高分子润滑材料(通用8篇)
氟油是分子中含有氟元素的合成润滑油,为烷烃的氢被氟或被氟、氯取代而行的氟碳化合物或氟氯碳化合物,较重要的有全氟烃、氟氯碳和全氟醚。
1.氟油的特性
1)一般物理性能 全氟烃油是无色无味液体,它的密度为相应烃的2倍多,分子量大于相应烃的2.5~4倍,凝点较高。氟氯碳的轻、中馏分是无色液体,减压蒸馏所得重馏分是白色脂状物质。它的密度比全氟烃油稍小,接近于2g/ml,凝点稍高,粘温性能比全氟烃油好。聚全氟丙醚油也是无色液体,密度为1.8~1.9g/cm3,与全氟烃油和氟氯碳油相比,其凝点较低,粘温性最好。聚全氟甲乙醚的凝点更低。
2)粘度特性 全氟烃油在上述三类含氟油中,粘温性最差,氟氯碳油的粘温性比全氟烃油好。全氟醚油分子中由于引入了醚键,增加了主链的活动度,因此其粘温性优于全氟烃,而其稳定性相似。聚全氟甲乙醚的粘温性比聚全氟异丙醚更好。
3)化学稳定性 含氟油的最大特点是具有优异的化学稳定性,这是矿物油和其它合成油无法比拟的。在100℃以下,它们分别与浓硝酸、浓硫酸、浓盐酸、王水、铬酸洗液、氢氧化钾、氢氧化钠的水溶液、氟化氢、氯化氢等接触时都不发生化学反应。
4)氧化稳定性 这三类含氟油在空气中加热不燃烧、与氟气,过氧化氢水溶液、高锰酸钾水溶液等,在100℃以下不反应;氟氯碳油与氟化氯气态(100℃以下)或液态均不发生反应,全氟醚油在300℃时与发烟硝酸或四氧化二氮接触不发生爆炸。
5)热稳定性 这三类含氟油的热稳定温度随精制浓度不同而不同,聚全氟异丙醚油为260~300℃,氟氯碳油为220~280℃,全氟烃油为220~260℃。聚全氟异丙醚油在250℃下加热100h,其粘度无明显变化,特别是经过氟化精制的油,颜色仍为无色,但其酸值稍有增加。
6)润滑性 含氟润滑油的润滑性比一般矿物油好,用四球机测定其最大无卡咬负荷,氟氯碳油最高,聚全氟异丙醚次之,全氟烃居末。
由于全氟聚醚液体具有很有限溶解能力,在其中很少能加入添加剂以改善其性能。在真空极压条件下氟醚与金属表面发生作用,发生腐蚀,这点限制了其性能的发挥。为了改善全氟聚醚油在极压下的性能可以通过抑制或显著降低裸金属与全氟聚醚油之间的相互反应来达到或是添加特制的添加剂来达到改善性能的目的。
2.氟油的应用
拉拔成型是指加工材料通过带有一定锥度孔的模具来减小其横截面积的一种塑性加工成型方法[1]。由于在拉拔过程中, 拉拔润滑液对拉拔过程起降温、减摩双重作用, 可以提高拉拔质量, 因而对拉拔材料润滑的研究极为重要。本文通过对B21C9/00 及B21C9/02 分类号下的专利申请情况、国内外的专利申请量等情况进行研究分析。通过专利信息分析, 以了解金属拉拔材料润滑加工技术的发展现状。
1 拉拔材料润滑技术的发展
过去在钢丝拉拔过程中, 钢丝先经过润滑剂盒, 在钢丝表面覆上一层润滑剂, 再进入拉丝模进行拉拔。然而, 在拉拔过程中润滑剂易结焦、结块, 导致钢丝经过时附着的润滑剂减少, 容易沿着钢丝的方向形成中空, 润滑不充分造成硬拉拔, 使得钢丝表面产生划痕, 影响钢丝成品的质量。
2 专利分析数据的来源及思路
本文通过分类号与关键词的组合, 在CNABS、VEN数据库中进行检索, 检索截至时间为2014 年1 月30 日, 检索结果如下:CNABS:230 篇, VEN:1216 篇, 然后就检索到的专利申请进行相关分析, 研究该技术领域所处的发展阶段、重要的竞争国家的研发实力。
3 专利申请趋势分析
3.1 在中国的专利申请
从图1 中可以看出, 从2005 年开始专利在中国的专利申请数量开始上升, 到2013 年达到最高峰 (41 件) , 由统计可得:第1 阶段 (1985 - 2004 年) 申请处于技术萌芽阶段, 专利的申请件数相对较少, 相关技术发展缓慢;第2 阶段 (2005 - 2009 年) 专利处于技术成长期, 产业技术有所突破, 专利的申请量开始上升, 期间共申请相关专利53件;第3 阶段 (2010-2014 年) 专利申请发展迅速, 这一期间专利申请量达到138 件, 占专利申请总量的60%, 表明在这期间该领域的技术发展迅速。
3.2 国外的专利申请
在国外专利申请当中, 涉及拉拔材料润滑方面的专利, 日本的申请量为最多, 可见日本在这一领域的发展较为迅速, 对该产业的重视度高于其他发达国家, 其相关专利最早开始于1974年的一篇主题为“拉拔润滑方法”的申请专利。
通过分析可知日本相关专利在1974 - 2003 年间呈现持续增长的趋势, 在1994 - 2003 年间专利申请量达到最大值, 随后在近10 年当中, 专利申请量开始出现下降, 可能是有某些专利申请未公开, 也可能说明日本在该领域的技术已逐渐趋于成熟。
4 审查实践
案例申请号:201010611445.5。发明名称:润滑粉的振动搅拌装置
技术方案:包括粉夹左片和粉夹右片, 粉夹左片和粉夹右片之间通过压缩弹簧和拉伸弹簧连接, 所述粉夹左片下端定位一左送丝轮, 粉夹右片下端并排 ( 指轴心线并排) 定位两右送丝轮, 左、右送丝轮能绕各自轴心自转, 左送丝轮处于两右送丝轮之间, 所述粉夹左片和粉夹右片下端浸没于润滑粉中, 左送丝轮与两右送丝轮的轮周侧面之间供焊丝通过并夹紧焊丝, 所述粉夹左片和粉夹右片两者至少之一上固定设有一振动器。
申请所要解决的技术问题是如何避免拉丝过程中, 由于润滑粉沿焊丝方向出现减少的现象而导致拉毛焊丝;申请采用在粉夹上设置振动器的技术手段, 从而引起粉夹在润滑粉内振动, 达到在长时间的拉丝中保持润滑粉能均匀附着在焊丝表面上, 维持焊丝质量的稳定的作用。通过上述分析可以确定, 该申请技术方案的关键在于采用振动器的结构设计来改善拉丝过程中润滑作用的有效性, 通过检索, 发现中文库未涉及到振动器的结构, 大部分都是采用搅拌杆配合送丝轮的结构来实现润滑的均匀性, 如专利申请 (CN201044928Y) 和专利申请 (CN201079799Y) [2,3]。然后在外文数据库进行检索[4], 如果只通过摘要附图来选择, 容易忽略合适的对比文件, 通过上述专利统计分析发现外国申请中与拉丝材料润滑领域相关的专利以日本申请为主, 因而重点阅读日文文献, 最后检索到一篇日本文献“JP特開2004-82159A”作为最接近的现有技术。
通过对比分析, 单从对比文件的摘要附图, 不容易将该对比文件选取出来, 而通过阅读其说明书附图, 可以发现与本申请附图非常相似的附图, 因而很快确定该对比文件, 该文献公开了“在粉夹上设置振动器”, 以解决拉丝过程中出现润滑粉减少而导致硬拉拔的技术问题。
综上, 在了解拉拔材料润滑的发展概况后, 可以快速理解发明的技术构思, 准确获得技术方案的关键点, 有效的筛选对比文件, 减少检索时间, 提高审查效率。
摘要:拉拔材料润滑质量的好坏会直接影响到钢丝拉拔后的质量。随着润滑技术的发展, 人们逐渐对拉拔加工过程中钢丝润滑均匀性进行研究。本文从拉拔的基本概念出发, 梳理了与拉拔材料润滑相关专利申请的现状, 并对该领域的发展进行了分析, 最后结合具体案例介绍了如何利用技术综述提高审查工作的效率。
关键词:拉拔,润滑,均匀性
参考文献
[1]孙小桥, 邓长胜.铝合金导线拉拔成型几何模具的优化[J].科学技术与工程, 2011 (08) :1709-1712.
[2]翟世先, 陈建民, 徐华.钢丝拉拔润滑剂搅拌装置[J].中国专利:CN201044928Y’2008, 04 (09) .
[3]王金和, 拉丝润滑剂搅拌器[J].中国专利:CN201079799Y’2008, 07 (02) .
关键词:高职;高分子材料化学基础;内容;改革
《高分子材料化学基础》是高分子材料加工技术专业一门必修的专业基础课,是以高中(包括中专、技校、职高)化学基础为起点,以高分子化学知识为核心内容,融入高分子化学所必要的无机化学、有机化学、物理化学知识,构建本专业基本的化学知识体系,培养本专业所需化学实验操作基本技能,为学习后续的《塑料材料》、《高分子材料成型加工基础》、《塑料测试技术》、《塑料混配技术》、《塑料成型技术》等课程打基础。显然该课程是高分子材料加工技术重要的专业基础课。但从目前该课程的内容体系来看,学科体系明显,内容体系仍是无机化学、有机化学、物理化学及高分子化学知识体系的机械组合,其结果是课程内容多而杂,理论深而涩,给该课程的教学带来困难而且教学效果欠佳,可以认为目前该课程体系无法适应高职教育的要求,所以很有必要对该门课程的内容进行改革。
一、课程教学内容改革的依据
本门课程教学内容改革的依据主要考虑如下三点:第一是考虑高分子材料加工技术毕业生主要就业岗位对化学知识、技能及态度的需要,保证毕业生在就业岗位上具有够用的化学基础知识与从事化学实验室工作的技能;第二是考虑毕业生职业生涯发展的需要,要让学生掌握能够支持其进一步提高其专业水平所需的化学知识,为他们的职业发展提供后劲;第三是考虑目前高职生源的高中化学知识的掌握程度以及学习能力的实际情况。
为了掌握高分子材料加工技术专业毕业生的主要就业岗位对化学基础知识、技能及态度的要求,我们对湖南塑料行业校企联盟企业进行了走访调查,调查的主要企业有湖南路路通塑业有限公司、湖南神塑科技有限公司、南车集团时代工程塑料有限公司、湖南科天新材料有限公司、湖南省塑料研究所、湖南益达塑业有限公司、株洲三鑫塑胶科技有限公司、株洲创业塑料有限公司,另外还对25家塑料加工企业通过电子邮件发送调查表进行了调查,28家外省企业进行了电话访问调查,调查塑料加工企业达到61家。调查结果表明我校高分子材料加工技术专业毕业生就业主要有四大技术工作岗位,分别是塑料挤出技术员岗位、塑料注射技术员岗位、塑料配方技术员岗位、塑料测试技术员岗位。我们根据这四个主要技术岗位所需要的化学基础知识进行了问卷调查,发出问卷调查表207份,回收调查表198份。《高分子材料化学基础》教学内容需求调查表如表1所示。
从调查表中我们可以看出,《高分子材料化学基础》七个单元的内容对我校毕业生主要就业岗位都是需要的,其中以塑料配方技术员对《高分子材料化学基础》知识要求最高,统计需要数据达到1247次,其它三个就业的主要岗位对《高分子材料化学基础》内容要求相关不大,均超过了1100次,就业的其它岗位对本门课程的要求相对不高,只有934次。由此我们可以得出,《高分子材料化学基础》对本专业主要就业技术岗位来说非常重要,但对在其它岗位上就业的毕业生重要性相对降低。就各单元来说,以“碳链高聚物及其单体”单元最为重要,调查表中统计次数达964次,调查企业对象认为最不重要的内容是“高聚物合成”单元,只有573次,其次不重要的是“高聚物化学反应”单元,为707次,其它单元的统计次数多在800次左右,这几个单元的内容是可以认为是很重要的。
通过本次调查,我们知道了《高分子材料化学基础》哪些内容对毕业生就业岗位是最重要及很重要的,哪些内容相对不重要,为我们对《高分子材料化学基础》课程教学内容的选取找到了可靠的依据。
对于教学内容的选取我们也不能完全采取实用主义的办法,也就是说不是采用学生在企业的就业岗位用到那些知识我们就教授那些知识,高等职业教育属于国民教育序列中的高等教育,还需要考虑学生职业生涯的发展,也就是说为学生提供能够支撑其后续发展所必需的化学基础知识。采取的措施是在学生高中化学知识的基础上,将高等教育层次的化学基本的原理、理论融入各教学单元中,提高学生化学基本知识与技能,达到高分子材料加工技术专业大专层次所必需的化学基础。
同时我们还要考虑目前高职生源的实际情况,目前高职生源一般来说对高中化学课程掌握的情况不理想,学习能力也有待提高,所以我们选取《高分子材料化学基础》内容时也不能脱离生源基础的实际情况,没有必要将过深的化学理论纳入教学内容,不然学生无法掌握教学内容,反而造成不利于提高教学质量的影响,如结构化学的内容、化学反应机理的动力学分析等内容不必作为《高分子材料化学基础》的内容,以往的教学实践也证明过深的教学内容对学生学习本门课程是不利的。容易造成学生失去学习的信心与兴趣,从而从整体上影响课程教学效果。
二、教学内容的整合
如前所述,目前《高分子材料化学基础》的内容体系是无机化学、有机化学、物理化学、高分子化学等多门化学课的机械组合,每门课的教学课时在以往的教学中都在100个学时以上,即总课时在400学时以上,要在96学时的《高分子材料化学基础》这门课教授完原来400学时以上的内容,显然不对教学内容进行整合是不可能教授完相关内容,所以必须对高分子材料加工技术专业化学基础的教学内容进行整合,整合的依据就有前面所述的三个考虑。在课程内容的整合过程中,必须防止以前出现的几大化学内容简单的机械的组合,为此要正确把握好这几门化学基础课中相关内容的整合和优化,按照高分子材料加工技术专业人才培养目标对知识、技能及态度的要求,科学地进行“综合”,严格地把握好对相关课程内容“取”与“舍”的尺度。课程内容整合是为了改变以往按单一学科系统分别设置课程,各课程自成一体,缺乏联系,重理论而轻实践的现象和课程与课程间的内容重复,为此我们重新设计了《高分子材料化学基础》的内容结构体系,课程内容体系如表3所示。
从《高分子材料化学基础》教学内容新体系可以看出,新的内容体系打破了原来的几大化学课程内容机械组合的学科体系,考虑课程的职业性,是根据本专业毕业生就业岗位对本门课程知识、技能及态度的需要来设计内容,没有学科体系的影响。将无机化学、有机化学、物理化学、高分子化学这四门课的内容根据职业岗位的需要进行了取舍,整合为一门课程,即《高分子材料化学基础》。需要调整课程结构,重新优化课程内容,处理好相关内容的衔接。高分子材料化学基础以高分子材料为主线,无机化学部分容入各教学单元中,有机化学与高分子化学知识密切结合,物理化学内容也容入相关教学单元,舍去过深理论性教学内容,教学内容结合实际,提高学生学习本门课程的兴趣,从而提高教学效果。课后最后一个单元是综合训练,教学内容有高分子溶液的配制、常用高分子材料的鉴别及聚乙烯醇涂料的制备实验等,这些教学内容结合生产及生活实际,很好地实现了课程教学目标,教学实践证明,学生在学习这些内容时兴趣昂然,取得了较好的教学效果。
三、课程整合注意问题及效果
高职课程教学内容的整合是高职教育教学的热点与难点之一,《高分子材料化学基础》教学内容的改革在我校是近二年来的事情,仍有些问题在探索之中,如课程内容教学改革后教学方法、教学手段的配套改革,专业教学条件的改善问题等都得同时进行才会有较好的效果,现学校正在推广项目化课程改造,如何将该课程进行项目化改造也还有些问题,在探索之中由于本门课仍是本专业的专业基础课,教学内容与后续课程有较大的关联性,如何为后续课如《塑料材料》、《塑料测试技术》等课服务,如何使教学内容与塑料成型加工的实际更紧密的结合,这些问题都还有待于课程组的各位老师的努力,用教学实践过程来解决存在的问题。再有是课程如何在促进学生全面发展的基础上注重学生思维整体的构建,动手能力的提高、职业习惯的养成及职业能力的提高仍需进行研究。
总之,回顾近二年来的《高分子材料化学基础》课程教学内容的改革,教师的教学理念有了新的变化,明确了学生的知识是学生自己学习得到的,技能也是自己亲自训练才能获得,学生是学习的主体,由此我们不再在课堂上满堂灌了,老师在课堂上起主导作用,组织、引导、指导、示范才是老师在课堂上的工作。我们更注重知识的实际应用,注重实践技能的培养,注重学生综合能力的培养。教学实践证明我们的做法起到了提高课程教学效果与质量的作用,高分子材料加工技术专业《高分子材料化学基础》课程教学内容改革获得了成功。
改造工程
汇报材料
北京华夏石化工程监理有限公司
天津润滑油项目部
2012年12月6日
尊敬的长城润滑油公司领导:
我们是北京华夏石化工程监理有限公司天津润滑油项目部。我公
司承担了天津分公司精细润滑脂项目监理工作通知后,马上于11月12日派遣项目总监到汉沽与项目主管人员接洽,并立即展开了工作,现将工作情况简要汇报如下;
一、迅速组织监理机构配备办公设施
总监到达现场后根据业主要求马上与总部联系,根据目前施工状
态组织了由项目总监、总代、专业工程师等六人的项目组织机构。并配备了配备电脑四台、汽车一部及开展工作的办公用品及部分现场施工质量检测用具。
二、加强安全施工管理确保施工安全
我项目部深刻认识到安全是施工质量、进度的前提条件,没有
了安全保证工程将无法进行。为了强有力的做好施工现场的HSE管理工作,我部严格依照《建筑法》、《建设工程安全生产管理条例》、GB50484-2008《石油化工建设工程施工安全技术规范》等法律、法规、规范和长城润滑油天津分公司发布的HSE管理规定为管理准则,运用华夏监理公司的HSE的管理程序和措施,积极展开工作。目前,施工现场HSE管理受控,做到了连续安全施工无事故。
1.强化事前控制
重点监控施工单位HSE体系的建立;严格审核特种作业人员的特
种作业操作资格证书是否合法有效;严格审查施工机具、特种设备的报验情况;严格审查施工单位编制的施工组织设计中的安全技术措施和HSE专项施工方案是否符合工程建设强制性标准要求;严格检查施/ 7
工前的安全交底工作。
2.严格过程监控
HSE工程师每天进行日巡检,巡检的内容的重点为安全着装、施工
用电、吊机作业、打桩作业等。每周三由HSE工程师组织施工单位HSE管理人员,邀请业主主管人员进行周联合检查,对检查出的安全隐患和违章问题进行分类汇总,要求施工单位限期整改。并根据现场作业情况适时组织相关单位进行HSE专项检查。施工过程中强化对作业人员安全教育,提高施工单位的HSE人员及作业人员的安全意识;强化现场文明施工管理。
3.建立安全管理制度
为了搞好施工现场的安全管理,我们制定了周安全联检制度、日
巡检制度;建立了安全日检台账、日施工现场安全评定台账、违章处罚台账等。
二、工程质量控制情况
1.项目部质量体系的运行情况
我天津润滑油项目部根据目前工程的进展已到位六人,总监、总
代、HSE工程师各一名、土建工程师两名、工程秘书一名,已完全满足了工程的需要。质量保证体系已建立并不断完善,体系运转正常。基桩施工监理实施细则、HSE监理实施细则已基本编制完成,有效的指导了监理工程师的工作。/ 7
2.工程质量总体控制情况
华夏监理始终都把质量控制作为监理工作的第一重点工作来抓,质量控制的原则是:事前控制、主动控制、强化过程监控、实体资料并重。目前展开的基桩施工实体质量处于受控状态。
3.监理公司的质量控制措施
1)严把开工审查关。监理工程师对承包商企业资质、人员资质(质量管理人员、特殊工种、测量员等)、施工技术方案、施工机具、测量仪器、设计交底和图纸会审等开工准备情况进行认真的审查,对不符合标准、规范要求的督促承包商进行整改后再行上报。
2)监理交底制度。开工前,监理组织施工单位的质量、技术等负责人员进行监理交底,向施工单位介绍监理的工作程序、工作方法以及控制措施等,尤其是明确ABC级质量控制点和停监点的设置以及报验程序、报验表格、质量通病的预防等,有利于质量控制的规范化,取得了较好的效果。
3)进场材料检查验收制度。华夏监理始终把材料的验收作为实体工程质量控制的第一步,进场的各种材料,都按照规范材料进场检验办法进行验收,需要复验的材料必须要复验合格;同时监理工程师通过质量证明文件审查、实体检查、必要的复检等手段来控制进场材料的质量。
4)强化施工过程质量的监控。为了控制好打桩施工的每一道工序质量,掌握现场第一手资料,我部监理工程师采取巡视、旁站、平行检验等手段来强化对现场质量的监控,以保证打桩的质量及施工的正常进行。
5)监理工程师台帐制度。为了更好的控制、掌握施工质量状况,我/ 7
项目部要求专业工程师建立了基桩施工质量动态管理台账、基桩施工旁站管理台账、基桩施工平检管理台账、基桩进场检验管理台账等,这些台帐的建立有利的促进了专业工程师对施工质量的控制。
4.监理质量控制行为统计
三、工程进度完成情况
截止2012年12月6日,精细润滑脂项目基桩工程完成情况如下:
1)精细润滑脂厂房:总量484根,已完成根,完成总量的%;
2)科研实验楼:总量136根,已完成根,完成总量的%;
3)危险品库:总量49根,已完成49根,完成总量的100%;
4)35KV电站:总量80根,未施工;
5)原料立体库:总量293根,未施工;
连廊:总量28根,未施工;
消防泵房:总量34根,未施工;
消防水罐:总量66根,未施工。
四、下一阶段的重点工作
1.在质量控制上:材料(桩体)进场的验收检查;放线、轴线、/ 7
桩位控制;桩体垂直度;桩体焊接、防腐;沉桩;桩顶标高等质量控制。
2.在HSE管理上:吊机作业;打桩作业;施工临时用电;劳动着装;防冻措施;文明施工。
3.在进度控制上:加强协调管理,检查、督促施工单位落实周计划,保证打桩总体计划完成。(打桩施工进度计划11月18日至1月15日。)
从2012年11月11日进入长城润滑油天津分公司近一个月,我项目部监理工作的展开,得到了精细润滑脂项目组领导及相关同志的指导和大力的帮助,也得到了分公司相关领导的大力支持和关怀。得到了施工单位胜建集团润滑脂项目部的积极配合。在此表示诚挚的谢意。
汇报完毕,谢谢!
北京华夏石化工程监理有限公司
天津润滑油项目部
第7章 合成高分子材料
学习目标与要求
1. 了解合成高分子聚合物的基本组成结构特点和分类。
2. 了解聚合物的分子结构与其性能之间的关系。
3. 熟悉聚合物的基本性能特点和常用聚合物的品种。
4. 熟悉土木工程中常用的建筑塑料、建筑涂料和胶粘剂等产品的基本组成、性能及应用。
学习重点
1.聚合物的基本组成结构特点和分类。
2.聚合物的分子结构与其性能之间的关系。
3.土木工程中常用的合成高分子材料制品的性能和应用。
学习难点
1.如何理解合成高分子材料的结构与性能的关系。这里既有聚合物的分子结构与其性能之间的关系,还有具体产品(塑料、涂料、胶粘剂等)的组成与性能的关系。
2.土木工程中如何正确选择使用合成高分子材料制品。
合成高分子材料是指其基本组成物质为人工合成高分子化合物的各种材料。合成高分子材料主要包括合成树脂、合成橡胶和合成纤维三大类。在土木工程中,合成树脂主要用于制备建筑塑料、建筑涂料和胶粘剂等,是用量最大的合成高分子材料。合成橡胶主要用于防水密封材料、桥梁支座和沥青改性材料等,用量仅次于合成树脂。合成纤维主要用于土工织物、纤维增强水泥、纤维增强塑料和膜结构用膜材料等,用量也在不断增加。
7.1高分子化合物概述
7.1.1基本知识
1. 基本概念
高分子化合物又称高聚物或聚合物,其分子量很大,一般为104 ~ 106。其分子往往由许多相同的、简单的结构单元,通过共价键重复连接而成。例如,聚氯乙烯分子是由许多氯乙烯结构单元重复连接而成:
简写为:
式中:
是重复结构单元,称为“链节”。结构单元的重复数目n称为“聚合度”。聚合度可由几百至几千,聚合物的分子量为重复结构单元的分子量与聚合度的乘积。
2. 聚合物的分类
聚合物的分类方法很多,按聚合物的来源,分为天然聚合物和合成聚合物;按分子结构,分为线型聚合物和体型聚合物;按聚合物受热的行为,分为热塑性聚合物和热固性聚合物等。
热塑性聚合物具有受热时软化、遇冷时凝固且无明显化学变化的性质。通常热塑性聚合物可反复进行加热软化、熔融和冷却硬化。所以热塑性聚合物具有可再生重复使用的特性。
热固性聚合物仅在第一次加热(或加入固化剂前)时能发生软比、熔融,并在此条件下产生化学交联而固化,以后再加热时再不会软化或熔融,也不会被溶解,若温度过高则会导致分子结构破坏。目前尚不能以通常的方式对热固性聚合物再生利用。
聚合物还常按用途分为塑料、橡胶、纤维、涂料、胶粘剂等几大类。这种分类方法最为常用,但不很严格。事实上,同一种聚合物可以有多种用途。例如.聚氨酯可制成具有橡胶的性能,也可发泡制成硬度不同的泡沫塑料,还可拉丝制成高强度高弹性的纤维、制作涂料和胶粘剂。这种能够适应多用途需要的特点,是高分子材料得以广泛应用的重要原因。
3. 聚合物的命名
聚合物的命名有系统命名法和习惯命名法。系统命名法命名比较复杂,实际很少使用。 在习惯命名法中,天然聚合物用专有名称,加纤维素、淀粉、蛋白质等;合成聚合物,则在单体名称前加上“聚”字,例如聚氯乙烯、聚苯乙烯等;也可在原料名称后加“树脂”、“橡胶”、“纤维”等来命名,这种命名能反映聚合物的结构和用途,是常用的命名法。
4. 聚合反应
由低分子单体合成聚合物的反应叫做聚合反应。聚合反应按单体和聚合物在组成和结构上发生的变化,分为加聚反应和缩聚反应两大类。
以单体通过加成的方式,聚合形成聚合物的反应称为加聚反应。加聚反应是链式反应。其特点是单体分子具有能够聚合的双键、三键、环状结构等;其中,含双健结构的单体最为广泛,如乙烯、氯乙烯、苯乙烯、丁二烯等。加聚反应是按参加反应的单体种类数目,可分为均聚反应和共聚反应。均聚反应是只有一种单体进行的聚合反应,其产物称为均聚物,如聚乙烯、聚氯乙烯等。共聚反应是由两种或两种以上的单体进行的聚合反应,其产物称为共聚物。
缩聚反应是含有两个以上官能团的单体,通过官能团间的反应生成聚合物的反应。缩聚反应与加聚反应不同,其聚合物分子链增长过程是逐步反应,同时伴有低分子副产物如水、氨、甲醇等的生成。缩聚反应按照生成产物的结构可分为线型缩聚反应与体型缩聚反应两类。当缩聚反应只在一种单体间进行时,称为均缩聚反应。如果缩聚反应在两种单体之间进行,则称作混缩聚反应。如果在均缩聚反应中加入第二单体或在混缩聚反应中加入第三单体,则称为共缩聚反应。
加聚反应生成的共聚物和缩聚反应生成的共缩聚物统称为共聚物。共聚物的性能与不同种类单体的相对数量和排列方式有密切关系。共聚物根据链节排列方式的不同可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物四种。
7.1.2聚合物的结构与性质
1. 聚合物的分子结构
聚合物按其分子结构可分为线型聚合物和体型聚合物。
(1)线型聚合物
线型聚合物的大分子链排列成线状主链(如图7―1a)。有时带有支链(如图7―1b),且线状大分子间以分子间力结合在一起。具有线型结构的聚合物包括全部加聚树脂和部分缩聚树脂,一般来说,具有线型结构的树脂,强度较低,弹性模量较小,变形较大,耐热、耐腐蚀性较差,且可溶可熔。支链型聚合物因分子排列较松,分子间作用力较弱,因而密度、熔点及强度等低于线型聚合物。线形聚合物树脂均为热塑性树脂。
(2)体型聚合物
线型大分子间通过化学键交联作用而形成的三维网状结构,又称网状或体型结构(如图7―1c)。部分缩合树脂具有体型结构(交联或固化前也为线型或支链型分子)。由于化学键的结合力强,且交联形成一个“巨大分子”,因此,―般来说缩合树脂的强度高,弹性模量较大,变形较小,较硬脆,且塑性小,耐热性、耐腐蚀性较好,不溶不熔。体型聚合物树脂均为热固性树脂。
图7―1 聚合物大分子链的结构示意图
(a)线型;(b)支链型;(c)体型
2. 聚合物的聚集态结构
固态聚合物是由大分子链以分子间作用力聚集在一起的。聚集态结构就是指分子链间的排列、堆砌方式和规律。可分为晶态结构、非晶态结构、取向态结构和织态结构等聚集状态。 晶态结构的聚合物与低分子量晶体有很大的不同。由于线型高分子难免有弯曲,故聚合物的结晶为部分结晶,即在结晶聚合物中存在“晶区”和“非晶区”。且大分子链可以同时跨越几个晶区和非晶区。晶区所占的百分比称为结晶度。一般来说,结晶度越高,则聚合物的密度、弹性模量、强度、耐热性、折光系数等越高,而冲击韧性、粘附力、断裂伸长率、溶解度等越低。晶态聚合物一般为不透明或半透明状,非晶态聚合物则一般为透明状。体型聚合物只有非晶态结构。
取向态结构是指聚合物在一维或二维方向的有序排列结构。事实上.线型高分子链充分伸展时,其长度为其宽度的几百、几千其至几万倍;在―定条件下,使线型聚合物的分子链沿着特定方向排列称为取向。取向在工业生产中得到了广泛应用。例如,在合成纤维生产中.采用热牵引工艺,使分子链取向,可提高纤维的强度和弹性模量。聚乙烯纤维未取向时的抗拉强度约为60 ~ 80 MPa,而取向后的强度可达800 MPa。
织态结构是指将两种或两种以上的聚合物或不同分子量的同种聚合物混合而得到的材料结构,属非均相体系结构。其中,由一个分散相和一个连续相组成的两相共混物应用最多。例如,分散相软、连续相硬的橡胶增韧塑料和分散相硬、连续相软的热塑性弹性体等。
3. 聚合物的物理状态和特点
聚合物的物理状态可根据温度―变形曲线划分,线型非晶态聚合物分为玻璃态、高弹态和粘流态三种物理状态(如图7―2)。
图7―2 线型非晶态聚合物的变形与温度的关系
线型非晶态聚合物在低于某一温度时,分子动能很低,大分子链的运动和分子链段的旋转都被冻结,聚合物在外力作用下,产生的变形较小,弹性模量较大。此时,聚合物所处的状态称为玻璃态。聚合物保持玻璃态的温度上限称为玻璃化转变温度(Tg)。当温度升高到Tg上以后,分子动能增加,分子链段能运动,但大分子链的运动仍被冻结,聚合物弹性模量较小,在外力作用下,产生较大的变形。且变形是可恢复的,这种状态称为高弹态。聚合物保持高弹态的上限温度,称为粘流温度(Tf)。当温度升高到Tf上以后,分子动能增加到链段和整个大分子链都可以运动,聚合物成为可以流动的粘稠液体,此时,聚合物在外力作用下,分子间相互滑动,产生粘性流动,外力除去后保持变形,即变形不可逆。玻璃化转变温度和粘流温度是高分子材料的重要性质指标。可以确定高分子材料的使用温度范围、材料的加工温度范围等。
玻璃化转变温度低于室温的称为橡胶,高于室温的称为塑料。玻璃化转变温度是塑料的最高使用温度,但却是橡胶的最低使用温度。粘流温度在室温以下的高聚物可作胶粘剂或涂料使用。
4.聚合物的主要性质
(1)密度:聚合物的密度较小,一般在0.9 ~ 2.2g/cm3之间,平均约为铝的1/2,钢的1/5,混凝土的1/3。
(2)比强度:聚合物有较高的强度,密度小,所以比强度远远超过传统的建筑材料,是极好的轻质高强材料。但聚合物的刚度比较差,容易变形。
(3)导热性:聚合物的导热性较小,约为金属的1/500 ~ 1/600。其泡沫塑料的导热性接近空气,是一种良好的轻质保温隔热材料。
(4)化学稳定性:一般聚合物对侵蚀性化学物质(酸、碱、盐溶液)及蒸汽的作用具有较高的稳定性。但有些聚合物在有机溶剂中会溶解或溶胀,使用时应予以注意。
(5)防水密封性:大多数聚合物具有很强的憎水性,防水、防潮及密封性能突出。
(6)电绝缘性:聚合物通常都具有极高的`电绝缘性和击穿电压,是非常好的电绝缘材料。
(7)减震、消音性:聚合物具有突出的粘弹性,在受外力冲击时,其大分子的粘滞性能吸收大量的振动波和声波,具有良好的减震消声作用。
(8)与其他材料的复合型:聚合物对其他类型的材料通常都具有很强的润湿及粘附性,因
而可制成性能优良的复合材料。
(9)耐热性:作为有机化合物的聚合物,热稳定性能较差。热塑性聚合物的耐热温度一般为50 ~90℃;热固性聚合物的耐热温度一般在100 ~ 200℃。高温下易燃烧和分解,并释放出有害气体。
5. 聚合物的老化
在使用过程中,聚合物会由于光、热、空气(氧和臭氧)等的作用而发生结构或组成的变化,从而出现各种性能劣化现象。如出现变色、变硬、龟裂、发粘、发软、变形、斑点、机械强度降低,称为聚合物的老化。
聚合物的老化是一个复杂的过程,一般可将其分为聚合物分子的交联与降解两种。交联是指聚合物的分子从线型结构变为体型结构的过程。当发生这种老化作用时,表现为聚合物失去弹性、变硬、变脆,并出现龟裂现象。降解是指聚合物的分子链发生断裂,其分子量降低,但其化学组成并不发生变化。当老化过程以降解为主时,聚合物会出现失去刚性、变软、发粘、出现蠕变等现象。
根据老化原因的不同聚合物的老化分为热老化和光老化两类。光老化是指聚合物在阳光(特别是紫外线)的照射下部分分子(或原子)被激活而处于高能的不稳定状态,并与其他分子发生光敏氧化作用,致使聚合物的结构和组成发生变化,性能逐渐恶化的现象。热老化是指聚合物在热的作用下,尤其是在较高温度下暴露于空气中时,聚合物的分子链由于氧化、热分解等作用而发生断裂、交联,其化学组成与分子结构发生变化,从而使其各项性能发生劣变的现象。因此,大多数聚合物材料的耐高温性和大气稳定性都较差。
7.1.3常用的聚合物
1. 合成树脂
合成树脂的种类很多,而且随着有机合成工业的发展和新聚合方法的不断出现,合成树脂的品种还在继续增加。但是,真正获得广泛应用的合成树脂,不过20种左右。在此,仅介绍一些在土木工程材料中经常使用的合成树脂。
(1)热塑性树脂
①聚乙烯(PE)
聚乙烯(PE)是树脂中分子结构最简单的一种,它是由乙烯单体聚合而成。聚乙烯按合成时的压力分为高压聚乙烯和低压聚乙烯。高压聚乙烯的密度较小,故称为低密度聚乙烯(LDPE)。低压聚乙烯聚合条件比较温和,制得的产品结晶度高、密度大,故称高密度聚乙烯(HDPE)。聚乙烯塑料无臭、无毒,原料来源丰富,价格较低,且具有优异的耐低温性(最低使用温度可达 -70 ~ -100℃)、化学稳定性、电绝缘性和加工性能。在建筑中,聚乙烯主要用于生产防水材料(薄膜、卷材等)、给排水管材(冷水)、电绝缘材料、水箱和卫生洁具等。
②聚氯乙烯(PVC)
聚氯乙烯树脂(PVC)是氯乙烯通过自由基聚合制成白色粉末或糊状的树脂。由于PVC树脂链上带有负电性很强的氯原子,使分子链之间产生很大的引力,阻碍了分子链之间的相对滑动。因此,PVC树脂具有良好的耐化学腐蚀性和阻燃性,但材质脆而硬,较少弹性。通过添加增塑剂可以改善PVC的柔韧性。
在建筑中,硬质聚氯乙烯主要用作天沟、落水管、外墙覆面板、天窗及给排水管。软质聚氯乙烯常加工为片材、板材、型材等。如卷材地板、块状地板、壁纸、防水卷材和止水带等。在PVC中混入大量的碳酸钙制成钙塑料可以提高塑料的硬度、降低成本,用于代替钢
材和木材制作塑料门窗、楼梯扶手、地板、天花板和电线套管等。将PVC轻度发泡可以制成塑料地毯和塑料壁纸等。
③聚苯乙烯(PS)
聚苯乙烯(PS)的均聚物是由苯乙烯单体聚合而得,质地坚硬,化学性能和电绝缘性能优良,易于成型出各类色彩鲜艳、表面光洁的制品,应用广泛。但聚苯乙烯耐热性差、质脆,这在一定程度上限制了它的应用,因此,应对其改性。目前大量生产的苯乙烯类聚合物主要有:通用型聚苯乙烯GPPS,高抗冲型聚苯乙烯HIPS,发泡型聚苯乙烯EPS以及苯乙烯的共聚物如ABS塑料(俗称工程塑料)等。
建筑中聚苯乙烯主要用于制作泡沫塑料,有挤塑发泡板和发泡颗粒产品。其隔热保温性能优异。此外,聚苯乙烯也常用于涂料和防水薄膜的生产。ABS树脂主要用于生产塑料装饰板和管材等。
④聚丙烯(PP)
聚丙烯(PP)可分为均聚PP和共聚PP两大类,共聚PP是在聚合过程中加入大约2%~5%的乙烯而制得的。聚丙烯的主要特点是密度低(0.89~0.92 g/cm3),耐化学药品性、耐腐蚀性、耐热性优良且价格低廉。
在建筑中,聚丙烯常用于制作管材、装饰板材、卫生洁具及各种建筑小五金件。 ⑤聚甲基丙烯酸甲酯(PMMA)
聚甲基丙烯酸甲酯(PMMA)是透明、无毒无味的无定形热塑性树脂,俗称有机玻璃。其最大优点是具有优异的光学性能,对可见光的透过率可达92%,对紫外线的透过率达73.5%,均优于普通无机硅酸盐玻璃,并具有较好的耐气候老化性,质轻(约为无机玻璃的1/2),抗冲击强度较高。
在建筑中,聚甲基丙烯酸甲酯主要用作采光天窗、防震玻璃、室内装饰等,以适当方式对其增强后,也可用于制作透明管材及其他建筑制品。
(2)热固性树脂
①酚醛树脂(PF)
酚醛树脂是酚类和醛类化合物经缩聚反应而得的树脂的统称,其中应用较多的是苯酚―甲醛缩聚物(PF)。酚醛树脂的主要特点是有较好的电绝缘性能,密度低,强度较高。具有很高的热强度等,但质脆,抗冲击性能差。
在土木工程中。酚醛树脂主要用于制造各种层压板和玻璃纤维增强塑料,以及防水涂料、木结构用胶等。
②脲醛树脂(UF)
脲醛树脂是由甲醛和尿素缩聚而成的聚合物。它具有耐燃、耐电弧、易着色、表向硬度高、耐溶剂、本身呈透明状等特点。因此,可制成表面光洁、色彩鲜明的玉状制品(俗称“电玉”)。但耐湿性差,受潮气和水的作用易发生变形或开裂,而且耐热性较差。
在土木工程中,脲醛树脂主要用于生产木丝板、胶合板、层压板等。经发泡处理后,可制得一种硬质泡沫塑料,用作填充性绝缘材料。经过改性处理的脲醛树脂还可用于制造涂料、胶粘剂等。
③不饱和聚酯树脂(UP)
不饱和聚酯树脂是指分子链主链上含有不饱和键的聚酯。不饱和聚酯在性能上具有 多变性,由于组成的变化,UP可以是硬质的、有弹性的、柔软的、耐腐蚀的、耐气候老化的或耐燃的,这些性能上的变化形成了UP在应用上的多样化。在土木工程中,广泛地用于制造涂料、玻璃纤维增强塑料(俗称玻璃钢)和作为聚合物混凝土中的胶结料。可用于墙面、地面装饰,制作人造大理石、人造玛瑙,具有装饰性好、耐磨等特点。
④环氧树脂(EP)
环氧树脂是分子结构中含有环氧基的聚合物,种类很多。其中用途最广的是环氧氯丙烷与双酚A缩聚得到的双酚A型环氧树脂。这种环氧树脂是线型结构,具有热塑性。应用时必须加入固化剂,使环氧树脂固化。固化剂品种很多,常用的有胺类、酸酐类、高分子预聚体和咪唑等。固化后的环氧树脂具有强度高、粘结力强、收缩率小、耐水、耐化学腐蚀性和电绝缘性好等特点。
在土木工程中,环氧树脂主要用于结构胶粘剂、玻璃纤维增强塑料、聚合物混凝土以及防腐涂料和耐磨地坪材料等。
⑤有机硅树脂(SI)
有机硅是一大类主链含硅的高分子化合物,属于元素有机高分子;主要有聚有机硅氧烷
(SI),它的主链由硅氧键构成,侧基为有机基团。这种结构使硅化合物具有良好的化学稳定性,耐氧化、臭氧和紫外线照射,使用温度范围宽(-50~+200℃),憎水性高等一系列的独特性能。
在土木工程中,有机硅树脂主要用于层压塑料和防水材料。在各种有机硅树脂中,硅酮的应用较多,广泛地应用于涂料、胶粘剂和嵌缝材料中。
2. 合成橡胶
橡胶是玻璃化转变温度Tg较低,在室温下具有高弹性的聚合物。橡胶的主要持点是在-50~+150℃范围内,具有极为优异的弹性,在外力作用下,变形量可以达到百分之几百,并且在外力取消后,变形可完全恢复。此外,橡胶还具有良好的抗拉强度、耐疲劳强度,良好的不透水性、不透气性、耐酸碱腐蚀性和电绝缘性等。由于橡胶良好的综合性能,在土木工程中,广泛用作防水材料和密封材料等。
橡胶按来源分为天然橡胶和合成橡胶。在土木工程中,主要应用的是合成橡胶。合成橡胶是各种单体经聚合反应人工合成的橡胶,是具有橡胶特性的一类聚合物,常用的合成橡胶有丁基橡胶、氯丁橡胶、乙丙橡胶和丁苯橡胶等。
(1)丁基橡胶(HR)
丁基橡胶是通过异丁烯与异戊二烯聚合制备的结晶性非极性橡胶。丁基橡胶最独特的性能是气密性非常好,水渗透率极低、其耐热性、耐气候老化性能、耐臭氧老化性能也很好,但弹性较低、工艺性能较差、硫化速度慢、粘着性和耐油性等也较差。
丁基橡胶主要用作防水卷材和防水密封材料。
(2)氯丁橡胶(CR)
氯丁橡胶是通过氯丁二烯聚合制备的结晶性橡胶。氯丁橡胶是所有合成橡胶中密度最大的,其相对密度约为1.23~1.25,呈浅黄色或棕褐色。这种橡胶的原料来源广泛,其抗拉强度较高,透气性、耐磨性较好,不易老化,耐油、耐热、难燃、耐臭氧、耐酸碱腐蚀性好,粘结力较强。其缺点是对浓硫酸和浓硝酸的抵抗力较差,电绝缘性也较差。
在建筑上氯丁橡胶被广泛地用于胶粘剂、门窗密封条、胶带等。
(3)乙丙橡胶(EPM)
乙丙橡胶是以乙烯、丙烯为主要单体原料共聚的无定形橡胶。根据是否加入第三单体可分为二元乙丙橡胶和三元乙丙橡胶两大类。三元乙丙橡胶生产和使用较多。乙丙橡胶具有优异的耐老化性能,是现有通用橡胶中耐老化性能最好的,能长期在阳光、潮湿、寒冷的自然环境中使用;耐热性能好,可在120℃的环境中长期使用,最高使用温度达150℃;具有较
好的低温性能,最低极限使用温度可达-50℃或更低;具有较好的耐化学腐蚀、耐热水和水蒸气性能,密度是所有橡胶中最低的。其缺点是硫化速度慢。自粘性与互粘性较差,耐燃性、耐油性和气密性差。主要用于生产防水卷材。
(4)丁苯橡胶(SBR)
丁苯橡胶是丁二烯和苯乙烯的共聚物,通过调节苯乙烯的含量可以得到不同性能的丁苯橡胶。丁苯橡胶(SBR)是产量和消耗量最大的合成橡胶。纯丁苯橡胶的强度低,须增强后才具有实际使用价值;其弹性、耐寒性较差,耐撕裂性和粘着性能均较天然橡胶差。但耐热性、耐老化性、耐磨性均优于天然橡胶。它主要用于铺地材料和沥青改性等。
(5)硅橡胶(SR)
硅橡胶的分子主链是由硅原子和氧原子交替组成(―Si―O―Si―),其键能比碳一碳键能(C―C)要大得多,柔顺性也很好,因而具有优异的耐高、低温性能,在所有的橡胶中工作温度范围最宽(-100~+350℃)。硅橡胶还具有优异的耐老化、电绝缘、耐电晕、耐电弧性能,但力学性能较差。硅橡胶广泛用于建筑密封胶、防潮密封材料。
(6)热塑性弹性体
热塑性弹性体是一类具有类似橡胶力学性能及使用性能、又能按热塑性塑料进行加工和回收的聚合物。它既具有热塑性,便于加工和再生利用;又有很好的弹性,便于使用。因此,称为热塑性弹性体。常用的有苯乙烯类热塑性弹性体、聚氨酯类热塑性弹性体等。
SBS(苯乙烯一丁二烯一苯乙烯嵌段共聚物)为线型分子,是具有高弹性、高抗拉强度、高伸长率和高耐磨性的透明体,属于热塑性弹性体。在SBS中,苯乙烯单体是以一定的长度连接在丁二烯分子的两端,在室温时,弹性体的链段聚集、缠结在一起形成物理交联。在高温时,这些交联点解离,使弹性体具有热塑性。因此,SBS可以像热塑性塑料一样的加工。通过调节丁二烯(软段)和苯乙烯(硬段)的长度和比例,可以改变热塑性弹性体的性能。一般来说,热塑性弹性体的强度和耐磨性都优于通用橡胶,只是耐温性较差。SBS在建筑上主要用于沥青的改性。
3. 合成纤维
纤维可分为天然纤维(如羊毛、蚕丝、棉花、麻等)和化学纤维两大类,化学纤维按其聚合物来源又可分为人造纤维和合成纤维两类。人造纤维是以天然聚合物为原料经过化学处理后再加工制成的,如粘胶纤维、醋酸纤维、硝酸纤维等;合成纤维是由合成的聚合物制得的,有聚酯纤维、聚酰胺纤维、聚丙烯腈纤维、聚丙烯纤维等品种。
(1)聚酯纤维
聚酯纤维是大分子链中的各链节与酯基相连的聚合物纺制而成的合成纤维。其品种很多、目前主要是对苯二甲酸乙二酯纤维(PET),我国―般称为涤纶或的确良。聚酯纤维弹性好、强度大、模量高、吸湿性低、耐热性、耐磨性、耐光老化性能好。主要用于土工织物。
(2)聚酰胺纤维
聚酰胺纤维是分子主链由酰胺键连接起来的一类合成纤维,我国称为锦纶。聚酰胺有许多品种,应用最广泛的是聚酰胺6和聚酰胺66。聚酰胺的耐磨性非常好、强度、耐冲击性、弹性、耐疲劳性也很好,而且密度小;但是,聚酰胺纤维的模量低、耐光性、耐热性、抗静电性、染色性、吸湿性较差。主要用于绳索、化纤地毯等。
(3)聚丙烯腈纤维
聚丙烯腈纤维是采用丙烯腈三元单体共聚物纺成的纤维,又称腈纶。聚丙烯腈纤维的弹性模量高、耐光性、耐辐射性。化学稳定性、耐热性好,但强度较低、耐磨性、抗疲劳性较差。腈纶广泛用于污水处理和碳纤维生产。
(4)聚丙烯纤维
聚丙烯纤维是以丙烯聚合得到的等规聚丙烯为原料纺制而成的合成纤维,又称为丙纶。它是所有化学纤维中密度最小的,其强度高、回弹性、耐磨性、抗微生物、耐化学腐蚀性好。其缺点是吸湿性、染色性、耐光性、耐热性差。它可用于制作地毯、装饰织物、人造草坪和土工布等。
(5)聚乙烯醇纤维
聚乙烯醇纤维的常规产品是聚乙烯醇缩甲醛纤维,又称为维纶。维纶的短纤维外观接近棉,有“合成棉花”之称,但其强度和耐磨性都优于棉,保暖性、耐腐蚀性、耐日光性好。维纶的缺点是染色性、耐水性、弹性较差。聚乙烯醇纤维主要作为塑料、水泥、陶瓷等的增强材料,作为石棉的代用品用于纤维增强水泥;制作维纶帆布、非织造布滤材以及土工布等。
7.2土木工程常用的合成高分子材料
7.2.1建筑塑料
塑料是以合成树脂为主要成分,在一定条件(温度、压力等)下,可塑成一定形状并在常温下保持其形状的高分子材料。与传统的建筑材料相比,塑料具有质轻、比强度高、化学稳定性好、导热系数小、装饰性和加工性能好及耗能较低的持点;但塑料还有刚度小、易老化、易燃、耐热性差的缺点。此外,塑料中残留的单体和加入的增塑剂、固化剂等低分子物质都对人体健康不利。因此,采用塑料制作与饮食有关的设备时,要认真进行安全卫生检验。在土木工程中,塑料可作为结构材料和功能材料。作为结构材料应用的主要是纤维增强塑料。作为功能材料可用于隔热保温材料、装饰装修材料等。
塑料按组成成分分为单―组分塑料和多组分塑料。单一组分塑料基本上为合成树脂,只含少量助剂(如染料、润滑剂等),如聚乙烯、聚丙烯、聚苯乙烯塑料等。多组分塑料除含有合成树脂外,还含有较多的助剂(如填料、增塑剂、稳定剂等),如聚氯乙烯、酚醛塑料等。根据用途,塑料可分为通用塑料和工程塑料。根据其受热后性能的不同,塑料还可分为热固性塑料和热塑性塑料。
1. 塑料的基本组成
塑料是由合成树脂和各种添加剂所组成。合成树脂是塑料的主要成分,其质量占塑料的 40%以上。塑料的性质主要取决于所采用的合成树脂的种类、性质和数量。因此,塑料常以所用合成树脂命名,如聚乙烯(PE)塑科,聚氯乙烯(PVC)塑料。合成树脂的性质已在上一节介绍,在此主要介绍常用的添加剂。
(1)填料
填料又称为填充料、填充剂或体质颜料,其种类很多。按外观形态可分为粉状、纤维状和片状三类。一般来说,粉状填料有助于提高塑料的热稳定性,降低可燃性,而片状和纤维状填料可明显提高塑料的抗拉强度、抗磨强度和大气稳定性等。
填料通常都比合成树脂便宜,它不仅能提高塑料的强度、硬度和耐热性,还能减少收缩变形和降低成本。常用的填料主要有木粉、滑石粉、硅藻土、石灰石粉、铝粉、炭黑及玻璃纤维等。
(2)增塑剂
增塑剂是能使聚合物塑性增加的物质。它可降低树脂的粘流温度(Tf),使树脂具有较大的可塑性,以利于塑料制品的加工。少量的增塑剂还可降低塑料的硬度和脆性,使塑料具有较好的柔韧性。增塑剂主要为酯类及酮类。
(3)稳定剂
稳定剂是指抑制或减缓老化破坏作用的物质。塑料在加工和使用过程中,由于受热、光、氧的作用,可能发生降解、氧化断链及交联等,使塑料老化。为了提高塑料的耐老化性能,延长使用寿命,通常要加入各种稳定剂,如抗氧剂、光屏蔽剂、紫外光吸收剂及热稳定剂等。
(4)固化剂
固化剂又称为硬化剂,主要作用是使某些合成树脂的线型结构交联成体型结构,从而使树脂具有热固性。不同品种的树脂应采用不同品种的固化剂。
(5)着色剂
着色剂是使塑料制品具有特定的色彩和光泽的物质,常用的着色剂是一些有机和无机颜料。颜料不仅对塑料具有着色性,同时也兼有填料和稳定剂的作用。
此外,根据建筑塑料使用及成型加工的需要,有时还加入润滑剂、抗静电剂、发泡剂、阻燃剂及防霉剂等。
2. 土木工程常用的塑料制品
(1)装饰装修制品
塑料的装饰性和可加工性能好,常用来生产装饰装修材料。
①塑料面砖
塑料面砖以PS,PVC,PP等为原料制造,模仿传统陶瓷面砖,厚度小、重量轻,具有美观适用、施工方便的特点,是一种较为理想的超薄型墙面装饰材料。可用于室内墙面、柱面装饰。
②塑料壁纸
塑料壁纸是用纸或玻璃纤维布做基材,以聚氯乙烯为主要成分,加入添加剂和颜料等,经涂塑、压花或印花、发泡等工艺制成的塑料卷材。塑料壁纸的花色品种多,可制成仿丝绸、仿织锦缎、仿木纹等花纹图案。塑料壁纸具有美观、耐用、易清洗、施工方便的待点。发泡塑料壁纸还具有较好的吸声性能,因而广泛地应用于室内墙面、顶棚等的装饰。塑料壁纸的缺点是透气性较差。
③塑料地面卷材
塑料地面卷材是经混炼、热压或压延等工艺制成的卷材。主要为聚氯乙烯(PVC)塑料地面卷材,分为无基层卷材和有基层卷材两种。
无基层卷材质地柔软,有―定弹性,适合于家庭地面装饰。有基层卷材一般由两层或多层复合而成,常见的是三层结构。基层为无纺布、玻璃纤维布,中层为印花的不透明聚氯乙烯塑料,面层为透明的聚氯乙烯塑料。若中层为聚氯乙烯泡沫塑料,则称为发泡塑料地面卷材。塑料地面卷材具有脚感舒适、耐磨、附腐蚀、隔声和保温等特点。
④塑料地板
塑料地板采用聚氯乙烯、重质碳酸钙和添加剂为原料,经混炼、热压或压延等工艺制成。有硬质、半硬质和软质三种;塑料地板制作的图案丰富,颜色多样,并具有耐磨、耐燃、尺寸稳定、价格低等优点,适合于人流不大的办公室、家庭等的地面装饰。
(2)隔热保温材料
①泡沫塑料
泡沫塑料是在聚合物中加入发泡剂,经发泡、固化或冷却等工序而制成的多孔塑料制品。泡沫塑料的孔隙率可高达95%―98%,且孔隙尺寸小,因而具有优良的隔热保温性能。常用的有聚苯乙烯泡沫塑料、聚氯乙烯泡沫塑料、聚氨酯泡沫塑料、脲醛泡沫塑料等。
聚苯乙烯泡沫塑料是应用最广的泡沫塑料,其体积密度为10~20 kg/m3,导热系数为0.031~0.045 W/(m・K),使用温度范围为-100~+70℃。主要用作墙体和屋面、地面、楼板等的隔热保温,也可与纤维增强水泥、纤维增强塑料或铝合金板等制成复合墙板。
建筑上使用的聚氯乙烯泡沫塑料体积密度为60~200 kg/cm3,导热系数为0.035~0.052 W/(m・K),使用温度范围为-60~+60℃。聚氯乙烯泡沫塑料主要用作吸声材料、装饰构件,也可作墙体、屋面等的保温材料,也可作为夹层板的芯材。
聚氨酯泡沫塑料,以硬质型应用较多。其体积密度为20~200 kg/cm3,使用温度范围为-160~+150℃。与其他泡沫塑料相比,其耐热性好,强度较高。此外,这种泡沫塑料还可采用现场发泡的方法形成整体的泡沫绝热层,绝热效果好。
脲醛塑料是最轻的泡沫塑料之一,建筑中应用的脲醛泡沫塑料的体积密度为10~20 kg/m3,导热系数为0.030~0.035 W/(m・K),使用温度范围为 -200~+100℃,但强度低,吸湿性大。应用时需注意防潮。脲醛塑料价格低廉,主要用作空心墙和夹层墙板的芯材,也可在现场发泡成为整体泡沫塑料。
②蜂窝塑料板
蜂窝塑料板是在蜂窝状的芯材上粘合面板的多孔板材,其孔隙较大(5~20 mm),孔隙率很高。蜂窝状的芯材是由浸渍聚合物(酚醛树脂等)的片状材料(牛皮纸、玻璃布、木纤维板)经加工粘合成的形状似蜂窝的六角形空心板材。蜂窝塑料板的抗压强度和抗折强度高,导热系数低,一般为0.046~0.056 W/(m・K)。主要用作隔热保温和隔声材料。
③塑料门窗
塑料门窗是改性后的硬质聚氯乙烯(PVC),加入适量的添加剂,经混炼、挤出等工艺制成的异形截面材加工而成。改性后的硬质聚氯乙烯具有较好的可加工性、稳定性、耐热性和抗冲击性。制成的塑料门窗外观平整美观,色泽鲜艳,经久不褪,装饰性好。并具有良好的耐水性、耐腐蚀性、隔热保温性、隔声和气密性,使用寿命可达30年以上。
④纤维增强塑料
纤维增强塑料是一种树脂基复合材料,添加纤维的目的是为了提高塑料的弹性模量和强度。常用纤维材料除玻璃纤维、碳纤维外,还有石棉纤维、天然植物纤维、合成纤维和钢纤维等,目前用得最多的是玻璃纤维和碳纤维。常用的合成树脂有酚醛树脂、不饱和聚酯树脂、环氧树脂等,用量最大的为不饱和聚酯树脂。
纤维增强塑料的性能主要取决于合成树脂和纤维的性能、相对含量以及它们之间的粘结情况。合成树脂及纤维的强度越高,特别是纤维的强度越高,则纤维增强塑料的强度越高。
玻璃纤维增强塑料(GRP),俗称玻璃钢,是由合成树脂胶结玻璃纤维或玻璃纤维布(带、束等)而成的。玻璃纤维增强塑料在性能上的主要优点是轻质高强、耐腐蚀,主要缺点是弹性模量小,变形较大。在土木工程中主要用于结构加固、防腐和管道等。
碳纤维增强塑料是由合成树脂胶结碳纤维而成,具有强度和弹性模量高,耐疲劳性能好,耐腐蚀性好的特点。在土木工程中,碳纤维增强塑料主要用于结构加固,制作碳纤维筋或索,用于有腐蚀的结构。
7.2.2建筑涂料
涂料是涂布在物体表面能形成具有保护和装饰作用的膜层材料。涂料除了具有保护和装饰功能外,还能具有一些特殊作用,如用作色彩标志、润滑、防滑、绝缘、导电、隔热、防潮等。建筑涂料则是指涂于建筑物表面能对建筑物起到保护、装饰作用,或者能改善建筑物使用功能的涂料。
1. 涂料的基本组成
涂料的基本组成包括:成膜物质、颜料、溶剂(分散介质)以及辅料(助剂)。
(1)成膜物质
成膜物质也称基料,是涂料最主要的成分,其性质对涂料的性能起主要作用。成膜物质分为两大类,一类是转化型(或反应型)成膜物质,另一类是非转化型(或挥发型)成膜物质。前者在成膜过程中伴有化学反应,形成网状交联结构。因此,此类成膜物质相当于热固性聚合物,如环氧树脂、醇酸树脂等;后者在成膜过程未发生任何化学反应,仅靠溶剂挥发成膜,成膜物质为热塑性聚合物,如纤维素衍生物、氯丁橡胶、热塑性丙烯酸树脂等。 建筑涂料常用树脂有聚乙烯醇、聚乙烯醇缩甲醛、丙烯酸树脂、环氧树脂、醋酸乙烯一丙烯酸酯共聚物(乙一丙乳液)、聚苯乙烯一丙烯酸酯共聚物(苯一丙乳液)、聚氨酯树脂等。
(2)颜料
颜料主要起遮盖和着色作用,有的颜料还有增强、改善流变性能、降低成本的作用。按所起作用不同,颜料又分为着色颜料和体质颜料(又称填料)两类。
建筑涂料中使用的着色颜料一般为无机矿物颜料。常用的有氧化铁红、氧化铁黄、氧化铁绿、氧化铁棕、氧化铬绿、钛白、锌钡白、群青蓝等。
体质颜料,即填料。主要起到改善涂膜的机械性能。增加涂膜的厚度和遮盖力,降低涂料的成本等作用。常用的填料有重晶石粉、轻质碳酸钙、重质碳酸钙、高岭土及各种彩色小砂粒等。
(3)溶剂
溶剂通常是用以溶解、稀释成膜物质的易挥发性有机液体。涂料涂敷于物体表面后,溶剂基本上应挥发尽,不是一种永久性的组分,但溶剂对成膜物质的溶解力决定了所形成的树脂溶液的均匀性、粘度和贮存稳定性。溶剂的挥发性影响涂膜的干燥速度、涂膜结构和涂膜外观。常用的溶剂有:甲苯、二甲苯、丁醇、丁酮、醋酸乙酯等。溶剂的挥发会对环境造成污染,选择溶剂时,还应考虑溶剂的安全性和对人体的毒性。
涂料按溶剂及其对成膜物质作用的不同分为溶剂型涂料、水溶性涂料和水乳型涂料。其中,水溶性涂料和水乳型涂料称为水性涂料。
(4)辅料
辅料(又称助剂或添加剂)是为了进一少改善或增加涂料的某些性能而加入的少量物质。通常使用的有增白剂、防污剂、分散剂、乳化剂、稳定剂、润湿剂、增稠剂、消泡剂、流平剂、固化剂、催干剂等。
2. 常用建筑涂料
建筑涂料的品种繁多,性能各异,按用途有外墙涂料、内墙涂料及地面涂料。
(1)外墙涂料
①苯乙烯一丙烯酸酯乳液涂料
苯乙烯―丙烯酸酯乳液涂料是以苯―丙乳液为基料的水乳型涂料,简称苯一丙乳液涂料。苯―丙乳液涂料具有优良的耐水性、耐碱性、耐湿擦洗性,外观细腻、色彩艳丽、质感好,与水泥混凝土等大多数建筑材料的粘附力强,并具有高耐光性和耐候性。
②丙烯酸酯涂料
丙烯酸酯涂料是以热塑性丙烯酸酯树脂为基料的外墙涂料。分为溶剂型和水乳型。丙烯酸酯涂料的耐水性、耐高低温性和耐候性良好,不易变色、粉化或脱落,有多种颜色。可以刷涂、喷涂或滚涂。丙烯酸酯涂料的装饰性好,寿命可达以上,是目前国内外应用最多的外墙涂料。丙烯酸酯涂料主要用于外墙复合涂层的罩面涂料。溶剂型涂料在施工中需注意防火、防爆。
③聚氨酯涂料
聚氨酯涂料是以聚氨酯树脂或聚氨酯与其他树脂复合物为主要成膜物质,加入填料、助剂组成的优质溶剂涂料。该涂料的弹性和抗疲劳性好,并具有极好的耐水、耐碱、耐酸性能。
其涂层表面光洁度高,呈陶瓷质感,耐候性、耐玷污性能好,使用寿命可达以上。聚氨酯涂料价格较贵,主要用于办公楼、商店等公用建筑。
④砂壁状涂料
砂壁状涂料是以合成树脂乳液为成膜物质,加入彩色骨料以及其他助剂配制而成的粗面厚质涂料,又称彩砂涂料。彩色骨料可用粒径小于2mm的高温烧结彩色砂粒、彩色陶粒或天然彩色石屑。彩砂涂料采用喷涂法施工,涂层具有丰富的色彩和良好石材质感,保色性、耐热性、耐水性及耐化学腐蚀性能良好,使用寿命可达10年以上。砂壁状涂料主要用于办公楼、商店等公用建筑的外墙立面。
(2)内墙涂料
①聚醋酸乙烯涂料
聚醋酸乙烯涂料是以聚醋酸乙烯乳液为基料的乳液型内墙涂料。该涂料无毒、不燃、涂膜细腻、平滑、色彩鲜艳、装饰效果良好、价格适中、施工方便。但是,耐水性及耐候性较差。
②醋酸乙烯一丙烯酸酯涂料
醋酸乙烯一丙烯酸酯涂树是以乙一丙共聚乳液为基料的水乳型内墙涂料。该涂料的耐水性、耐候性和耐碱性优于聚醋酸乙烯乳液涂料,并且有光泽,是一种中高档的内墙装饰涂料。
③多彩涂料
多彩涂料是以合成树脂及颜料等为分散相,以含有乳化剂和稳定剂的水为分散介质的水乳型涂料,按其介质特性分为水中油型和油中水型。以水中油型的贮存稳定性最好。通常所用的多彩涂料均为水中油型。
多彩涂料具有良好的耐水性、耐油性、耐化学药品性、耐刷洗性,并具有较好的透气性。多彩涂料对基层的适应性强、可在各种建筑材料上涂刷使用。
(3)地面涂料
①聚氨酯地面涂料
聚氨酯地面涂料是以聚氨酯为基料的双组分常温固化型橡胶类涂料。其整体性好,色彩多样,装饰性好,并具有良好的耐油性、耐水性、耐酸碱性和耐磨性,有一定的弹性,脚感舒适。该涂料主要适用于水泥砂浆或水泥混凝土地面。
②环氧树脂厚质地面涂科
环氧树脂厚质地面涂料是以环氧树脂为基料的双组分常温固化涂料。环氧树脂厚质地面涂料与水泥混凝土等基层材料的粘结性能优良,涂膜坚韧、耐磨,具有良好的耐化学腐蚀、耐油、耐水等性能,以及优良的耐老化、耐候性和装饰性。
7.2.3胶粘剂
1. 胶粘剂的基本概念
胶粘剂又称粘合剂,是通过粘附作用使被粘物结合在一起的材料。
胶粘剂一般由基料和多种辅助成分组成。基料是胶粘剂的主要成分,起粘接作用,要求有良好的粘附性和润湿性。合成树脂、合成橡胶、天然高分子以及无机化合物等都可做基料。辅助成分主要包括固化剂、溶剂、增塑剂、填料、偶联剂、引发剂、促进剂、防老化剂、稳定剂等。
固化剂用以使粘合剂交联固化,提高粘合剂的粘合强度、化学稳定性、耐热性等,是以热固性树脂为主要成分的粘合剂所必不可少的成分;溶剂溶解、稀释主料以调节粘度便于施工;填料具有降低固化时的收缩率、提高尺寸稳定性、耐热性和力学强度、降低成本等作用;
增塑剂用于提高韧性。
按受力情况胶粘剂分为结构胶粘剂和非结构胶粘剂。结构胶粘剂用于能承受荷载或受力结构件的粘结。非结构胶粘剂用于不受力或受力不大的各种场合。
胶粘剂能够将被粘结材料牢固地粘结在一起,是因为胶粘剂与材料间存在有粘附力以及胶粘剂本身具有内聚力。粘附力和内聚力的大小,直接影响胶粘剂的粘结强度。当粘附力大于内聚力时,粘结强度主要取决于内聚力;当内聚力高于粘附力时,粘结强度主要取决于粘附力。一般认为粘附力主要来源于以下几个方面:
(1)机械粘结力 胶粘剂渗入材料表面的凹陷处和孔隙内,在固化后如同镶嵌在材料内部,靠机械锚固力将材料粘结在一起。对非极性多孔材料,机械粘结力常起主要作用。
(2)物理吸附力 胶粘剂和被粘材料靠分子间的物理吸附力产生粘结。
(3)化学键力 胶粘剂与材料间能发生化学反应,靠化学键力将材料粘结为一个整体。 不同的胶粘剂和被粘材料,粘附力的主要来源不同,当机械粘附力、物理吸附力和化学键力共同作用时,可获得很高的粘结强度。
就实际应用而言,一般认为影响粘结强度的因素主要有:胶粘剂性质,被粘材料的性质,被粘材料的表面粗糙度,被粘材料的表面处理方法。胶粘剂对被粘材料表面的浸润程度,被粘材料的表面含水状况,粘结层厚度,粘结工艺等。
2.土木工程常用的胶粘剂
(1)结构胶粘剂
①环氧树脂胶粘剂
环氧树脂胶粘剂是当前应用最广泛的胶粘剂,因环氧树脂胶粘剂中含有环氧基、羟基、氨基和其他极性基团,对大部分材料有良好的粘结能力,有万能胶之称。其抗拉强度和抗剪切强度高,固化收缩率小,耐油和耐多种溶剂,耐潮湿.抗蠕变性好,是较好的结构胶粘剂。环氧树脂胶粘剂根据固化剂类型的不同可室温固化或高温固化,固化时间有明显的温度依赖性。环氧树脂胶粘剂在土木工程中的应用很多,主要用于裂缝修补、结构加固和表面防护等。
②不饱和聚酯树脂胶粘剂
不饱和聚酯树脂胶粘剂的特点是粘结强度高,抗老化性及耐热性较好。可在室温和常压下固化,固化速度快,但固化时的收缩大,耐碱性较差,适于粘结陶瓷、玻璃、木材、混凝土和金属结构构件。
(2)非结构胶粘剂
①聚醋酸乙烯胶粘剂
聚醋酸乙烯胶粘别是由醋酸乙烯单体聚合而成,俗称白乳胶。其特性是使用方便、价格便宜、润湿能力强,有较好的粘附力,适用于多种粘结工艺。但其耐热性、对溶剂作用的稳定性及耐水性较差,只能作为室温下使用的非结构胶。
②聚氨酯胶粘剂
聚氨酯胶粘剂是分子链中含有异氰酸酯基(―NCO)及氨基甲酸酯基(―NH―COO―),具有很强的极性和活泼性的一类粘合剂。其品种很多,有单组分和双组分两类。聚氨酯胶粘剂有良好的粘结强度,可用于金属、玻璃、陶瓷、橡胶、塑料、织物、木材、纸张等各种材料的粘合;有良好的耐超低温性能,而且粘结强度随着温度的降低而提高,是超低温环境下理想的粘结材料和密封材料;具有良好的耐磨、耐油、耐溶剂、耐老化等性能;可通过调节分子链中软段和硬段比例结构,制成满足各种行业、各种性能要求的高性能粘合剂。但是,在高温和高湿条件下,易水解,会降低粘结强度。
③氯丁橡胶胶粘剂
氯丁橡胶胶粘剂是以氯丁橡胶为主要组成。加入氧化锌、氧化镁、填料、抗老化剂和
抗氧化剂等制成,是目前应用最广的一种橡胶型胶粘剂。氯丁橡胶胶粘剂对水、油、弱酸、弱碱、醇和脂肪烃有良好的抵抗力,可在-50~+80℃的温度下工作,但是,徐变较大,且容易老化。
7.2.4土工合成材料
土工合成材料是以聚合物(如塑料、化纤、合成橡胶等)为原料制成的用于岩土工程的聚合物材料。按照需要,土工合成材料可置于土体内部、表层或各层土体之间,起加强或保护土体的作用。土工合成材料主要有土工织物类材料和超轻型填土材料。土工织物类合成材料的用途见表7―1。
土工纤维、土工布、化纤滤网、塑料网(格栅)、塑料膜等聚合物材料制成的布状或网状物,统称为土工布或土工织物。其中,网格较大者,用硬纤维片或条编制而成,称为土工垫或土工网;而网格更大者,通过塑料挤出成型的各种规格的格栅或用塑料板(带)焊接成的各种格室,称为土工格栅。在格室内充填砂、石或其他材料,用于沙漠、泥泞沼泽地区筑路、护坡等工程。
土工织物是一种多功能材料,主要功能有滤层作用、排水作用、隔离作用、加筋作用、防渗与防潮作用等。 表7―1 土工织物合成材料的用途
分 类
土工织物 用 途 排水、反滤、护坡等
加固垫层、坡、防护植草、排水通
道、滤层等
防冲刷、防流失、用于沙漠和沼泽
地筑路、护坡
防冲刷、防流失、用于沙漠和沼泽
地筑路、护坡
灌入混凝土或砂浆,用于护坡、地
基处理
装入大块石,用于截流、筑堤、防
流失
用于地下建筑的防水,堤围的加筋
材料
用于堤坝、水库、地下建筑游泳池
等的防渗漏
用作排水通道
用于软基处理和排水加固
用于防止管涌、加筋、排水、增强
与土面间的摩擦力
用于路基、隧道、堤坝、结构的墙
后排水等
用于铁路、公路、等的软路基的填
土材料 材料类型 用合成纤维(如锦纶、腈纶等)制成 用塑料条、带编织或压制而成的网状物 用塑料挤压而成,呈网状、蜂窝状结构 用塑料板焊接而成 土工网 透水性的土工材料 土工格栅 土工格室 土工模袋 用合成纤维制成 土工袋 用合成纤维制成绳网、绳带等 不透水性的土工材料 塑料膜 聚氯乙烯、聚丙烯等制成的膜 用纺织布或无纺布防水处理后制成 用聚氨酯制作的开孔型泡沫塑料 透水性土工织物与聚丙烯等塑料挤压而成 透水的土工织物与聚丙烯等塑料挤压而成 以无纺土工织物作芯材制成的塑料排水管 聚苯乙烯泡沫塑料 土工膜 多孔泡沫塑料板 塑料排水管 复合材料 复合土工膜 复合排水材料 EPS填土材料
本章小结
1. 聚合物是由千万个原子彼此以共价键结合的大分子化合物,有加聚物和缩聚物两大类。一般加聚物为线型高分子,均为热塑性聚合物;而缩聚物部分是线型高分子,是热塑性聚合物,而大部分为体型(网状)高分子,属热固性聚合物。
2. 热塑性聚合物具有受热时软化、遇冷时凝固的性质。通常可反复进行加热软化、熔融和冷却硬化,具有可再生重复使用的特性。而热固性聚合物仅在第一次加热(或加入固化剂前)时能发生软比、熔融,并在此条件下产生化学交联而固化,以后再加热时再不会软化或熔融,也不会被溶解。前者相对更加柔韧而后者更加硬脆。在强度、变形、耐热、耐腐蚀、抗变形等方面,后者要优于前者。但前者可以方便地进行热塑性加工,通常价格低廉。
3. 合成高分子材料具有较小的密度、更高的比强度、更好的隔热保温性和耐腐蚀性,同时还具有良好的防水密封性、电绝缘性和减震消音性,与其他材料的复合性能也十分突出。但耐热性能较差,防火、耐老化是这类材料在使用过程中应该重点考虑的问题。
4. 一般可将聚合物的老化分为聚合物分子的交联与降解两种。交联是指聚合物的分子从线型结构变为体型结构的过程;降解是指聚合物的分子链发生断裂,其分子量降低的过程。老化原因主要是热老化和光老化。
5. 建筑塑料的基本组成为合成树脂、填充料、增塑剂、固化剂、稳定剂和其他添加剂。其中合成树脂是决定塑料类型、性能和用途的根本因素。其他填充料及外加剂是为了改善塑料性能而加入的。
6. 常用的热塑性塑料有聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚碳酸酯、聚酰胺、ABS塑料和有机玻璃等;常用的热固性塑料有酚醛树脂、不饱和聚酯树脂、脲醛树脂、三聚氰胺甲醛树脂、聚氨酯、环氧树脂和有机硅树脂等。
7. 涂料的基本组成包括:成膜物质、颜料、溶剂(分散介质)以及辅料(助剂)。成膜物质是涂料的关键成分。成膜物质分为两大类,一类是转化型(或反应型)成膜物质,另一类是非转化型(或挥发型)成膜物质。建筑涂料常用树脂有聚乙烯醇、聚乙烯醇缩甲醛、丙烯酸树脂、环氧树脂、醋酸乙烯一丙烯酸酯共聚物(乙一丙乳液)、聚苯乙烯一丙烯酸酯共聚物(苯一丙乳液)、聚氨酯树脂等。
8. 胶粘剂一般由基料和多种辅助成分组成。基料是胶粘剂的主要成分,起粘接作用,要求有良好的粘附性和润湿性。合成树脂、合成橡胶、天然高分子以及无机化合物等都可做基料。辅助成分主要包括固化剂、溶剂、增塑剂、填料、偶联剂及其他外加剂。粘附机理主要是机械粘结力、物理吸附力和化学键力。
本章练习
1.聚合物有哪些特征,这些特征与聚合物的性质有何联系?
2. 热塑性树脂与热固性树脂的主要不同点有哪些?
3 线型聚合物有哪几种物理状态?试述聚合物在不同物理状态下的特点。
4.试述聚合物的老化原因和防止措施?
5.建筑塑料的基本组成有哪些?它们各起何作用?
6.胶粘剂的粘结力来源有哪些?建筑上常用的胶粘剂有那些?
7.建筑涂料的组成有哪些?它们各起何作用?建筑涂料有哪些种类?
普通高等教育“十二五”规划教材
英文题名取自封面
有书目(第252-253页)
高分子材料与工程专业师生、其他材料专业,如复合材料、材料物理与化学、无机非金属材料等专业师生及相关读者。
ISBN 978-7-5019-7963-9: CNY38.00
本教材将《高分子材料》、《塑料助剂》、《高分子材料加工原理》等知识进行整合,去其冗长,选取其必要的概念、原理和知识点进行重新编辑,使相关知识条理化、系统化,全面介绍了聚合物树脂从材料到生产的全部过程,力求为教师和学生的使用提供方便。本书主要内容涵盖了绪论、高分子材料概论、物料的混合与配制等。高分子材料=Polymeric materials / 王澜,王佩璋,陆晓中编著.(高分子材料与工程专业系列教材)
普通高等教育“十一五”国家级规划教材
并列英文题名取自封面
有书目(第424-425页)
ISBN 978-7-5019-6654-7: CNY52.00
本书论述了各类高分子材料的性能、加工方法和应用,包括:通用塑料,通用工程塑料,特种工程塑料,热固性塑料,橡胶等。并且结合这些高分子材料,分别介绍了各种助剂的功能和在高分子材料中的应用。
高分子材料与工程专业系列教材(检索结果以出版年月为序)
1.高分子材料与加工/温变英主编,2011,TB324-43/16
2.高分子材料=Polymeric materials/王澜,王佩璋,陆晓中编著,2009,TB324-43/12
3.聚合物复合材料/黄丽主编,2001,TB33-43/6聚合物复合材料 / 黄丽主编.(高分子材料与工程专业系列教材)
高等学校专业教材
ISBN 978-7-5019-2629-9: CNY35.00
关键词:酚醛,聚乙烯,聚氨酯,阻燃材料
火灾已经成为现代人生命财产的一大杀手。在美国, 每年火灾死亡约4000人, 伤约20000人, 直接经济损失约100亿美元。在欧洲, 每年火灾致死超过5000人, 直接火灾损失为全欧GDP的0.2%。中国近年也火灾频繁, 1997年为14万起 (致死2722人, 伤4930人, 直接经济损失15.4亿元) , 2002年上升至18万起, 且特大火灾事故亦常有发生。
虽然室内装修材料一般并不是火灾中的主要可燃物, 但是装修材料在火势蔓延和助燃方面起到非常重要的作用。它们会引起爆燃, 在燃烧中还可以产生大量有毒气体, 严重威胁人员生命安全。防火性能已经成为了当今评价房屋安全性的一大重要标准, 这就对家居装修材料的防火能力提出了很高的要求。
采用阻燃材料可以防止火灾的发生和不致使小火发展成灾难性的大火, 大大降低火灾危险, 有助于各种制品安全使用[1]。
本文主要介绍几种有机类的防火材料。
1 酚醛FR P
该材料被称为“第二代酚醛树脂”, 它既不燃烧发烟又少。“第二代酚醛树脂”体系的最大特点和突破就是树脂体系的重新设计, 形成高反应活性的树脂体系, 无需溶剂, 可直接浸渍基材、铺层。固化时间短, 固化条件可以选择, 甚至可常温常压固化。
1.1 酚醛FR P的优点
⑴阻燃性能好, 氧指数高。
无须加阻燃剂, 酚醛FRP的氧指数可大于50, 带填料的酚醛FRF氧指数甚至可以达到70以上, 而阻燃聚酯FRP氧指数也才29.7。
⑵发烟度低。
以UL—723烟道试验, 酚醛FRP的发烟指数为7。
⑶耐高温, 热稳定性好。
酚醛FRP在150~200℃时的力学性能保持率为2%~100%, 热变形温度大于300℃, 最高使用温度可达230℃以上。此外, 新型酚醛FRP的热膨胀系数约为玻璃钢的1/2, 为工程塑料的1/10。
这些优良的性能保证了在发生火灾时, 材料难燃烧, 小火条件下不易变形, 发生大火时也仅仅产生少量烟, 可以有效保护现场人员的生命安全。
1.2 酚醛FR P的国内外研究应用现状
在美国, 酚醛FRP已经应用于飞机、潜艇、火车、汽车门窗及内装饰, 并逐渐应用于高层建筑的墙壁、顶棚等。在日本, 酚醛FRP是建筑基本法中明确提出的准不燃材料中唯一的有机材料。
我国自“八五”晚期就开始研制该种材料, 已有火车窗试制品, “九五”期间, 国家科委又将酚醛树脂复合材料及其成型工艺列为重点攻关项目。
2 酚醛树脂复合材料
以酚醛树脂为基材的复合材料发展很早, 但由于耐高温、良好机械强度及物理特性, 并兼具有优良制造弹性, 目前仍广泛应用。该材料由酚醛树脂做基材, 加入各式补强纤维而得到。
2.1 酚醛树脂复合材料机制
在高温及燃烧环境下, 外界热流使酚醛复合材料产生表面碳化及内部热裂解之高温反应, 此类反应会吸收外界传入的热量, 并产生高温裂解气流, 气流注入材料边界层而产生扰流, 进一步阻碍外界热流的传入, 因而达到高温绝热的效果。但是由于烧蚀作用, 高温环境中材料会越来越少, 所以它只是一种一次性使用的材料, 绝热效果不可重复。
2.2 各种酚醛复合材料的优缺点
常使用的补强纤维有玻璃纤维, 碳纤维, 硅纤维, 石英纤维。高纯度的SO2可以增加材料的耐热性能, 但是会降低室温机械性能;石英纤维机械特性好过硅纤维, 但是价格较高;碳纤维虽然耐热性能很好, 但是导热性比较高[2]。
3 无卤阻燃聚乙烯
聚乙烯因为原料丰富, 易于加工成型, 而被广泛用作铝塑板的芯材。但是普通的聚乙烯塑料在高压、放电、高温条件下极易燃烧, 加上燃烧时产生熔融物滴落, 容易引燃其他物品, 导致火灾蔓延。
阻燃聚乙烯一直就是国内外开发的难点和热点, 常用的添加型阻燃方法大致分为含卤阻燃与无卤阻燃。而前者虽然防火效果较好, 但是一旦分解将产生大量有毒烟雾, 有二次污染且有害人体健康。所以后者就成为研究的重点。
无卤阻燃PE就是在PE中添加无卤阻燃剂和阻燃增效剂的阻燃复合材料, 必要时还可以加入其他加工助剂, 如热稳定剂、分散润滑剂、流变剂、抗氧化剂、紫外线吸收剂、交联剂或着色剂等。
3.1 无卤阻燃剂的优缺点
与有卤阻燃剂相比, 无卤阻燃剂价格更低, 无毒或毒性较小, 消烟及熔融不滴落等优点。但是由于添加剂添加量较大, 这将导致产品加工性能和机械性能将下降。
3.2 组分对材料性能的影响
⑴材料对树脂基体的基本要求是具有良好的耐填充性, 在高填充量是仍具有良好的物理力学性能。聚乙烯为非极性树脂, 所以单独使用不符合要求, 必须用LLDPE或EVA与LDPE复配, 经适度的接枝交联改性。但交联度不可太高, 否则影响流动性和加工性能[3]。
⑵阻燃剂的粒度大小会影响材料性能。选择适当细度的阻燃剂, 可以提高阻燃效果, 并且由于阻燃剂的高度分散, 有效改善了材料的力学性能。此外, 阻燃剂的表面偶联处理可以提高材料的物理机械性能。
⑶阻燃增效剂对阻燃剂有增效的效果, 降低燃烧速率和总放热量, 可根据不同的要求来选择。
4 聚氨酯材料
聚氨酯材料本是一种有机高分子材料, 具有可燃性。由于聚氨酯材料在加工过程中添加了各种助剂包括阻燃剂等, 因此聚氨酯泡沫塑料在燃烧时多为不完全燃烧, 这种不完全燃烧在火灾中表现为很浓很黑的烟气, 这种浓烟含有大量的异氰酸酯、多元醇、氨、二氧化碳、氰化氢、甲醛、一氧化碳等有毒性气体。实际上, 聚氨酯材料在燃烧过程中产生的这些大量的烟尘, 被人体吸入后会直接引起呼吸道的机械阻塞, 使人体肺部有效呼吸面积减少, 再加上火灾中热辐射及火焰对人体的灼伤, 人们的恐慌心理以及多种有害气体对人体的综合作用, 缺氧等因素, 导致人群在火灾中死亡就不可避免了。
因此, 各国政府也相继颁布法令和法规, 明确规定某些场合下, 聚氨酯材料的使用不仅要达到一定的阻燃标准, 而且还要控制其燃烧时的有毒物生成, 或不生成对周围环境有毒害作用的物质。
4.1 阻燃机理
阻燃剂的使用可以提高高分子材料的耐燃性, 延缓燃烧速度或阻止它的燃烧。当使用阻燃剂时, 就可以使塑料接触火时, 燃烧速度很慢;当离开火源时, 能很快地停止燃烧, 而自己熄灭。
阻燃剂作用是通过气相阻燃、凝聚相阻燃及中断热交换等来实现的, 是上述因素综合在一起的一个复杂过程, 很多阻燃体系是同时以几种阻燃机理起作用的[4]。
4.2 聚氨酯阻燃材料的发展趋势
阻燃剂目前正在向着高效低毒无尘或少尘低发烟方向, 同时还必须有耐热性好、分解温度要高、与高聚物相容性好、不析出、抗迁移的电子级阻燃剂。另外, 阻燃剂的粒径大小、粒度分布及表面处理技术的应用将会提高聚氨酯材料的物理机械性能, 扩大使用范围。
5 结语
室内布置所使用的物品和材料大多都是可燃或者易燃的, 如过不采取适当防火的措施的话, 一旦发生火灾, 后果将不堪设想。有机防火材料可以替代许多的传统易燃装修材料, 不仅安全系数更高, 而且价格便宜, 外观也很美观时尚。尽管目前的有机防火材料还有很多方面的不足, 譬如力学性能不足, 脆性大, 抗冲击性能不好, 有毒等, 但是它们正在被不断的完善, 我们有理由相信, 在不久的将来, 新型防火材料将会符合各方面的要求, 各种建筑将在防火材料的保护下更加安全舒适。
参考文献
[1]欧育湘, 韩廷解.发展阻燃材料防火灾于未然.新材料产业, 2006, 10:32-36
[2]章俊文, 葛光祥.防火及高温绝热用酚醛复合材料性能及应用㈠.高科技纤维与应用, 2003, 28 (3) :11-13
[3]王小红, 翦建政, 何斌, 肖顺秋.防火铝塑板用阻燃聚乙烯芯层材料.科技在线
[关键词]高分子材料;成型加工;技术
近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。
一、高分子材料成型加工技术发展概况
近50年来,高分子合成工业取得了很大的进展。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。
据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现今高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。
目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。
(二)以动态反应加工设备为基础的新材料制备新技术
1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
2.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的熱塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
三、高分子材料成型加工技术的发展趋势
塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。
综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。
参考文献:
[1]江成平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435.
[2]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利9O101034.0,I990;美国专利5217302,1993.
【高分子润滑材料】推荐阅读:
高分子材料纳米材料12-16
高分子材料辐射改性09-23
功能高分子材料的现状07-15
关于高分子材料的论文09-16
高分子材料就业前景01-02
高分子材料学毕业论文06-15
高分子材料科学的发展进程06-17
福建省高分子材料重点实验室12-29
金工实习报告--材料学院高分子甲 罗浩文10-27
国家公务员考试申论高分之阅读材料神器07-06