2类比得到复数z的性质|z|2z2;

③已知a,bR,若ab0,则ab类比得已知z1,z2C,若z1z20,则z1z2;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中推理结论正确的是..

二、解答题:

15.用三段论证明函数f(x)x2x在,1上是增函数.2

lzh

222第 3 页 2013-5-3 16.已知:sin30sin90sin1503 2

sin25sin265sin2125

17.已知a,b,c均为实数,且ax2y

求证:a,b,c中至少有一个大于0.18.已知abc, 求证:2通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.2,by22z3,cz22x6,114.abbcac

lzh 第 4 页 2013-5-3

219.设a,b,c为任意三角形三边长Iabc,sabbcac.试证:I4s.20.通过计算可得下列等式:

2212211

3222221

4232231

┅┅

(n1)2n22n1

将以上各式分别相加得:(n1)2122(123n)n.即:123nn(n1)2

高中数学推理与证明测试题 篇5

自主整理

1.合情推理的结论有时不正确,对于数学命题,需要通过___________严格证明.2.___________是最常见的一种演绎推理形式.第一段讲的是一般性道理,称为___________;第二段讲的是研究对象的特殊情况,称为_____________;第三段是由大前提和小前提作出的判断,称为_____________.高手笔记

1.三段论是演绎推理的一般模式,可表示为: 大前提:M是P, 小前提:S是M, 结论:S是P.2.在应用三段论证明的过程中,因为作为一般性道理的大前提被人们熟知了,所以书写时往往省略大前提.3.合情推理是认识世界、发现问题的基础.结论不一定正确.演绎推理是证明命题、建立理论体系的基础,二者相辅相成,在数学中证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来,只要在大前提、小前提和推理形式都正确的前提下,得到的结论就正确.名师解惑 三段论推理

剖析:三段论法的论断基础是这样一个公理:“凡肯定(或否定)了某一类对象的全部,也就肯定(或否定)了这一类对象的各部分或个体.”简言之:“全体概括个体.”

三段论中大前提是一个一般性结论,都具有的结论是共性,小前提是指其中的一个,结论为这一个也具有大前提中的结论,要得到一个正确的结论,大前提和小前提都必须正确,二者中一个有错误,结论就不正确,如所有的动物都用肺呼吸,鱼是动物,所以鱼用肺呼吸,此推理显然错误,错误的原因是大前提错了.再如所有的能被2整除的数是偶数.合数是偶数所以合数能被2整除.错误的原因是小前提错了.讲练互动

【例1】梯形的两腰和一底如果相等,它的对角线必平分另一底上的两个角.已知在如图所示的梯形ABCD中,AD∥BC,AD=DC=AD,AC和BD是它的对角线.求证:AC平分∠BCD,BD平分∠CBA.分析:本题可由三段论逐步推理论证.证明:(1)等腰三角形两底角相等,(大前提)△DAC是等腰三角形,DA、DC为两腰,(小前提)∴∠1=∠2.(结论)(2)两条平行线被第三条直线截出的内错角相等,(大前提)∠1和∠3是平行线AD、BC被AC截出的内错角,(小前提)∴∠1=∠3.(结论)(3)等于同一个量的两个量相等,(大前提)∠2和∠3都等于∠1,(小前提)∴∠2=∠3,(结论)即AC平分∠BCD.(4)同理DB平分∠CBA.绿色通道

命题的推理证明为多个三段论,称为复合三段论.事实上,每一次三段论的大前提可不写出,某一次三段论的小前提如果是它前面某次三段论的结论,也可不再写出,即过程可简写.变式训练

1.如图所示,D、E、F分别是BC、CA、AB边上的点,∠BFD=∠A,DE∥BA.求证:ED=AF.证明:(1)同位角相等,两条直线平行,(大前提)∠BFD与∠A是同位角,且∠BFD=∠A,(小前提)∴DF∥EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE∥BA,且DF∥EA,(小前提)∴四边形AFDE为平行四边形.(结论)(3)平行四边形的对边相等,(大前提)ED和AF为平行四边形的对边,(小前提)∴ED=AF.(结论)【例2】在四边形ABCD中,AB=CD,BC=AD(如图).求证:ABCD为平行四边形.写出三段论形式的演绎推理.分析:原题可用符号表示为(AB=CD)且(BC=AD)ABCD.用演绎推理来证明论题的方法,也就是从包含在论据中的一般原理推出包含在此题中的个别特殊事实.为了证明这个命题为真,我们只需在假设前提(AB=CD且BC=AD)为真的情况下,以已知公理、已知定义、已知定理为依据,根据推理规则,导出结论ABCD为真.证明:(1)连结AC,(公理)(2)(AB=CD)且(BC=AD),(已知)AC=AC,(公理)(AB=CD)且(BC=DA)且(CA=AC).(3)平面几何中的边边边定理是:有三边对应相等的两个三角形全等.这一定理相当于: 对于任意两个三角形,如果它们的三边对应相等,则这两个三角形全等.(大前提)如果△ABC和△CDA的三边对应相等.(小前提)则这两个三角形全等.(结论)符号表示:(AB=CD)且(BC=DA)且(CA=AC)△ABC≌△CDA.(4)由全等形的定义,可知全等三角形的对应角相等.这一性质相当于: 对于任意两个三角形,如果它们全等,则它们对应角相等.(大前提)如果△ABC和△CDA全等,(小前提)则它们的对应角相等.(结论)用符号表示,就是

△ABC≌△CDA(∠1=∠2)且(∠3=∠4)且(∠B=∠D).(5)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(平行线判定定理)(大前提)直线AB、DC被直线AC所截,若内错角∠1=∠2, ∠1=∠2.(小前提)(已证)AB∥DC,BC∥AD.(AB∥DC)且(BC∥AD).(结论)(同理)(6)如果四边形的两组对边分别平行,那么这个四边形是平行四边形.(平行四边形定义)(大前提)在四边形ABCD中,两组对边分别平行,(小前提)四边形ABCD为平行四边形.(结论)符号表示为AB∥DC,且AD∥BC四边形ABCD为平行四边形.绿色通道

像上面这样详细地分析一个证明的步骤,对于养成严谨的推理习惯,发展抽象思维能力,是有一定的积极作用,但书写起来非常烦琐,一般可以从实际出发省略大前提或小前提,采用简略的符号化写法,比如,本例题的证明,通常可以这样给出: 证明:连结AC.ABCD12AB//DCBCDA△ABC≌△CDA四边形ABCD为平行四边形.34BC//ADCAAC变式训练

2.如图所示为三个拼在一起的正方形,求证:α+β=

.4

,0<β<, 2211∴0<α+β<π.又tanα=,tanβ=,2311tantan23=1.∴tan(α+β)=111tantan123证明:根据题意0<α<∵0<α+β<π, ∴在(0,π)内正切值等于1的角只有一个∴α+β=

.4.4【例3】如图所示,A、B、C、D四点不共面,M、N分别是△ABD和△BCD的重心.求证:MN∥平面ACD.分析:证明线面平行,关键是在面内找到一条直线与已知直线平行即可,本题是三段论证明的应用.证明:连结BM、BN并延长分别交AD、DC于P、Q两点,连结PQ.∵M、N分别是△ABD和△BCD的重心, ∴P、Q分别为AD、DC的中点.又∵BMBN=2=,∴MN∥PQ.MPNQ又∵MN平面ADC,PQ平面ADC, ∴MN∥平面ACD.绿色通道

本题为一个三段论推理的问题,可以简写,遵循的原则是:如果ab,bc,则ac.变式训练

3.如图所示,P是ABCD所在平面外一点,Q是PA的中点,求证:PC∥平面BDQ.证明:连结AC交BD于O, ∵四边形ABCD是平行四边形, ∴AO=OC.连结OQ, 又OQ是△APC的中位线,∴PC∥OQ.∵PC在平面BDQ外,OQ平面BDQ, ∴PC∥平面BDQ.632【例4】证明函数f(x)=x-x+x-x+1的值恒为正数.分析:可对x的所有不同取值逐一给出证明,即完全归纳推理.证明:当x<0时,f(x)各项都是正数, ∴当x<0时,f(x)为正数;62当0≤x≤1时,f(x)=x+x(1-x)+(1-x)>0;33当x>1时,f(x)=x(x-1)+x(x-1)+1>0.综上所述,f(x)的值恒为正数.绿色通道

有关代数运算推理,也可用三段论表述,注意大前提和小前提必须明确.变式训练 4.证明函数f(x)=-x2+2x在(-∞,1]上是增函数.证明:任取x1、x2∈(-∞,1],且x10.∵x1、x2≤1,x1≠x2, ∴x2+x1-2<0.∴f(x1)-f(x2)<0,即f(x1)

2+2x在(-∞,1]上是增函数.教材链接

《推理与证明》测试题 篇6

一、选择题:(每题5分,共50分)

1.下列表述正确的是(D)①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;

③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;

⑤类比推理是由特殊到特殊的推理.

A.①②③B.②③④

C.②④⑤D.①③⑤

2、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线

b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为(A)

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

3、下面使用类比推理正确的是(C).A.“若a3b3,则ab”类推出“若a0b0,则ab”

B.“若(ab)cacbc”类推出“(ab)cacbc”

abab(c≠0)” ccc

nn(ab)anbn” 类推出“(ab)anbn” D.“C.“若(ab)cacbc” 类推出“

4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是(B)。

A.假设三内角都不大于60度;B.假设三内角都大于60度;C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。

5、如图,这是三种化合物的结构及分子式,请按其规律,写出后一种化合物的分子式是

(B)

A.B.C.D.6、对“a,b,c是不全相等的正数”,给出两个判断:

222①(ab)(bc)(ca)0;②ab,bc,ca不能同时成立,下列说法正确的是(A)

A.①对②错 C.①对②对

B.①错②对

D.①错②错

7、有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则奖的歌手是(C)

A.甲B.乙C.丙D.丁

8.计算机中常用的十六进制是逢16进1的计数制,采用数字09和字母AF共16个计

例如,用十六进制表示,则(A)A.6EB.72C.5FD.B0

x(xy)

9、定义运算:xy的是(C)例如344,则下列等式不能成立....

y(xy),A.xyyxB.(xy)zx(y)z

C.(xy)2x2y2D.c(xy)(cx)(cy)(其中c0)10. 如图,在梯形ABCD中,AB∥DC,AB=,CD=b(>b).若EF∥AB,EF到CD与到AB的距离之比为m:n,则可推算出:EF=,试用类比的方法,推想

出下述问题的结果.在上面的梯形ABCD中,延长梯形两腰AD、BC相交于o点,设△OAB、△OCD的面积分别为S1、S2,EF∥AB,且EF到CD与到AB的距离之比为m:n,则△OEF的面积S0 与S1、S2 的关系是(D)A.B.C.D.二、填空题:(每题5分,共35分)

11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若

将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是_14___。

12、在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD.BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为(S△ABC)= S△BOC S△BDC。

13、从11,14(12),149123,14916(1234),„,广到第n个等式为_____1223242„(1)n1n2(1)n1(123n)____________________.14、已知a13,an1

.3an,试通过计算a2,a3,a4,a5的值,推测出an=an

3___________.n

15.如图,命.题:点P,Q是线段AB的三等分点,则有+=+,把此命题推广,设点A1,A2,A3,„„An-1是AB的n等分点(n3且n∈N*),则有1+OA2+„+OAn1=__________(+).

16、方程f(x)=x的根称为f(x)的不动点,若函数f(x)=xn+1=

n∈N*),则x2 013=_2006_______.1fxna11+a12+„+a20a1+a2+„+a30

{bn}中,会1030

b1b2„b30____.x

有唯一不动点,且x1=1 000,ax+2

n

117.已知等差数列{an}中,有有类似的结论:____

b11b12„b20=

三、解答题:(12+13+13+13+14)

18.证明:2,不能为同一等差数列的三项.18.证明:假设2、3、5为同一等差数列的三项,则存在整数m,n满足

3=2+md①5=2+nd②

①n-②m得:n-m=2(n-m)两边平方得: 3n+5m-2mn=2(n-m)

左边为无理数,右边为有理数,且有理数无理数 所以,假设不正确。即、3、5不能为同一等差数列的三项19.用分析法证明:若a>0,则

19(分析法).a2+22≥a+2.aa

1a2+2≥a+-2,只需证aa

a2++2≥a+2.aa

∵a>0,∴两边均大于零,因此只需证(1

2只需证a2+4+

4a2+2+2)2≥(a++2)2,aa

a

a2+2≥a2+22+22(a+,aaa

a2+2(a+,只需证a+2(a+2+2),a2aa2a

即证a+2≥2,它显然是成立,∴原不等式成立.a

20.通过计算可得下列等式:

2212211 3222221 4232231

┅┅

(n1)2n22n1

将以上各式分别相加得:(n1)2122(123n)n 即:123n

n(n1)

2222332

类比上述求法:请你求出123n的值.(提示:(n1)n3n3n1))

332332

19.[解] 21313113232321

4333332331┅┅

(n1)3n33n23n1

(n1)3133(122232n2)3(123n)n

2222

所以: 123n

11n[(n1)31n3n] 32

n(n1)(2n1)6

21.(13分)自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其

再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,nN,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与

xn成正比,这些比例系数依次为正常数a,b,c.(Ⅰ)求xn1与xn的关系式;

(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)

21.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

22cxn,因此xn1xnaxnbxncxn,nN*.(*)

即xn1xn(ab1cxn),nN*.(**)

(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n∈N*,从而由(*)式得xn(abcxn)恒等于0,nN*,所以abcx10.即x1所以a>b.猜测:当且仅当a>b,且x1

ab

.因为x1>0,c

ab

时,每年年初鱼群的总量保持不变.c

ACBC

AEBE

A

22.(14分)在ΔABC中(如图1),若CE是∠ACB的平分线,则=.其证明过程:作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F

A

∵CE是∠ACB的平分线,G ∴EG=EH.ACAC·EGSΔAEC

又∵ = =,BCBC·EHSΔBEC

B

2hC 图2

AEAE·CFSΔAEC

==,BEBE·CFSΔBEC

∴ =ACBCAEBE

B HC

图1

(Ⅰ)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是______

(Ⅱ)证明你所得到的结论.SΔACDAESΔACDSΔAECSΔACDSΔAED

21.结论:=或 = 或=

SΔBCDBESΔBCDSΔBECSΔBCDSΔBED

证明:设点E是平面ACD、平面BCD的距离分别为h1,h2,则由平面CDE平分二面角A-CD-B知h1=h2.SΔACDh1SΔACDVA-CDE

又∵==

SΔBCDh2SΔBCDVB-CDE

A

A G

B

2B HC

图1

hC

AESΔAEDVC-AEDVA-CDE

= =BESΔBEDVC-BEDVB-CDE

高中数学推理与证明测试题 篇7

1.下列几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A与∠B是两条直线的同旁内角,则∠A+∠B=180°

B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数均超过50人

C.由平面三角形的性质,推测空间四面体的性质

11D.在数列{an}中,a1=1,an=an-1+)(n≥2),由此归纳出{an}的通项公式 2an-

1解析:选A.两条直线平行,同旁内角互补(大前提)

∠A与∠B是两条平行直线的同旁内角(小前提)

∠A+∠B=180°(结论)

2.下列表述正确的是()

①归纳推理是由部分到整体的推理 ②归纳推理是由一般到一般的推理 ③演绎推理是由一般到特殊的推理 ④类比推理是由特殊到一般的推理 ⑤类比推理是由特殊到特殊的推理

A.①②③B.②③④

C.②④⑤D.①③⑤

解析:选D.归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.

3.下面使用类比推理恰当的是()

A.“若a²3=b²3,则a=b”类推出“若a²0=b²0,则a=b”

a+babB.“(a+b)c=ac+bc”类推出“ cc

a+babC.“(a+b)c=ac+bc”类推出“c≠0)” ccc

nnnnnnD.“(ab)=ab”类推出“(a+b)=a+b” c

解析:选C.由类比推理的特点可知.

4.(2010年安徽省皖南八校高三调研)定义集合A,B的运算:A⊗B={x|x∈A或x∈B且x∉(A∩B)},则A⊗B⊗A=________.解析:如图,A⊗B表示的是阴影部分,设A⊗B=C,运用类比的方法可知,C⊗A=B,所以A⊗B⊗A=B

.答案:B

5.(2009年高考浙江卷)设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,________,________,T16成等比数列. T1

2解析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性:

设等比数列{bn}的公比为q,首项为b1,则T4=b1q,T8=b1q=b1q,121+2+„+111266

T12=b1q=b1q,4681+2+„+7828

T8T12422438

=b1q,T4T8T82T12T8T12

即)²T4,故T4,成等比数列. T4T8T4T8

T8T12

答案:T4T8

6.等差数列{an}中,公差为d,前n项的和为Sn,有如下性质:(1)通项an=am+(n-m)d;

*

(2)若m+n=p+q,m、n、p、q∈N,则am+an=ap+aq;(3)若m+n=2p,则am+an=2ap;

(4)Sn,S2n-Sn,S3n-S2n构成等差数列.

∴=b1q,请类比出等比数列的有关性质.

解:等比数列{an}中,公比为q,前n项和为Sn,则可以推出以下性质:

n-m

(1)an=amq;

*

(2)若m+n=p+q,m、n、p、q∈N,则am²an=ap²aq;

(3)若m+n=2p,则am²an=ap;

(4)当q≠-1时,Sn,S2n-Sn,S3n-S2n构成等比数列.

练习

1.下列平面图形中与空间的平行六面体作为类比对象较合适的是()A.三角形B.梯形 C.平行四边形D.矩形

解析:选C.因为平行六面体相对的两个面互相平行,类比平面图形,则相对的两条边互相平行,故选C.7598139b+mb2,>>,„若a>b>0且m>0,则()

10811102521a+maA.相等B.前者大 C.后者大D.不确定

b+mb

解析:选B.观察题设规律,由归纳推理易得.a+ma

3.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()

A.小前提错B.结论错 C.正确的D.大前提错 解析:选C.大前提正确,小前提正确,故命题正确. 4.下列推理是归纳推理的是()

A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆

B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式

x2y2

C.由圆x+y=r的面积πr,猜想出椭圆=1的面积S=πab

ab

D.科学家利用鱼的沉浮原理制造潜水艇

解析:选B.从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理.

5.给出下列三个类比结论.

nnnnnnn

①(ab)=ab与(a+b)类比,则有(a+b)=a+b;

②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;

2222222

③(a+b)=a+2ab+b与(a+b)类比,则有(a+b)=a+2a²b+b.其中结论正确的个数是()

A.0B.1 C.2D.3 解析:选B.③正确.

6.观察图中各正方形图案,每条边上有n(n≥2)个圆点,第n个图案中圆点的个数是an,按此规律推断出所有圆点总和Sn与n的关系式为()

A.Sn=2n-2nB.Sn=2n

C.Sn=4n-3nD.Sn=2n+2n

解析:选A.事实上由合情推理的本质:由特殊到一般,当n=2时有S2=4,分别代入即可淘汰B,C,D三选项,从而选A.也可以观察各个正方形图案可知圆点个数可视为首项为4,公差为4的等差数列,因此所有圆点总和即为等差数列前n-1项和,即Sn=(n-1)³4(n-1)(n-2)2+2n-2n.7.y=cosx(x∈R)是周期函数,演绎推理过程为________. 答案:大前提:三角函数是周期函数; 小前提:y=cosx(x∈R)是三角函数; 结论:y=cosx(x∈R)是周期函数.

8.对于非零实数a,b,以下四个命题都成立:

12222

①aa+b)=a+2ab+b;③若|a|=|b|,则a=±b;④若a=ab,则a

a

=b.那么,对于非零复数a,b,仍然成立的命题的所有序号是________.

解析:对于①,当a=i时,ai+i-i=0,故①不成立;

ai

对于②④,由复数四则运算的性质知,仍然成立.

对于③,取a=1,b=i,则|a|=|b|,但a≠±b,故③不成立. 答案:②④

9.已知数列2008,2009,1,-2008,-2009,„,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2009项之和S2009等于________.

解析:数列前几项依次为2008,2009,1,-2008,-2009,-1,2008,2009,„每6项一循环,前6项之和为0,故前2009项包含334个周期和前5个数,故其和为2008+2009+1-2008-2009=1.答案:1

10.用三段论的形式写出下列演绎推理.

(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等. 解:(1)两个角是对顶角

则两角相等,大前提 ∠1和∠2不相等,小前提 ∠1和∠2不是对顶角.结论

(2)每一个矩形的对角线相等,大前提 正方形是矩形,小前提 正方形的对角线相等.结论 11.观察:

(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1;

(2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1.由以上两式成立,推广到一般结论,写出你的推论. 解:若锐角α,β,γ满足α+β+γ=90°,则tanαtanβ+tanβtanγ+tanαtanγ=1.12.已知等差数列{an}的公差d=2,首项a1=5.(1)求数列{an}的前n项和Sn;

(2)设Tn=n(2an-5),求S1,S2,S3,S4,S5;T1,T2,T3,T4,T5,并归纳出Sn与Tn的大小规律.

解:(1)由已知a1=5,d=2,∴an=a1+(n-1)²d=5+2(n-1)=2n+3.∴Sn=n(n+4).

(2)Tn=n(2an-5)=n[2(2n+3)-5],∴Tn=4n+n.22

高中数学推理与证明测试题 篇8

一、选择题

1.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子()

A.是白色的B.是黑色的C.是白色的可能性大D.是黑色的可能性大

2.由直线与圆相切时,圆心与切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()

A.归纳推理B.演绎推理C.类比推理D.特殊推理

3.用演绎法证明函数yx是增函数时的大前提是()

A.增函数的定义B.函数yx满足增函数的定义

D.若x1x2,则f(x1)f(x2)33C.若x1x2,则f(x1)f(x2)

sinBcosAcosB,则该三角形是()4.△ABC中,若sinA

A.直角三角形B.钝角三角形C.锐角三角形D.以上都不可能 B

5.已知直线a,b是异面直线,直线c∥a,那么c与b的位置关系()

A.一定是异面直线B.一定是相交直线

C.不可能是平行直线D.不可能是相交直线

6.在等差数列an中,若an0,公差d0,则有a4a6a3a7,类比上述性质,在等比数列bn中,若bn0,q1,则b4,b5,b7,b8的一个不等关系是()

A.b4b8b5b7

C.b4b7b5b8

二、填空题

7.若△ABC内切圆半径为r,三边长为a,b,c,则△ABC的面积SB.b5b7b4b8 D.b4b5b7b8 1r(abc),根

2据类比思想,若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积为.

1R(S1S2S3

S4)

38.求证:一个三角形中,至少有一个内角不小于60,用反证法证明时的假设为.三角形的三个内角都小于60

9.m克糖水中有n克糖(mn0),若再添加t克糖(t0),则糖水变甜了,试根据这一事实得出一个不等式.

nnt mmt

写出该数列的一个通项公式an,.

nN*)

1.设a,b

c,则a,b,c的大小关系是. acb

12.半径为r的圆的面积S(r)r,周长C(r)2r,r看作(0,)上的变量,则2

(r2)2r.①

①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.

对于半径为R的球,若将R看作(0,)上的变量,请你写出类似于①的式子:

②式可用语言叙述为:.

432; R4R3

球的体积函数的导数等于球的表面积函数

三、解答题

13.数列an中,a12,an1

表达式. an,nN*,依次计算a2,a3,a4,并归纳猜想an的3an1

a22222,a3,a4.猜想an. 713196n5

14.当一个圆与一个正方形的周长相等时,这个圆的面积比正方形的面积大.将此结论由平面类比例到空间时,你能够得出什么样的结论,并证明你的结论.

由平面类比到空间可得如下结论:当一个球与一个正方体的表面积相等时,这个球的体积比正方体的体积大.

证明略.

15.已知a,b,c(0,1),求证:(1a)b,(1b)c,(1c)a不能同时大于1. 4

高中数学推理与证明测试题 篇9

2012年高考真题理科数学解析分类汇编14推理与证明

1.【2012高考江西理6】观察下列各式:ab1,a2b23,a3b34,a4b47, a5b511,则ab 1010

A.28B.76C.123D.199

【答案】C

【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。

【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即anan1an2,所以可推出a10123,选C.2.【2012高考全国卷理12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=7.动点P从E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,3反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为

(A)16(B)14(C)12(D)10

【答案】B

【命题意图】本试题主要考查了反射原理与三角形相似知识的运用。通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可。

【解析】结合已知中的点E,F的位置,进行作图,推理可知,在反射的过程中,直线是

平行的,那么利用平行关系,作图,可以得到回到EA点时,需要碰撞14次即可.3.【2012高考湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d

根据π =3.14159

.人们还用过一些类似的近似公式.判断,下列近似公式中最精确的一个是

B

.dC

.dD

.d11.d【答案】D

考点分析:考察球的体积公式以及估算.【解析】

4d3a6b69由V(),得d设选项中常数为,则=;A中代入得==3.375,32ba16

616157611B中代入得==3,C中代入得==3.14,D中代入得==3.142857,2300

21由于D中值最接近的真实值,故选择D。

4.【2012高考陕西理11】 观察下列不等式

13 222

115123,2331

———— 1

1

1117 223242

4„„

照此规律,第五个不等式为....

1111111

2222.2

234566

1111111

【解析】通过观察易知第五个不等式为122222.234566

【答案】1

5.【2012高考湖南理16】设N=2(n∈N,n≥2),将N个数x1,x2,„,xN依次放入编号为

1,2,„,N的N个位置,得到排列P0=x1x2„xN.将该排列中分别位于奇数与偶数位置的数取

n

*

NN和后个位置,得到排列P1=x1x3„xN-1x2x4„xN,将此22

N

操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到p2;当2≤i≤

Ni

n-2时,将Pi分成2段,每段i个数,并对每段C变换,得到Pi+1,例如,当N=8时,出,并按原顺序依次放入对应的前

P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第___个位置;

n

(2)当N=2(n≥8)时,x173位于P4中的第___个位置.【答案】(1)6;(2)32【解析】(1)当N=16时,n4

11

P0x1x2x3x4x5x6P1x1x3x5x7

x16,可设为(1,2,3,4,5,6,x16,即为(1,3,5,7,9,16), 2,4,6,8,16),16), x7位于P2中的第6

x15x2x4x6

P2x1x5x9x13x3x7x11x15x2x6

个位置,;

x16,即(1,5,9,13,3,7,11,15,2,6,(2)方法同(1),归纳推理知x173位于P4中的第32

n4

11个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力.需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.6.【2012高考湖北理13】回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,„,99.3位回文数有90个:101,111,121,„,191,202,„,999.则(Ⅰ)4位回文数有个;

(Ⅱ)2n1(nN)位回文数有 【答案】90,910

考点分析:本题考查排列、组合的应用.【解析】(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有91090种。答案:90

————

n

(Ⅱ)法

一、由上面多组数据研究发现,2n+1位回文数和2n+2位回文数的个数相同,所以可以算出2n+2位回文数的个数。2n+2位回文数只用看前n+1位的排列情况,第一位不能为0有9种情况,后面n项每项有10种情况,所以个数为910.法

二、可以看出2位数有9个回文数,3位数90个回文数。计算四位数的回文数是可以看出在2位数的中间添加成对的“00,11,22,„„99”,因此四位数的回文数有90个按此规律推导这十个数,因此,而当奇数位时,可以看成在偶数位的最中间添加0~9,则答案为910.n

n

7.【2012高考北京理20】(本小题共13分)

设A是由mn个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记Sm,n为所有这样的数表组成的集合.对于ASm,n,记ri(A)为A的第i行各数之和(1剟i

m),cj(A)为A的第j列各数之和(1剟j

;记k(A)为n)

r1(A),r2(A),„,rm(A),c1(A),c2(A),„,cn(A)中的最小值.(1)对如下数表A,求k(A)的值;

(2)设数表AS2,3形如

求k(A)的最大值;

(3)给定正整数t,对于所有的AS2,2t1,求k(A)的最大值.【答案】解:(1)由题意可知r1A1.2,r2A1.2,c1A1.1,c2A0.7,c3A1.8

∴kA0.7

(2)先用反证法证明kA≤1:

若kA1

则|c1A||a1|a11,∴a0 同理可知b0,∴ab0 由题目所有数和为0 即abc1 ∴c1ab1 与题目条件矛盾

———— 3

∴kA≤1.

易知当ab0时,kA1存在 ∴kA的最大值为1(3)kA的最大值为

2t1

.t22t1

首先构造满足k(A)的A{ai,j}(i1,2,j1,2,...,2t1):

t2

t1

a1,1a1,2...a1,t1,a1,t1a1,t2...a1,2t1,t2

a2,1a2,2

t2t1

...a2,t,a2,t1a2,t2...a2,2t11.t(t2)

经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且

|r1(A)||r2(A)|

2t1,t2

t2t1t12t1,|c1(A)||c2(A)|...|ct(A)|11

t(t2)t2t2

|ct1(A)||ct2(A)|...|c2t1(A)|1

下面证明

t12t1

.t2t2

2t1

是最大值.若不然,则存在一个数表AS(2,2t1),使得t22t1

k(A)x.t2

由k(A)的定义知A的每一列两个数之和的绝对值都不小于x,而两个绝对值不超过1的数的和,其绝对值不超过2,故A的每一列两个数之和的绝对值都在区间[x,2]中.由于

x1,故A的每一列两个数符号均与列和的符号相同,且绝对值均不小于x1.设A中有g列的列和为正,有h列的列和为负,由对称性不妨设gh,则

gt,ht1.另外,由对称性不妨设A的第一行行和为正,第二行行和为负.考虑A的第一行,由前面结论知A的第一行有不超过t个正数和不少于t1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x1(即每个负数均不超过1x).因此

|r1(A)|r1(A)t1(t1)(1x)2t1(t1)xx2t1(t2)xx,故A的第一行行和的绝对值小于x,与假设矛盾.因此kA的最大值为

2t1

。t2

————

8.【2012高考湖北理】(本小题满分14分)

(Ⅰ)已知函数f(x)rxxr(1r)(x0),其中r为有理数,且0r1.求f(x)的最小值;

(Ⅱ)试用(Ⅰ)的结果证明如下命题:

设a10,a20,b1,b2为正有理数.若b1b21,则a1b1a2b2a1b1a2b2;(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题......注:当为正有理数时,有求导公式(x)x1.【答案】(Ⅰ)f(x)rrxr1r(1xr1),令f(x)0,解得x1.当0x1时,f(x)0,所以f(x)在(0,1)内是减函数; 当 x1 时,f(x)0,所以f(x)在(1,)内是增函数.故函数f(x)在x1处取得最小值f(1)0.(Ⅱ)由(Ⅰ)知,当x(0,)时,有f(x)f(1)0,即xrrx(1r)①

若a1,a2中有一个为0,则a1b1a2b2a1b1a2b2成立; 若a1,a2均不为0,又b1b21,可得b21b1,于是 在①中令x

a1aa,rb1,可得(1)b1b11(1b1),a2a2a2

即a1b1a21b1a1b1a2(1b1),亦即a1b1a2b2a1b1a2b2.综上,对a10,a20,b1,b2为正有理数且b1b21,总有a1b1a2b2a1b1a2b2.②

(Ⅲ)(Ⅱ)中命题的推广形式为:

设a1,a2,若b1b2,an为非负实数,b1,b2,b1b2bn1,则a1a2,bn为正有理数.bn

ana1b1a2b2

anbn.③

用数学归纳法证明如下:

(1)当n1时,b11,有a1a1,③成立.(2)假设当nk时,③成立,即若a1,a2,且b1b2

b1b2

bk1,则a1a2,ak为非负实数,b1,b2,bk为正有理数,bk

aka1b1a2b2

akbk.,bk,bk1为正有理数,当nk1时,已知a1,a2,且b1b2aa

b1

b22,ak,ak1为非负实数,b1,b2,bkbk11,此时0bk11,即1bk10,于是

bk1k1

aa

bkk

(aa

b11b22

a)a

bkkbk1k1

=(a

b11bk11

a

b21bk12

a

bk

1bk11bk1k)

bk1ak1.———— 5

b1b2



1bk11bk1

bk

1,由归纳假设可得

1bk1

b1b2

a2

1bk11bk1

ak

aba2b2akbkbk

11,1bk11bk1

a

b1

1bk11

a

b21bk12

a

bk1bk1k

a1

b1b2

从而a1a2bkbk1

akak1

aba2b2akbk

11

1bk1

1bk1

bk1

ak1.又因(1bk1)bk11,由②得

a1b1a2b2akbk



1bk1

1bk1

bk1

ak1

a1b1a2b2akbk

(1bk1)ak1bk1

1bk1

a1b1a2b2

b2

从而a1b1a2

bkbk1akak1a1b1a2b2

akbkak1bk1,akbkak1bk1.故当nk1时,③成立.由(1)(2)可知,对一切正整数n,所推广的命题成立.说明:(Ⅲ)中如果推广形式中指出③式对n2成立,则后续证明中不需讨论n1的情况.9.【2012高考福建理17】(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin13°+cos17°-sin13°cos17°(2)sin15°+cos15°-sin15°cos15°(3)sin18°+cos12°-sin18°cos12°

(4)sin(-18°)+cos48°-sin(-18°)cos48°(5)sin(-25°)+cos55°-sin(-25°)cos55° Ⅰ 试从上述五个式子中选择一个,求出这个常数

Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.103sin30 24

2200

(II)三角恒等式为:sincos(30)sincos(30)

解答:(I)选择(2):sin15cos15sin15cos151

sin2cos2(300)sincos(30)

sin11

sin)2sinsin)22

333sin2cos2444

高中数学推理与证明测试题 篇10

1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

1.直接证明中最基本的两种证明方法是______和______.

2.综合法是利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立.综合法又叫________.

3.分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等).分析法又叫________.

4.反证法:假设原命题______(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明________,从而证明了__________,这样的证明方法叫反证法. 应用反证法证明数学命题,一般有下面几个步骤:

第一步,分清命题“p→q”的__________;

第二步,作出与命题结论q相矛盾的假设____;

第三步,由p与q出发,应用正确的推理方法,推出矛盾结果;

第四步,断定产生矛盾结果的原因在于开始所作的假设q不真,于是原结论q成立,从而间接地证明了命题p→q为真.

1.分析法是从要证明的结论出发,逐步寻找使结论成立的().

A.充分条件B.必要条件

C.充要条件D.等价条件

2.用反证法证明命题“三角形的三个内角至少有一个不大于60°”时,应假设().

A.三个内角都不大于60°

B.三个内角都大于60°

C.三个内角至多有一个大于60°

D.三个内角至多有两个大于60°

23.设t=a+2b,s=a+b+1,则下列关于t和s的大小关系中正确的是().

A.t>sB.t≥s

C.t<sD.t≤s

4.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ过程应用了().

A.分析法

B.综合法

C.综合法、分析法综合应用

D.间接证明法

5.因为某种产品的两种原料相继提价,所以生产者决定对产品分两次提价,现在有三种提价方案:

方案甲:第一次提价p%,第二次提价q%;

方案乙:第一次提价q%,第二次提价p%;

p+qp+q方案丙:第一次提价,第二次提价%,2

2其中p>q>0.比较上述三种方案,提价最多的是().

A.甲B.乙

C.丙D.一样多

一、综合法

【例1】如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:

(1)平面AMD∥平面BPC;(2)平面PMD⊥平面PBD. 方法提炼

1.综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明题的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.

2.利用综合法证不等式时,是以基本不等式为基础,以不等式的性质为依据,进行推理论证的.因此,关键是找到与要证结论相匹配的基本不等式及其不等式的性质.

3.综合法是一种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法,这就是保证前提正确,推理合乎规律,才能保证结论的正确性.

请做演练巩固提升

1二、分析法

【例2】已知△ABC三边a,b,c的倒数成等差数列,证明:B为锐角. 方法提炼

1.分析法是“执果索因”,它是从要证的结论出发,倒着分析,逐渐地靠近已知. 2.用分析法证“若P,则Q”这个命题的模式是:

为了证明命题Q为真,这只需证明命题P1为真,从而有„„ 这只需证明命题P2为真,从而有„„ „„

这只需证明命题P为真.

而已知P为真,故Q必为真.

提醒:用分析法证题时,一定要严格按格式书写,否则极易出错.

3.在解决问题时,我们经常把综合法和分析法结合起来使用,根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P,若由P可以推出Q成立,就可以证明结论成立.一般情况下,用分析法寻找思路,用综合法完成证明.

请做演练巩固提升

4三、反证法

【例3】设{an}是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列{Sn}不是等比数列;(2)数列{Sn}是等差数列吗?为什么? 方法提炼

反证法是间接证明问题的一种常用方法,它不是从已知条件去直接证明结论,而是先否定结论,在否定结论的基础上进行演绎推理,导出矛盾,从而肯定结论的真实性.用反证法证明要把握三点:(1)反设:必须先否定结论,即肯定结论的反面;(2)归谬:必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证.推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但推导出的矛盾必须是明显的;(3)结论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误,既然结

论的反面不成立,从而肯定了结论成立.

请做演练巩固提升

证明类问题中的新情景问题

【典例】设f(x),g(x),h(x)是R上的任意实数函数,如下定义两个函数(f∘g)(x)和(f·g)(x):对任意x∈R,(f∘g)(x)=f(g(x)),(f·g)(x)=f(x)g(x).则下列等式恒成立的是().

A.((f∘g)·h)(x)=((f·h)∘(g·h))(x)B.((f·g)∘h)(x)=((f∘h)·(g∘h))(x)C.((f∘g)∘h)(x)=((f∘h)∘(g∘h))(x)D.((f·g)·h)(x)=((f·h)·(g·h))(x)

解析:((f·g)∘h)(x)=(f·g)(h(x))=f(h(x))g(h(x))

=(f∘h)(x)(g∘h)(x)=((f∘h)·(g∘h))(x). 答案:B

答题指导:对于此类新情景下的新定义问题需要做好以下几点: 1.充分理解题意,理解定义是解题的关键.

2.若是选择、填空题建议以特例理解新定义,可以化难为易、化繁为简.

3.“按规则要求办事”,即新定义如何要求就如何去做,此法虽然可能会繁琐,但只要理解透彻,运算得当也能解决问题.

1.(2012浙江绍兴模拟)设a=lg 2+lg 5,b=e(x<0),则a与b的大小关系为(). A.a>bB.a<b C.a=bD.a≤b

2.(2012山师大附中模拟)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为().

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数 C.a,b,c都是奇数 D.a,b,c都是偶数

3.若函数F(x)=f(x)+f(-x)与G(x)=f(x)-f(-x),其中f(x)的定义域为R,且f(x)不恒为零,则().

A.F(x)、G(x)均为偶函数

B.F(x)为奇函数,G(x)为偶函数 C.F(x)与G(x)均为奇函数

D.F(x)为偶函数,G(x)为奇函数

x

4.已知a,b∈(0,+∞),求证:(a3+b)<(a2b)

133

122

.参考答案

基础梳理自测 知识梳理

1.综合法 分析法

2.顺推证法或由因导果法 3.递推证法或执果索因法

4.不成立 假设错误 原命题成立 条件和结论 q 基础自测 1.A 2.B

3.D 解析:∵s-t=a+b2+1-a-2b=(b-1)2≥0,∴s≥t.4.B 解析:因为证明过程是“从左往右”,即由条件⇒结论. 5.C 解析:设产品的原价为a,则按方案甲可得提价后的价格为A=a(1+p%)·(1+q%);按方案乙可得提价后的价格为B=a(1+q%)(1+p%)=A;按方案丙可得提价后的价格为

p+qp+q

C=a1+1+

22p+q2

=a1+%,2

p+q2a

则C-B=a1+-a(1+p%)(1+q%)=(p%-q%)2>0,故应选C.42

考点探究突破

【例1】证明:(1)因为PB⊥平面ABCD,MA⊥平面ABCD,所以PB∥MA.因为PB⊂平面BPC,MA平面BPC,所以MA∥平面BPC.同理,DA∥平面BPC.又MA⊂平面AMD,AD⊂平面AMD,MA∩AD=A,所以平面AMD∥平面BPC.(2)连接AC,设AC∩BD=E,取PD的中点F,连接EF,MF

.因为四边形ABCD为正方形,所以E为BD的中点. 因为F为PD的中点,所以EFPB.21

又AM∥PB,所以四边形AEFM为平行四边形. 所以MF∥AE.因为PB⊥平面ABCD,AE⊂平面ABCD,所以PB⊥AE.所以MF⊥PB.因为四边形ABCD为正方形,所以AC⊥BD.所以MF⊥BD.所以MF⊥平面PBD.又MF⊂平面PMD,所以平面PMD⊥平面PBD.【例2】证明:要证明B为锐角,根据余弦定理,a2+c2-b2

也就是证明cos B=0,2ac

即需证a2+c2-b2>0.由于a2+c2-b2≥2ac-b2,要证a2+c2-b2>0.只需证2ac-b>0.∵a,b,c的倒数成等差数列,112

∴,即2ac=b(a+c). acb

∴要证2ac-b2>0,只需证b(a+c)-b2>0,即证b(a+c-b)>0.上述不等式显然成立. ∴B必为锐角.

【例3】(1)证明:若{Sn}是等比数列,则S22=S1·S3,即a12(1+q)2=a1·a1(1+q+q2),∵a1≠0,∴(1+q)2=1+q+q2,解得q=0,这与q≠0相矛盾,故数列{Sn}不是等比数列.

(2)解:当q=1时,{Sn}是等差数列.

当q≠1时,{Sn}不是等差数列.假设q≠1时,S1,S2,S3成等差数列,即2S2=S1+S3,2a1(1+q)=a1+a1(1+q+q).

由于a1≠0,∴2(1+q)=2+q+q2,即q=q2,∵q≠1,∴q=0,这与q≠0相矛盾.

综上可知,当q=1时,{Sn}是等差数列;当q≠1时,{Sn}不是等差数列. 演练巩固提升

1.A 解析:∵a=lg 2+lg 5=lg 10=1,而b=ex<e0=1,故a>b.2.B 解析:“恰有一个偶数”的对立面是“没有偶数或至少有两个偶数”.

3.D 解析:由F(x)=f(x)+f(-x),G(x)=f(x)-f(-x)知F(x)=F(-x),G(-x)+G(x)=0.4.证明:因为a,b∈(0,+∞),要证原不等式成立,只需证[(ab)]<[(ab)]即证(a3+b3)2<(a2+b2)3,即证a6+2a3b3+b6<a6+3a4b2+3a2b4+b6,只需证2a3b3<3a4b2+3a2b4.因为a,b∈(0,+∞),所以即证2ab<3(a2+b2).

而a2+b2≥2ab,3(a2+b2)≥6ab>2ab成立,所以(ab)<(ab).133

122

1336

上一篇:眼镜行业安全生产检查总结下一篇:写柳树的作文的