《函数的单调性》教学设计

2024-08-03 版权声明 我要投稿

《函数的单调性》教学设计(共10篇)

《函数的单调性》教学设计 篇1

函数的单调性性教学反思

在教学过程中针对学生已经初步认识了函数是刻画某些运动变化数量关系的数学概念,在教学中借助图像对函数进行研究特别是对函数加以直接考察,利用一次函数,二次函数,反比例函数等几个具体函数了解它们的图像和性质。“图像是上升的,函数是单调增的;图像是下降的,函数是单调减的”仅就图像角度直观描述函数单调性的特征,学生并不感到困难。困难在于,把具体的,直观形象的函数单调性抽象出来,用数学的符号语言描述,教学中通过像及数值变化特征的研究,得到“图像是上升的”,相应地,即“随着x的增大,Y也增大,”初步提出单调性的说法。通过讨论、交流,让学生尝试,就一般情况进行刻画,提出单调性的定义,然后通过辨析,练习等帮助学生理解一概念。

在教学中要适当把握节奏,在一节课企图让学生完成对单调性的真正理解是不可能的,在今后的教学中学生通过判断函数单调性,寻找函数单调区间,应用函数单调性解决具体问题,等一系列学习活动逐步理解这一概念。

《函数的单调性》教学设计 篇2

在这部分内容中主要应该掌握以下几点:

1. 增函数与减函数的定义

定义:对于函数f (x) 的定义域D内的某个区间上的任意两个自变量的值x1, x2。

(1) 若当x1<x2时, 都有f (x1) <f (x2) , 则说明f (x) 在这个区间上是增函数。 (如图1)

(2) 若当x1<x2时, 都有f (x1) >f (x2) , 则说明f (x) 在这个区间上是减函数。

说明: (1) 增函数描述的是f (x) 随x的增大而增大, 函数图象从左到右是呈上升的;减函数描述的是f (x) 随x的增大而减少, 函数图象从左到右是呈下降的。

(3) 增函数就其本质而言是在相应区间上较大的自变量对应较大的函数值、较小的自变量对应较小的函数值。即“大对大、小对小”;减函数在相应区间上较大的自变量对应较小的函数值、较小的自变量对应较大的函数值。即“大对小、小对大”。

2. 单调性与单调区间

若函数y=f (x) 在某个区间是增函数或减函数, 则就说函数y=f (x) 在这一区间具有 (严格的) 单调性, 这一区间叫做函数y=f (x) 的单调区间。此时也说函数是这一区间上的单调函数。

在单调区间上, 增函数的图象从左到右是上升的, 减函数的图象从左到右是下降的。

说明: (1) 函数的单调区间是其定义域的子集;

(2) 应是该区间内任意的两个实数, 忽略需要任意取值这个条件, 就不能保证函数是增函数 (或减函数) , 例如图2中, 在x1, x2, 那样的特定位置上, 虽然使得f (x1) <f (x2) , 但显然此图象表示的函数不是一个单调函数;

(3) 除了严格单调函数外, 还有不严格单调函数, 它的定义类似上述的定义, 只要将上述定义中的“f (x1) <f (x2) 或f (x1) >f (x2) ”改为“f (x1) ≤f (x2) 或f (x1) ≥f (x2) ”即可;

(4) 定义的内涵与外延:内涵是用自变量的大小变化来刻画函数值的变化情况;外延: (1) 一般规律:自变量的变化与函数值的变化一致时是单调递增, 自变量的变化与函数值的变化相反时是单调递减。 (2) 几何特征:在自变量取值区间上, 若单调函数的函数图象从左到右上升, 则为增函数, 函数图象从左到右下降则为减函数。

函数的单调性是对某个区间而言的, 对于单独的一点, 由于它的函数值是唯一确定的常数, 因而没有增减变化, 所以不存在单调性问题;另外, 中学阶段研究的函数, 对于闭区间内的任意值都有意义, 那么只要在开区间上单调, 它在闭区间上也就单调, 因此, 在考虑它的单调区间时, 包括不包括端点都可以;但若的取值函数无意义时, 则单调区间不包括该点。

3. 单调性的证明

根据定义证明函数单调性的一般步骤是:

(1) 设x1, x2是给定区间内的任意两个值, 且x1<x2;

(2) 作差f (x1) -f (x2) , 并将此差式变形 (要注意变形的程度) ;

(3) 判断f (x1) -f (x2) 的正负 (要注意说理的充分性) ;

(4) 根据f (x1) -f (x2) 的符号确定其增减性。

4. 复合函数的单调性

复合函数单调性的根据是:设y=f (u) , u=g (x) , x∈[a, b], u∈[m, n]都是单调函数, 则y=f[g (x) ]在[a, b]上也是单调函数。

(1) 若y=f (u) 是[m, n]上的增函数, 则y=f[g (x) ]的增减性与u=g (x) 的增减性相同;

(2) 若y=f (u) 是[m, n]上的减函数, 则y=f[g (x) ]的增减性与u=g (x) 的增减性相反。

复合函数单调性的规律见下表:

函数的单调性单元教学设计 篇3

关键词:高中数学  函数教学  单调性 单元教学设计

单元教学设计是指对某一单元的教学内容作具体的教学活动设计,这里的单元可以是一章,也可是以某个知识内容为主的知识模块。单元教学设计要有整体性、相关性、阶梯性、综合性。下面我就以人教A版高中数学函数的单调性为例进行单元教学设计,设计内容包括单元教学目标、要素分析、教学流程设计、典型案例设计、反思与改进等。

一、单元教学目标

一是理解函数的单调性概念;二是会利用代数法和导数,“定性”“定量”多角度研究函数的单调性;三是理解函数的单调性在认识函数性质中的作用和地位。

二、要素分析

(一)数学分析

一是函数的单调性在高中数学中的地位。首先,函数是高中数学的一条主线。克莱因说:“函数概念,应该成为数学教育的灵魂。以函数概念为中心,将全部数学教材集中在他周围,进行充分的综合。”函数是客观世界的一个基本数学模型,用于刻画“变化”,体现两个变量的依存关系。其次,函数有很多性质,高中阶段单调性最重要。第三函数单调性贯穿整个数学教学,初中以具体函数为载体,“感性”认识函数值随自变量的变化如何变化。高中利用代數法和导数,“定性”“定量”多角度研究函数的单调性。二是函数的单调性刻画“变化”,而变化无处不在。

(二)标准分析

在必修阶段,学生要经历从“具体到抽象”,“图形语言到自然语言,再到符号语言”的思维过程。这一过程不但有利于学生对函数单调性定义的理解,而且还有利于培养学生抽象概括能力和逻辑思维能力。首先,归纳总结能力的培养。学生对基本初等函数已非常熟悉,如何将学生对函数的单调性的原有认知,转化为以导数为依据的认知是不可忽视的问题。其次,逻辑思维的培养,教材只给出了函数单调性的充分条件,但在研究具体函数的单调性时并不够,如何处理这部分教材是教师要重点思考的问题,而这一问题也正是培养学生逻辑思维能力的优良载体。

(三)学习者特征分析

学生对一次、二次、反比例函数等已有较好的认识,印象应该是深刻的;学生的直觉思维优于逻辑思维,感性认识胜于理性思考;学生的演算、恒等变形的能力有待加强,此处也正是培养学生这方面能力的载体。

(四)重点难点分析

函数的性质是研究函数问题的基石,对函数的定性和定量分析是研究函数的两个不同角度,但同等重要。在必修中,函数的单调性的定义的形成过程是重点,将学生对已熟知函数的单调性从感性认识上升至理性认识是核心;在选修中,理解导数为何可以“定量”刻画函数的变化是基础,理解导数与函数单调性之间的关系是重点,能利用导数研究函数的单调性是目的。

(五)教材对比分析

现行教材有六个版本,分别为人教A版、人教B版、北师大版、苏教版、湘教版和鄂教版,以前四个版本使用较多。教材的多样性为教师的教学提供了充足的材料,教师可以根据自己学生的特点、认知水平,选择合适的教学手段和方法。下面以前四种教材为例,谈谈在函数单调性定义方面,各教材在处理上的不同之处。一是定义引入的方式不同。人教A版和人教B版以具体的函数引出函数单调性的描述,而北师大版和苏教版则以实践中的具体实例引出函数单调性的概念。引入方式的不同,无所谓“优”与“劣”,教师可以结合学生的实际情况,采用不同的处理方法。定义的方式不同:人教A版、北师大版和苏教版采用了传统教材对单调性的定义方式,即在通过自变量的增大过程中函数值的增大或减小来定义;人教B版的教材则采用自变量具有正增量时函数值增量的符号加以定义。人教B版在其后安排了“探索与研究”,定义了平均变化率,希望学生能探究函数的单调性与增长快慢之间的联系,为选修系列导数做了铺垫。

(六)教学方式分析

这一过程可以灵活采用各种教学方法,我们学校主要采用五环节教学法,即:师生共同探究、学生独立思考、小组合作交流、学生精彩展示、老师精彩点评。

三、教学流程设计

基于函数的单调性在中学数学中的特殊地位,对函数单调性的教学可以分为以下几个阶段。第一课时:以理解函数的单调性概念为主要教学目标,学生对单调性的认识能依据函数图象指出其单调区间;初步理解用代数法证明(确定)单调区间的理论依据。第二课时:在理解函数的单调性定义的基础上,能熟悉、巩固证明函数单调性的方法,从“判定”和“性质”两个方面进一步理解函数的单调性。基本初等函数和数列学完之后(1课时),这个阶段以梳理基本初等函数和数列的单调性为主,让学生进一步理解函数的单调性及其在认识函数性质中的作用和地位。不等量关系后的梳理(1课时)。选修阶段(2课时)。第一课时:以基本函数为载体,结合曲线切线的几何意义,学生能借助直观初步理解函数的单调性与导数符号之间的关系;第二课时:在认识和理解函数的单调性和导数符号之间关系的基础上,学生能利用导数研究函数的单调性,求函数的单调区间。高考备考阶段(1课时)学生对用代数法和导数两种方法研究函数的单调性有了比较全面和系统的认识。

四、典型案例设计

必修时期:必修一,函数的单调性(概念课);选修时期:选修2-2,导数的应用;高三复习时期,专题复习,函数的单调性。(略)

五、反思与改进

《函数的单调性》教学目标 篇4

《函数的单调性》

教学目标: 1.知识目标 ①理解函数的单调性的概念,掌握判断或证明函数单调性的方法和步骤; ②会求函数的单调区间.2.能力目标 ①通过对函数单调性的证明及单调区间的求法的复习,培养学生应用化归转化和分类讨论的数学思想解决问题的能力.②通过本节课的复习,使学生体验和理解从特殊到一般的归纳推理的能力.③通过课堂的练习,提高学生分析问题和解决问题的能力.3.情感目标 培养学生的逻辑推理能力和创新意识,同时,培养学生对数学美的艺术体验.教学重点:证明函数的单调性以及求函数的单调区间.教学难点:函数单调区间的求法.《简单的幂函数》

教学目标:

1.了解指数是整数的幂函数的概念;能通过观察总结幂函数的变化情况和性质;2.学会利用定义证明简单函数的奇偶性,了解用函数的奇偶性画函数图象和研究函数的方法

3.培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力,引导学生发现数学中的对称美,让学生在识图和画图中获得乐趣。教学重点:幂函数的概念,奇偶函数的概念.教学难点:幂函数图像性质,研究函数奇偶性。

《正比例函数》

教学目标:知识与技能: ⑴理解正比例函数及正比例的意义;

⑵根据正比例的意义判定两个变量之间是否成正比例关系; ⑶识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。

过程与方法: ⑴通过现实生活中的具体事例引入正比例关系通过画图像的操作 实践,体验“描点法”; ⑵经历利用正比例函数图像直观分析正比例函数基本性质的过程,体会数形结合的思想方法和研究函数的方法

情感态度与价值观: 积极参与数学活动,对其产生好奇心和求知欲.形成合 作交流、独立思考的学习习惯.

教学重点: 理解正比例和正比例函数的意义

教学难点:

判定两个变量之间是否存在正比例的关系

《体积和体积单位》

☆【教学目标】

1.让学生初步建立起空间大小的概念,知道“体积”的含义,发展学生的空间观念。2.让学生通过观察、操作、实验体会并理解体积的含义,认识常用的体积单位:立方米、立方分米、立方毫米。

3.初步掌握计量物体的体积的方法,能选择恰当的体积单位估算常见物体的体积。4.培养学生的实验能力、观察能力以及合作学习的能力,扩展学生的思维,进一步发展学生的空间观念。

【教学重点】使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。【教学难点】帮助学生建立1立方米、1立方分米、1立方厘米的表象,能正确应用体积单位估算常见物体的体积。

☆ 【教学目标】

1、通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。

2、使学生知道计量物体的体积,就要看它所含体积单位的个数。

3、使学生初步了解体积单位与长度单位、面积单位的区别和联系。

4、通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。

【教学重点】使学生感知物体的体积,掌握体积和体积单位的知识。

【教学难点】使学生建立体积是1立方米、1立方分米、1立方厘米的空间观念,能正确应用体积单位估算常见物体的体积。

《轴对称与坐标变化》

教学目标 【知识目标】:

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.

2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。【能力目标】: 1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。【情感目标】 1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知

欲,能积极参与数学学习活动。3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点: 经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点: 由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

《倍的认识》

☆教学目的:

1、初步建立“倍”的概念,理解“几倍”与“几个几”的联系。

2、培养学生观察、推理、迁移能力及语言表达能力。

3、培养学生善于动脑的良好学习习惯和对数学的学习兴趣。

4、培养他们的创新意识和实践操作能力。

教学重点:初步建立“倍”的概念。理解和掌握:“一个数是另一个数的几倍”的含义 ☆教学目标:

1、基本目标

(1)学生紧密联系生活实际,通过操作,把“倍”的概念与学生已有的认识基础“份”联系起来,理解“倍”的含义,建立“倍”的概念。

(2)学会分析一个数是另一个数的几倍的实际问题的数量关系。(3)学生在学习过程中体会数学知识之间的内在联系,发展观察、比较、抽象、概括和合情推理能力。(4)学生在情境中探究解题的过程,体会探究带来的成功体验。

2、发展目标

(1)学生充分体验数学与日常生活的密切关系,培养生活中的数感。(2)培养学生积极探究、大胆尝试的自主学习能力和同学间协作互助的精神。

(3)学生进一步体会数学与现实生活的联系,培养学生认真观察、善于思考的良好学习习惯,增强学习数学的兴趣和信心。

教学重点:建立“倍“的概念。

高中函数单调性的教学设计 篇5

教学目标

1、会用等比数列的通项公式和前n项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。

2、通过公式的灵活运用,进一步渗透分类讨论的思想、等价转化的思想。

函数的单调性

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。:

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调性

教 具: 多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。

结论:(1)y轴左侧:逐渐下降; y轴右侧:逐渐上升;

(2)左侧 y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

⑴若当<时,都有f

⑵若当<时,都有f()>f(),则f(x) 在这个区间上是减函数(如图4)。

②单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

当x1

几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

判断2:定义在R上的函数 f (x)满足 f (2)> f(1),则函数 f (x)在R上是增函数。(×)

函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

例1 、如图,是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,以及在每一单调区间上,函数是增函数还减函数。

注意:

(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2 判断函数 f (x) =3x+2 在R上是增函数还是减函数?并证明你的`结论。

引导学生进行分析证明思路,同时展示证明过程:

证明:设任意的,且,则

由,得

于是

即。

所以,在R上是增函数。

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤:

①任意取值:即设x1、x2是该区间内的任意两个值,且x1

②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形

③判断定号:确定f(x1)-f(x2)的符号

④得出结论:根据定义作出结论(若差0,则为增函数;若差0,则为减函数)

即“任意取值——作差变形——判断定号——得出结论”

例3、 证明函数在(0,+)上是减函数.

证明:设,且,则

由,得

又由,得,

于是即。

即。

所以,函数在区间上是单调减函数。

问题1 :在上是什么函数?(减函数)

问题2 :能否说函数在定义域上是减函数? (学生讨论得出)

四、课堂练习,知识巩固

课本59页 练习:第1、3、4题。

五、课堂小结,知识梳理

1、增、减函数的定义。

函数单调性是对定义域的某个区间而言的,反映的是在这一区间上函数值随自变量变化的性质。

2、函数单调性的判断方法:(1)利用图象观察;(2)利用定义证明:

证明的步骤:任意取值——作差变形——判断符号——得出结论。

六、布置作业,教学延伸

中职卫生学校函数单调性情感教学 篇6

所谓中等职业教育,就是为实现社会发展与经济建设之需,在各水平 教育基础 上 ,对人才职 业技能进 行培养的 一种专门化 教育。中 等职业学 校的学生 正处于人 生观、价值观 及世界观形成的关键时期,因此对他们加以正确引导具有必要性。

国内有关研究显示,职业情感和职业态度比较稳定、积极者,其业务能力和职业胜任感相对较强,人际交往也比较顺畅。在中国传统教育观念中,对情感教育极为注重,而现代时期也非常重视情感教育, 尤其突出表现在中等职业卫生学校中,而以个人为中心的情感教育不同于理性教育。情感教育是灵魂教育的一种,承载着社会的道德良知。所以,中等职业院校的卫生学校应该对中等职业生心理困惑、思想状况及实际需求予以深入了解,以此实现学生专业技术、职业情感等的均衡发展,比如在为学生传授函数单调性相关知识点时,应该将情感教学方法应用于其中。本研究主要分析与探讨了中职卫生学校函数单调性情感教学。

二、情感教育的内涵

对于情感教育的内涵,在不同教育与文化背景下,国内外学者所做的表述也有所不同: 英国沃里克大学于1994年所召开的全球性情感教育学术研讨会议中,全球很多地区与国家学者系统、深入讨论了情感教育问题,并针对情感教育本质达成了共识,即:情感教育属于教育过程范畴,情感教育注重学生在学习知识过程中的情感、态度、情绪及信念,包括注重学生社会发展、个人发展及自尊。我国科学研究人员朱小蔓明确指出, 情感教育其实就是注重人的情感层面怎样在教育影响下走向新高度、产生新质,同时也是注重作为人类生命机制的情绪机制怎样和思维机制、生理机制一同协调发挥重要作用,从而达到理想功能状态。还有很多研究者认为,情感教育是教育教学过程中,教师在对认知因素予以充分考虑的同时,将情感因素积极作用充分发挥出来,从而增强教学效果、达到教学目标的教育。此为作为教育者的人教育受教育者所展开的真正教育, 在情感教育教学中情感因素与认知因素才能实现和谐统一。

笔者认为,在教育教学过程中,情感教育是其重要组成部分,并且坚持以人文本原则。以学生积极的情感体验为动力,对教育要求进行主动内化,主动开发学生内在潜能,奠定学生可持续、健康发展的基础。由此可见,情感教育是孕育美好道德行为与道德教育艺术化形态形成的必由之路, 也是培养学生创造力与展开科学教育的关键途径。

三、中职卫生院校生学习过程中的情感现状

从根本上说,态度的本质与核心是情感,中等职业卫生学校学生所具备的情感态度为职业态度、生活态度及学习态度。学生在学习过程中的情感态度具体在以下方面表现出来。

1.学习态度不端正

一般刚刚入校的中职生,各科成绩都比较差,学习行为习惯也不是特别好,缺乏学习兴趣。课堂上,学生小动作比较多,也不认真做课堂笔记,甚至厌恶、反感教师的批评。

2.生活习惯比较差

通常中等职业卫生学校的学生日常习惯都不是特别好,尤其是生活作息习惯,团结协作精神不强,盲目攀比情况比较严重。

3.缺乏职业意识

入校专业选择方面, 很多学生都会参考就业前景与父母意见,由于感兴趣而对该专业加以选择的学生非常少。学生职业意识极为匮乏,其在实际操作过程中存在操作不规范、不熟练操作规程等情况。

四、教学条件分析

1.教材分析

教师要对教材中的函数图像予以充分利用, 指导学生以观察图像的方式直观认识函数的基本性质, 使抽象知识直观化,将数形结合教学理念充分体现出来。

2.学情分析

在函数章节中,函数单调性为第三节课,通过对学生进行前两节课程的情景教学, 降低了学生对函数单调性学习的恐惧感。因此,在设计教学方案过程中,依旧要采用情景教学模式,指导学生从身边较熟悉的东西开始,循序渐进,由浅入深地进行函数单调性教学。

五、三维目标

1.技能与知识目标

技能与知识目标第一层为:a. 认识与掌握函数单调性概念;b.有效掌握函数单调性判别的图像观察方法;c.有效掌握函数单调性判别的推力证明方法;d.明白函数单调区间。第二层为:a.认识与掌握函数单调性概念;b.有效掌握函数单调性判别的图像观察方法;c. 有效掌握函数单调性判别的推力证明方法;d.明白函数单调区间。第三层为:a.认识与掌握函数单调性概念;b.有效掌握函数单调性判别的图像观察方法。

2.方法与过程目标

采用创设情境的方式,指导学生合作、观察及探究数学教学中函数图像的性质,以此对函数的单调性予以直观感受,通过向学生讲授认识与掌握函数单调性判别的证明方法, 以联系的方式强化巩固新知识。

3.情感态度与价值观目标

探究函数单调性 的概念与 定义 ,采用渗透 数形结合 的理念方法 , 对学生语 言表达能 力、抽象 、观察及 归纳能力进 行培养 ; 通过证明 函数单调 性 ,使学生的 函数推理 论证能力得 以提高 ;通过探究 知识过程 ,对学生认 真分析、细 心观察及严谨论证的思维习惯进行培养, 使学生能够感知由特殊至一般、具体至抽象、感性至理想的综合函数单调性认知过程。

六、教学难、重点

该节课程的教学重点就是函数单调性概念, 如何判断函数单调性,以及如何证明函数单调性。该节课程的教学难点在于依照定义证明函数单调性。

七、教学进程

情景导入:每个周末,学生就会去本地百货超市购置东西。可以向学生提问:去百货超市的这段路程中,属于下坡还是上坡? 在平面直角坐标系中画出这段路程简图是什么样子呢?

让学生认真观察图形,说出图像从左至右有何变化趋势。

1.图像分析法

该函数图像由左至右呈增高趋势的函数就叫做增函数,也就是逐渐增加函数值的函数。

在学生以往所学习的一首诗《大林寺桃花》中如此描述:“人间四月芳菲尽 ,山寺桃花始盛开。”该句将由于海拔的逐渐上升,气温随之递减的现象形象反映出来,一般海拔每上升100米,那么气温就会降低0.6℃。因为海拔越高,该处的氧气也就越少,造成气温下降。而白居易所写的这首诗中所提到的大林寺有着1100~1200米的海拔, 高于本地平均平地海拔,气温要低于平面大约6℃,所以桃花开放要晚于平面大约25天。也就是说 ,与山下物候相比 ,山上的物候足足晚了一个月。如果初始温度是25℃, 则海拔气温与高度的关系为:y=25-0.6x.

用图像表示该函数关系如何表示呢?

请同学们认真观察图形,图形由左至右的变化趋势如何?该函数图像由左至右呈降低趋势的函数叫做递减函数。讨论: 同学们可以列举出日常生活中减函数或者增函数的事例吗?

比如,接水的水缸、燃烧的蜡烛,等等。对以下函数图像进行观察,对其为减函数或者增函数进行判断。

例1:函数y=2x+1

例2:函数y=4/x

例3:函数y=-2x+2

例4:函数y=x2

y=x2图像在(-∞,0]区间上呈现降低趋势,而且随着x数值的上升,y值也会相应减小,因此,在(-∞,0]区间上,y=x2图像为减函数;在(0,+]区间上,该函数呈现上升趋势,而且随着数值x的上升,y值也会相应增大,所以,在(0,+∞]区间上,y=x2的图像为增函数。

2.定义法

对于给定区间函数f(x):a.若该区间任意两个x值:x1、x2,如果x1<x2,f(x1)<f(x2),说明在该区间中 ,f(x)为增函数 ,也可以叫单调递增函数;b.若对于给定区间函数f(x):a.若该区间任意两个x值:x1、x2,如果x1<x2,f(x1)>f(x2),说明在该区间中 ,f(x)为减函数,也可以叫单调递减函数。

《函数的单调性》教学设计 篇7

数学教学过程总是充满了矛盾,如教与学的矛盾、学生认知特点与数学学科特点的矛盾、学生认知发展水平与数学教学内容的矛盾等.有矛盾才能有发展,其中,学生现有的知识基础、能力水平与教学要求之间的矛盾是数学教学的决定性动力.作为教师,应努力做到敏锐地发现、深刻地认识各种矛盾,进而在教学中科学合理地暴露、“创设”甚至“激化”矛盾,以帮助学生在解决矛盾的过程中发展自己的认知结构、提升自己的数学素养,这可以充分体现出教师的专业水平、教学能力与教学智慧.

“函数的单调性”是反映函数变化规律的一个最基本的性质,是学生学习了函数概念后研究的第一个函数性质,也是学生在高中阶段遇到的第一个用数学符号语言刻画的概念,对学生进一步学习函数的其它性质具有示范和引领作用.本节课汇集了数学教学的诸多矛盾,如何在教学中处理好这些矛盾,特别是其中的主要矛盾,对每个数学教师都是一项极具挑战性的任务.笔者认为,“函数的单调性”教学,关键是要深刻认识、科学处理以下“三个矛盾”.1 “上升”、“下降”、“单调”等名词的数学意义与学生的生活理解之间的矛盾

“函数的单调性”教学,通常是从现实生活入手——展示某地某天的气温变化图、举出生活中描述“升降”变化规律的成语(如蒸蒸日上、每况愈下、此起彼伏)并画出相应的函数图象等,然后让学生观察得到:函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,而在另一个区间内呈下降趋势,此时教师指出:函数图象的“上升”“下降”反映了函数的一个基本性质——单调性,接下来引导学生用自然语言进行描述,并体验单调性是函数的局部特征(教师可在此处提前介绍“增函数”、“减函数”、“单调区间”等名词).

这里,“上升”、“下降”、“单调”的数学意义与学生在日常生活中的理解有一定的“矛盾”:在生活中,若从A到B是“上升”,则从B到A就是“下降”,如同“上坡”“下坡”那样,仅仅考虑了铅垂方向;而在数学中,若x增大时y也随之增大,则称函数y=f(x)“上升”,若x增大时y随之减小,则称函数y=f(x)“下降”,是水平与铅垂这两个方向的“合成”.在生活中,“单调”是指“重复而缺少变化”;而在数学中,“单调”是指“随着自变量的增大,函数值始终增大或始终减小”,是不断变化的.对此,有些学生可能会因区分不清而产生错误理解.例如,对于函数y=x2(x≥0),有学生认为:x由小到大时,y是“上升”的,x由大到小时,y是“下降”的;又如,对于函数y=2,有学生认为它是“单调”的,理由是“y始终没有变化”.

因此,在本节课的教学中,教师应明确地指导学生将数学名词与日常概念区分开:

(1)对于同一段函数图象来说,在数学上它究竟是“上升”还是“下降”,应该是确定的,不能产生歧义.因此,我们选择x轴正方向作为参照,从左往右,沿着图象“策马前行”,函数图象的“上升”“下降”就有了统一的规则和统一的结论;

(2)数学上的“单调”,其本身也含有“重复而缺少变化”的意味,但它不是指函数值始终保持不变,而是指函数在某个区间“上升”“下降”(或“增加”“减少”)具有不变的规律性,反映的是一种“变中的不变性”,当然也显得“单调”.

2 学生已有的知识基础和认知习惯与新知学习的必要性之间的矛盾

我们知道,“精确定量思维方式”是数学教育所能给予学生的最重要和最基本的数学素质,也是培养学生理性精神的最好体现.在高中阶段,“函数的单调性”定义之所以要进一步符号化(形式化),正是基于数学精确化、严谨性的要求.只有这样,学生才可以通过准确的计算进行推理论证,以保证结论的严密性,在此过程中逐渐培养并形成“算法的思维”.

然而,学生在初中已经接触过一次、二次、反比例函数,对函数的单调性已经初步有了直观形象的认识:图象从左往右上升(y随x的增大而增大)是增函数,图象从左往右下降(y随x的增大而减小)是减函数.他们会觉得这种定义通俗易懂、易于接受,用它解决函数的单调性问题时也没遇到过什么困难,进而产生疑问:为什么还要费尽周折地去学习符号化(形式化)定义呢?岂不是“多此一举”!学生一旦在心理上排斥新知,那么教与学的效果都将大打折扣,这是一个很重要的问题.

因此,在学习抽象的定义之前,教师应针对性地设置“认知冲突”,以便让学生充分体验到学习新知的必要性,增强研究的兴趣和积极主动性.例如,可让学生依据函数单调性的图象特征或自然语言描述,尝试判断函数y=x+1x在[1,+∞)内的单调性.由于学生对该函数的图象性质并不熟悉,因此无法判断函数图象呈现什么样的变化趋势,也难以根据函数解析式描述其变化规律.此时,学生就会自然意识到自己知识上的欠缺,认识到用精确的数学语言刻画定义的必要性,从而进入一种“愤悱状态”,产生较强劲的学习动力.

3 学生现有的思维水平与函数单调性定义的思维要求之间的矛盾

这是本节课教学的核心矛盾.刚进入高一的学生,其思维处于从经验型水平向理论型水平转变的阶段,仍然偏于简单化、直观化,逻辑思维水平不高,抽象概括能力不强.函数单调性的定义,是数学概念形式化的典型案例,具有高度的抽象性.从“随着x增大,y也增大”这一自然语言转换到“对于某区间上任意的x1<;x2,有f(x1)<;f(x2)”这一数学符号语言,跳跃性较大,学生非常不习惯,特别是为什么要用“任意”二字,在区间上“任意”取两个大小不等的x1<;x2,通过比较f(x1)与f(x2)的大小来刻画函数的单调性,学生更是感到难以理解,容易产生思维障碍.

为此,教师应精心设置一系列问题,让学生充分参与函数单调性定义的符号化过程,感悟数学的研究方法,积累基本的数学活动经验.首先,要紧紧抓住新旧知识间的内在联系,使得形式化定义是在文字语言描述的基础上自然“生长”出来的,而不是“天上掉下个林妹妹”.其次,对于单调性概念中“自变量不可能被穷尽”这一本质(也是难点),应及时唤醒学生已有经验,使他们自然想到用“任意”突破“无限”.最后,对于学生中出现的错误认识,应引导他们结合具体例子(最好是由学生自己举出)、分别用图形语言和文字语言进行辨析,以逐步形成对概念正确、全面而深刻的理解.

以下是笔者施教这一环节时的具体设计:

问题1 如何用符号化的数学语言来表述“当x增大时,函数值f(x)随之增大”?

教师引导学生分析其中的关键词“增大”的含义及其符号表示,得出:增大,刻画的是一种相对性,说明第二个量比第一个量大,它是两个数值之间的大小比较.因此,可将x的第一个取值记为x1,第二个值记为x2,则将文字语言“当x增大时,函数值f(x)随之增大”用符号语言表示即为“当x1<;x2时,f(x1)<;f(x2)”.

问题2 能否取满足x1<;x2的若干组具体数值,只要验证相应的f(x1)<;f(x2)均成立,就可以断定函数f(x)的单调性?

教师应尽量放手让学生思考讨论,若学生作肯定回答,则追问“为什么”;

若学生作否定回答,则让其举出反例,以不断完善学生的认知结构,必要时教师应进行引导:

以函数f(x)=x2(x∈R)为例,由于自变量x的取值“无限”,因此,不论验证多少次也无法穷尽.虽然当-1<;2<;3<;…时,有f(-1)<;f(2)<;f(3)<;…,但这并不能保证f(x)=x2(x∈R)的图象从左往右始终“上升”.可见,具体验证是不可靠的.

问题3 在此之前,你有没有遇到过“无法穷尽”的情况?当时是怎么处理的?

教师引导学生回忆“子集”的证明方法:设A、B是两个无穷集合,要证明AB,逐一验证A中的每一个元素都属于B是不可能的,于是,为了突破“无限”这个障碍,就一般性地“任取”一个元素x∈A,只要能证明x∈B就行了.

至此,学生不难理解,在函数f(x)的单调性中,x1、x2也应该是“任意”的.

问题4 设区间D是函数f(x)的定义域I内的某个区间,如何用x1,x2,f(x1),f(x2)来刻画函数f(x)在区间D上是增函数、减函数呢?

学生尝试用数学符号语言表达单调增(减)函数的定义,师生共同修正.在此过程中,学生可能会有一定的模仿的成分,这也是一种内化的过程,对初学者来说是正常的,也是必要的.

问题5 请你尝试利用上述定义判断函数y=x+1x在[1,+∞)内的单调性.

这是对前述“遗留问题”的呼应,由学生尽量独立完成,教师可在“作差”、“变形”等关键环节适时予以指导,解决该问题后,师生共同概括出用定义证明函数单调性的一般步骤.显然,由之前的“不能”到现在的“能”,既加深了学生对定义的理解与掌握,也体现了定义的应用价值,学生从中可以获取成功的学习体验和心理上的满足感.

问题6 判断下列说法是否正确,并说明理由.

(1)设函数y=f(x)的定义域为[0,+∞),若取x1=0,且对于任意的x2>;0,都有f(x2)>;f(0),则f(x)在区间[0,+∞)上是增函数;

(2)下图是三个分段函数(定义域均为R)的图象,它们都是R上的增函数;

(3)反比例函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).

这是利用变式教学和构造反例帮助学生继续对概念进行反思辨析、进一步理解概念的内涵和外延,特别是如何才能否定一个函数的单调性尤为重要,可以加深对“任意”二字的理解,逐步实现对概念本质意义的综合贯通.

结语 当前,MPCK(Mathematics Pedagogical Content Knowledge,即“数学教学内容知识”)是数学教育研究的一个热点问题.如何发展数学教师的MPCK?途径之一就是致力于研究教学中的各种“矛盾”.一个数学教师,只有主动地对教学内容、学生特点等进行广泛而深入的独立思考,多反思、多质疑,才可能及时捕捉到其中的矛盾;只有对数学教育心理学等有着科学的理解并内化为自己的数学教育理念,才可能全面而深刻地剖析这些矛盾;只有遵循了数学教学规律,立足实践性反思与反思性实践,才可能创造性地处理好这些矛盾,不断地发现矛盾、分析矛盾与解决矛盾的过程,也正是教师自身的MPCK得以持续提升的过程.

为此,教师应精心设置一系列问题,让学生充分参与函数单调性定义的符号化过程,感悟数学的研究方法,积累基本的数学活动经验.首先,要紧紧抓住新旧知识间的内在联系,使得形式化定义是在文字语言描述的基础上自然“生长”出来的,而不是“天上掉下个林妹妹”.其次,对于单调性概念中“自变量不可能被穷尽”这一本质(也是难点),应及时唤醒学生已有经验,使他们自然想到用“任意”突破“无限”.最后,对于学生中出现的错误认识,应引导他们结合具体例子(最好是由学生自己举出)、分别用图形语言和文字语言进行辨析,以逐步形成对概念正确、全面而深刻的理解.

以下是笔者施教这一环节时的具体设计:

问题1 如何用符号化的数学语言来表述“当x增大时,函数值f(x)随之增大”?

教师引导学生分析其中的关键词“增大”的含义及其符号表示,得出:增大,刻画的是一种相对性,说明第二个量比第一个量大,它是两个数值之间的大小比较.因此,可将x的第一个取值记为x1,第二个值记为x2,则将文字语言“当x增大时,函数值f(x)随之增大”用符号语言表示即为“当x1<;x2时,f(x1)<;f(x2)”.

问题2 能否取满足x1<;x2的若干组具体数值,只要验证相应的f(x1)<;f(x2)均成立,就可以断定函数f(x)的单调性?

教师应尽量放手让学生思考讨论,若学生作肯定回答,则追问“为什么”;

若学生作否定回答,则让其举出反例,以不断完善学生的认知结构,必要时教师应进行引导:

以函数f(x)=x2(x∈R)为例,由于自变量x的取值“无限”,因此,不论验证多少次也无法穷尽.虽然当-1<;2<;3<;…时,有f(-1)<;f(2)<;f(3)<;…,但这并不能保证f(x)=x2(x∈R)的图象从左往右始终“上升”.可见,具体验证是不可靠的.

问题3 在此之前,你有没有遇到过“无法穷尽”的情况?当时是怎么处理的?

教师引导学生回忆“子集”的证明方法:设A、B是两个无穷集合,要证明AB,逐一验证A中的每一个元素都属于B是不可能的,于是,为了突破“无限”这个障碍,就一般性地“任取”一个元素x∈A,只要能证明x∈B就行了.

至此,学生不难理解,在函数f(x)的单调性中,x1、x2也应该是“任意”的.

问题4 设区间D是函数f(x)的定义域I内的某个区间,如何用x1,x2,f(x1),f(x2)来刻画函数f(x)在区间D上是增函数、减函数呢?

学生尝试用数学符号语言表达单调增(减)函数的定义,师生共同修正.在此过程中,学生可能会有一定的模仿的成分,这也是一种内化的过程,对初学者来说是正常的,也是必要的.

问题5 请你尝试利用上述定义判断函数y=x+1x在[1,+∞)内的单调性.

这是对前述“遗留问题”的呼应,由学生尽量独立完成,教师可在“作差”、“变形”等关键环节适时予以指导,解决该问题后,师生共同概括出用定义证明函数单调性的一般步骤.显然,由之前的“不能”到现在的“能”,既加深了学生对定义的理解与掌握,也体现了定义的应用价值,学生从中可以获取成功的学习体验和心理上的满足感.

问题6 判断下列说法是否正确,并说明理由.

(1)设函数y=f(x)的定义域为[0,+∞),若取x1=0,且对于任意的x2>;0,都有f(x2)>;f(0),则f(x)在区间[0,+∞)上是增函数;

(2)下图是三个分段函数(定义域均为R)的图象,它们都是R上的增函数;

(3)反比例函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).

这是利用变式教学和构造反例帮助学生继续对概念进行反思辨析、进一步理解概念的内涵和外延,特别是如何才能否定一个函数的单调性尤为重要,可以加深对“任意”二字的理解,逐步实现对概念本质意义的综合贯通.

结语 当前,MPCK(Mathematics Pedagogical Content Knowledge,即“数学教学内容知识”)是数学教育研究的一个热点问题.如何发展数学教师的MPCK?途径之一就是致力于研究教学中的各种“矛盾”.一个数学教师,只有主动地对教学内容、学生特点等进行广泛而深入的独立思考,多反思、多质疑,才可能及时捕捉到其中的矛盾;只有对数学教育心理学等有着科学的理解并内化为自己的数学教育理念,才可能全面而深刻地剖析这些矛盾;只有遵循了数学教学规律,立足实践性反思与反思性实践,才可能创造性地处理好这些矛盾,不断地发现矛盾、分析矛盾与解决矛盾的过程,也正是教师自身的MPCK得以持续提升的过程.

为此,教师应精心设置一系列问题,让学生充分参与函数单调性定义的符号化过程,感悟数学的研究方法,积累基本的数学活动经验.首先,要紧紧抓住新旧知识间的内在联系,使得形式化定义是在文字语言描述的基础上自然“生长”出来的,而不是“天上掉下个林妹妹”.其次,对于单调性概念中“自变量不可能被穷尽”这一本质(也是难点),应及时唤醒学生已有经验,使他们自然想到用“任意”突破“无限”.最后,对于学生中出现的错误认识,应引导他们结合具体例子(最好是由学生自己举出)、分别用图形语言和文字语言进行辨析,以逐步形成对概念正确、全面而深刻的理解.

以下是笔者施教这一环节时的具体设计:

问题1 如何用符号化的数学语言来表述“当x增大时,函数值f(x)随之增大”?

教师引导学生分析其中的关键词“增大”的含义及其符号表示,得出:增大,刻画的是一种相对性,说明第二个量比第一个量大,它是两个数值之间的大小比较.因此,可将x的第一个取值记为x1,第二个值记为x2,则将文字语言“当x增大时,函数值f(x)随之增大”用符号语言表示即为“当x1<;x2时,f(x1)<;f(x2)”.

问题2 能否取满足x1<;x2的若干组具体数值,只要验证相应的f(x1)<;f(x2)均成立,就可以断定函数f(x)的单调性?

教师应尽量放手让学生思考讨论,若学生作肯定回答,则追问“为什么”;

若学生作否定回答,则让其举出反例,以不断完善学生的认知结构,必要时教师应进行引导:

以函数f(x)=x2(x∈R)为例,由于自变量x的取值“无限”,因此,不论验证多少次也无法穷尽.虽然当-1<;2<;3<;…时,有f(-1)<;f(2)<;f(3)<;…,但这并不能保证f(x)=x2(x∈R)的图象从左往右始终“上升”.可见,具体验证是不可靠的.

问题3 在此之前,你有没有遇到过“无法穷尽”的情况?当时是怎么处理的?

教师引导学生回忆“子集”的证明方法:设A、B是两个无穷集合,要证明AB,逐一验证A中的每一个元素都属于B是不可能的,于是,为了突破“无限”这个障碍,就一般性地“任取”一个元素x∈A,只要能证明x∈B就行了.

至此,学生不难理解,在函数f(x)的单调性中,x1、x2也应该是“任意”的.

问题4 设区间D是函数f(x)的定义域I内的某个区间,如何用x1,x2,f(x1),f(x2)来刻画函数f(x)在区间D上是增函数、减函数呢?

学生尝试用数学符号语言表达单调增(减)函数的定义,师生共同修正.在此过程中,学生可能会有一定的模仿的成分,这也是一种内化的过程,对初学者来说是正常的,也是必要的.

问题5 请你尝试利用上述定义判断函数y=x+1x在[1,+∞)内的单调性.

这是对前述“遗留问题”的呼应,由学生尽量独立完成,教师可在“作差”、“变形”等关键环节适时予以指导,解决该问题后,师生共同概括出用定义证明函数单调性的一般步骤.显然,由之前的“不能”到现在的“能”,既加深了学生对定义的理解与掌握,也体现了定义的应用价值,学生从中可以获取成功的学习体验和心理上的满足感.

问题6 判断下列说法是否正确,并说明理由.

(1)设函数y=f(x)的定义域为[0,+∞),若取x1=0,且对于任意的x2>;0,都有f(x2)>;f(0),则f(x)在区间[0,+∞)上是增函数;

(2)下图是三个分段函数(定义域均为R)的图象,它们都是R上的增函数;

(3)反比例函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).

这是利用变式教学和构造反例帮助学生继续对概念进行反思辨析、进一步理解概念的内涵和外延,特别是如何才能否定一个函数的单调性尤为重要,可以加深对“任意”二字的理解,逐步实现对概念本质意义的综合贯通.

《函数的单调性》教学设计 篇8

教学设计

一、内容和内容解析

函数思想是贯穿高中数学的一根主线,函数的基本性质又是函数一章的重点内容。一方面,它是对以前所学具体函数的一次总结,又是函数知识的一次拓展,对后续学习指、对数函数、三角函数有重要的指导作用。另一方面,函数的单调性与最大(小)值是初等数学与高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的单调性与最大(小)值在解决实际问题中有着相当重要的作用。因此,函数单调性与最大(小)值的教学,在教材体系中有着不可替代的位置,又有着重要的现实意义。

函数的单调性最大(小)值是函数的重要性质之一,它是研究函数值与自变量变化的一种关系,既要求学生结合函数的图象(直观性)来研究函数单调性和最大(小)值,也要求学生利用函数单调性和最大(小)值的定义(严谨性)来研究函数单调性和最大(小)值。因此本节课的教学重点是函数的单调性与最大(小)值的概念及其几何意义;判断、证明函数单调性;求函数的最大(小)值,利用单调性和最大(小)值来解决实际问题,培养学生的函数思想,数形结合思想以及应用数学意识。

二、目标和目标解析

1、通过观察一些函数图象的特征,形成函数单调性的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出函数单调性的定义。理解函数单调性的定义,能够熟练应用定义判断与证明函数在某区间上的单调性。

2、通过实例,使学生体会到函数的最大(小)值实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最大(小)值,由此得出函数最大(小)值的定义。理解函数最值的定义,掌握求最值的基本方法和基本步骤,能解决相关实际问题。

3、利用函数的单调性和图象求函数在闭区间上的最大(小)值,解决日常生活中的实际问题,增进对数学应用价值的认识,激发学习数学兴趣与热情。

4、学会运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),培养学生数形结合的思想和应用数学意识。

5、函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。培养学生的探究能力和创新精神,体验到思考与探索的乐趣,培养学生勇于探索,善于研究的精神,挖掘其非智力因素的资源,培养学生良好的思维品质。

三、教学问题诊断分析

函数的单调性这一性质学生在初中曾经接触过,但只是从图象上直观分析图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。在函数的单调性的概念教学中,学生往往在理解“任意两个”、“都”这两个词的含义出现障碍,误认为“有两个”、“某两个”,而教学中利用函数的图象,举一些反例加以理解巩固。函数的单调性一定与某个区间相对应,而学生容易犯“某个函数单调递增(减)函数”这一错误。“函数在(-∞,0)上y随x增大而减少,在(0,+∞)上y随x的增大而减少。”

在定义域内是减函数,即把两个单调区间进行合并;分别在而学生容易错误理解函数区间上取两个数-1和5,-1<5,而f(-1)

四、学习行为分析

学生在学习本节内容之前已经学习了函数的定义,表示法,图象,也学习了一次函数,二次函数,反比例函数的函数值y与变量x之间的关系,特别是学习了二次函数的最大(小)值,这为理解函数的单调性和最大(小)值奠定了一定的基础。但另一方面,以前对函数的单调性和最大(小)值的研究是一种定性的研究,侧重于直观的思维,而本节内容是要对函的最值,讨论函数

(x>0)单调区间等具数单调性和最大(小)值的定量的研究,侧重于逻辑思维能力,这给学生的学习带来了较大的困难。因此,在教学过程中,多创设熟悉的问题情景:如在引课中利用建造一个长方形的花坛,构造熟悉的二次函数,上课中所举例子都是一些常见的函数来加以落实。在定义教学中,多给学生思考问题的时间和空间,引导学生观察,归纳,总结。特别利用数形结合,定性与定量相结合,尽量让学生用数学语言来描述,以便于学生的理解和掌握。利用类比教学法:当介绍了增函数的定义之后,让学生自己得出相应减函数的定义;当介绍了函数最大值的定义之后,让学生自己得出函数最小值的定义;便于学生进一步加深对定义的理解。对于一些容易出错的问题采取纠错教学法:“函数上y随x的增大而减少,则函数

在(-∞,0)上y随x的增大而减少,在(0,+∞)

在定义域内是减函数”。“所有函数是否都有最大(小)值?”、“函数在相应的区间内是否一定有单调性?”。还有一些比较复杂的问题:“确定函数的单调区间”等问题让学生去讨论,去探究,教师积极引导,培养学生的自主探究能力。

五、教学支持条件分析

函数的单调性和函数的最大(小)值这一性质学生在初中接触到过,但只侧重于图象上直观分析,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,为了突破这一难点,充分发挥信息技术的辅助教学的功能。在概念教学中,首先利用多媒体技术画出函数y=x,y=x2,y=x3相应的函数的图象,然后在函数上取不同的点,由学生观察函数的值y随x的变化而变化的规律,化静为动,化抽象为直观,便于学生理解。对于概念中的一些关键字词,比如 “任意”、“都”、“存在”在多媒体课件中用不同的颜色加以标明,便于学生加深印象。对于一些容易出错的问题采取小组讨论法,纠错法。例如教师提出“讨论函数的单调性”,让学生分组讨论,然后推荐代表发言。有学生会回答是“递减函数”,理由是“图形的形状是下降”。也有同学会回答“不是单调函数”,理由是“因为x1=-1,x2=1时,x1

六、评价设计

《高中数学课程新标准》中提出:“对学生数学学习的评价,既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成与发展;既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。”根据新课程标准的要求,发展性评价的核心是关注学生的发展、促进学生的发展,实现评价发展性功能的一个重要举措就是突出评价的过程性,评价将贯穿于教学的整个过程,将学生在数学学习活动过程中的全部情况都纳入评价的范围,而不只是评价学生的学习的结果。在本教学设计过程中,始终注重过程评价,注重评价的针对性,实效性。主要体现在三个方面:一是基础知识掌握情况的评价。对函数的单调性和函数的最大(小)值的定义能否深刻的,全面的理解,特别是一些关键字词,如“任意两个”、“都”、“存在”的理解。举出正面和反面的例子让学生辨别,个别评价与集体评价相结合。二是基本技能掌握情况的评价。主要包括函数单调性判断的基本方法(图象法,定义法,复合函数法),如何选择不同的方法。证明函数单调性的基本步骤和基本策略(主要是作差变形的策略),单调区间的确定。求最值的基本方法的掌握情况等。三是数学思想的落实和数学探究能力培养的评价。运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),提升学生数形结合的思想。函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。让学生真正参与到数学活动中来,让学生真正成为学习的主人。(具体的教学评价见教学过程)

七、教学过程设计 设计环节 设计意图 师生活动

教师提出问题:

“问题是数学的心脏”,把问题作为出发点,为一.创设情境,导下一步提出探索性的出问题

问题创设有效的学习

学校准备建造一个长环境。

方形的花坛,周长设计为16米。由于受周围地理位 置限制,其中一边的长度既不能超过6米,又不能 少于1米。

二、借助信息技y=x,y=x,y=,y=x3 术,利用熟悉的函学生动手画图,个别板演,集体探讨函数值与自变从形象、直观的图形入数,给出单调性直量之间的关系,教师适当引导。

手,为探索与思考问题观认识。y=x在R上y随x的增大而增大。

提供方向和“路标”,并

借机发展学生的动手y=x在(-∞,0)上y随x的增大而减少,在(0,+∞)上y

实践能力、创新能力、随x的增大而增大。

和探索能力。y=在(-∞,0)上y随x的增大而减少,在(0,+∞)上y随x的增大而减少。

y=x3 在R上y随x的增大而增大。

教师利用信息技术,动画演示函数的图象。

怎样用数学语言表示y=x在R上y随x的增大而增 大呢?(学生讨论,教师引导,得出增函数的定 义)(学生不一定一下子答得比较完整,教师应抓住从定性描述到定量描时机予以启发,纠正,补充)。述,从通俗的日常用语一般地,设函数f(x)的定义域为I:如果对于属于I到严谨的数学语言,让内某个区间D上的任意两个自变量值x1、x2,当x1

三、从定性到定会逻辑地、合理地思考量,引出单调性的问题。定义,并能深刻理 解定义的含义。

增函数(increasing function)

注意数形结合,定义是用类比的方法得出减函数的定义: 严谨的语言,图象是直如果对于属于I内某个区间D上的任意两个自变量观的语言,注意两者有值x1、x2,当x1 f(x2).那么就说f(x)在机的结合。这个区间D上是减函数(decreasing 问

1、建立面积y与一边长x的函数关系式。

生:y=x(8-x)(1≤x≤6)

2、画出上面函数的图象。

3、指出y的值与x值的变化关系。以实际问题为背景、以生:当1≤x≤4时,y随x值的增大而增大,学生熟悉的一元二次当4≤x≤6时,y随x值的增大而减小。函数为入口点,激活学问

4、求出面积的最大值与最小值。生原有的认知,让学生

生:当x=4时,Smax=16m;当x=1时,Smin=7m 对所要学的新知获得感性的认识。引导学生解决,体会函数单调性与最大(小)值在实际中的应用。

请学生分别画出下列函数的图象,并探讨函数值y与自变量x之间的关系:

利用类比方法,实现知识与能力的迁移 教师提出问题,让学生

在自主探索,讨论,在function)合作交流中,充分体现如果函数y=f(x)在某个区间D上是增函数或减函数。学生学习的主体性,对那么就说函说y=f(x)在这一区间具有(严格的)单调概念进一步深入的领性,区间D叫做y= f(x)的单调区间.会。

1、“函数y=x2是单调递增函数”这一说法对吗?

2、y=在(0,+∞)上是减函数,在(-∞,0)是减函数,能否说函数在整个定义域上是减函数?

3、函数在某个区间是否一定具有单调性?

4、如何理解定义中“任意”两个字?

1、教材例(1)p34讲解:让学生自己通看教材,例(1)是利用函数的学生提问,学生自行解决,师生共同总结: 图象来判断函数的单(1)单调性与端点无关。

调性,具有直观性,也(2)判断函数的基本方法-----图象法。是常用方法。

2、教材例(2)p34讲解:教师板演,师生共同总 结:

四、讲解例题、巩(1)判断函数的基本方法-----定义法。

固知识,提高能(2)总结定义法证明单调性的基本步骤:

力。例(2)是利用单调性 1 任取x1,x2∈D,且x1

深对定义的理解。⑤下结论(指出函数f(x)在区间D上的单调性)

3、在解题中,根据题目的实际情况和具体要求,选择适当的方法。

从熟悉,具体的二次函数入手,探讨最大,最小值,让学生有感性认

五、回归引例,探识。

重新演示 讨最大(小)值的

含义 引例函数的图象及面积的最大值与最小值

分析上面图象可以发现,函数y=x(8-x)(1≤x≤6)的 图象上有一个最高点(4,16),任意的x∈[1,6],用数学语言描述最大都有f(x)≤f(4),当一个函数f(x)有最高点,我们就说值,最小值。函数有最大值。有一个最低点(1,7),任意的x

∈[1,6],都有f(x)≧f(1),当一个函数f(x)有最低点,我们就说函数有最小值。而函数f(x)=x的图象没有

最高点也没有最低点,所以函数f(x)=x没有最大值,也没有最小值。

得出函数最大值的定义: 从特殊到一般,揭示数一般地,设函数y=f(x)的定义域为I,如果存在实学通常的发现过程,便数M满足: 于学生接受。⑴ 对于任意的x∈I,都有f(x)≤M;

⑵存在x0∈I,使得f(x0)=M

那么,我们称M是函数y=f(x)的最大值(maximum value)利用类比方法,实现知让学生仿照最大值的定义,给出函数y=f(x)的最小

六、归纳最大(小)识与能力的迁移 值的定义(minimum value)。值的定义,并加以 一般地,设函数y=f(x)的定义域为I,如果存在实

说明,解释 数M满足:

⑴ 对于任意的x∈I,都有f(x)≥M; 教师提出问题,让学生⑵存在x0∈I,使得f(x0)=M 在自主探索,讨论,在那么,我们称M是函数y=f(x)的最小值(maximum 合作交流中,对概念进value)一步深入的领会。

1、函数y=x、y=有没有最值?

2、如何理解定义中的“存在”“任意”的含义?

3、以前求最值有哪些方法?

例(3)、例(4)的教学采用自学导学法,按以下步骤 实施:

例(3)是学生熟悉的烟

1、学生通读题目,理解题意 花问题,可转化为二次

2、利用多媒体演示动画,激发学生学习兴趣。函数来解决,难度不

3、学生自学,相互讨论,共同解决。大。

4、学生提问,教师答疑。

七、函数单调性、5、师生共同小结求最值的基本方法:

最大(小)值应用

(1)转化为二次函数的最值问题。例(4)是单调性与最值①配方法 问题的综合,具有一定②注意实际问题的条件限制。的难度。注意转化为反(2)利用函数的单调性求最值------在闭区间上。比例函数,利用数形结①先证明在在闭区间上具有单调性。合。②端点值即为函数的最值。利用课堂练习巩固所课堂练习: 学的知识内容,数学思课本第38页练习

1、练习

2、练习

3、练习4。想,数学方法,以达到学生独立思考与讨论相结合,教师巡查,个别辅导

八、练习、交流、教学目标,本环节以个与

反馈、评价

别辅导为主,体现面对集体辅导相结合。全体学生的课改新理念。

九、课堂小结 通过学生自我小结,既知识小结:

充分发挥学生的主观

1、函数单调性,最大(小)值的概念。

能动性,提高学生分

2、判断函数单调性的基本方法。

十、布置作业 析,概括,综合,抽象

3、用定义法判断函数的基本步骤 能力,又有利于学生把

4、求最大(小)值的基本方法。新知融入自己已有的师生、生生互动: 知识体系。

1、你觉得本节课中印象最深的是什么?

2、你觉得本节课中最大的困惑是什么? 让学生提问题,自行解决,教师适当补充。

沟通课内与课外,使学作业布置

生基础性学力与发展

1、书面作业:课本P45习题1.3(A组)第1-5性学力协调发展,让不题.

同学生得到不同的发

2、研究性作业:设f(x)是定义在R上的增函数,展。f(xy)=f(x)+f(y),1)求f(0)、f(1)的值;

2)若f(3)=1,求不等式f(x)+f(x-2)>1解集

八、设计反思

在普通高中数学课程标准强调高中数学活动中的师生互动,明确指出“必须关注学生的主体参与,师生互动”进行在教师指导或引导下“数学化”过程,“再创造”过程。建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。备课不只是对知识和教学内容的准备,也包括对学生、学情的分析和掌握.二者的和谐统一是提高教学效果的基本要求。发现、探究、讲解、演练相结合教学法的确立,就是基于对学生认知基础和认知规律的关注。

函数的单调性反思 篇9

积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一在本节课中的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂教学过程;利 用函数的单调性的定义证明具体函数的单调性是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数。学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中须加强。

(一)注意与初中内容的衔接

函数这章内容是与初中数学最近的结合点,如果初中代数中的内容没有学习好或遗忘的过多,学习本章就有障。本章很多内容都是在初中的基础上讲授的,如函数概念,要在讲授之前复习好初中函数及其图象的主要内容,包括函数的概念、函数图象的描绘,一次函数、二次函数的性质等等;又如指数概念的扩充,如果没有正整数指数幂、零指数幂、负整数指数幂的基础知识,有理数指数幂就无法给出,运算性质也是如此,因此在本章教学中要注意与初中所学的有关内容的联系,做好初、高中数学的衔接和过渡工作。

(二)注意数形结合本章的内容中图象占有相当大的比重,函数图象对于研究函数的性质起到很重要的作用本身就是由函数图象给出的。所以在本章教学中要特别注意利用函数图象,使学生不仅能从图象观察得到相应的性质,同时在研究性质时也要有函数图象来印证的思维方式。在教学过程中要注意培养学生绘制某些简单函数图象的技能,记住某些常见的函数图象的草图,养成利用函数图象来说明函数的性质和分析问题的习惯

(三)注意与其他章内容的联系

本章是在集合与简易逻辑之后学习的,映射概念本身就属于集合的知识。因此,要经常联系前一章的内容来学习本章,又如学会二次不等式解集的表示就要用到求函数的定义域或表示值域等知识上来。简易逻辑中的充要条件在本章中就章节的联系,也要注意联系物理、化学等学科的知识内容来丰富和巩固本章的内容。

如何利用导数研究函数的单调性 篇10

利用导数研究函数单调性,方法不一,选择恰当的方法,简洁明了;反之,虽然也可以进行到最后,但是需要大量的计算.本文将各类方法进行了总结,并点明了注意问题,分析了各方法的优点、缺点、适用范围.

一、 正用

例1求函数y=3x2-2lnx的单调递增区间.

解析:函数的定义域为(0,+∞)

∵ f′(x)=6x-2x=2(3x2-1)x

∴ 令f′(x)>0,结合x>0,得x>33

∴ f(x)的单调递增区间为33,+∞

【方法总结】用导数方法求函数单调区间:首先,求函数定义域、求导f′(x);然后令f′(x)>0得到函数的递增区间,令f′(x)<0得到函数的递减区间.

二、 逆用

例2已知函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,求m的取值范围.

【方法一】若函数f(x)在区间(a,b)上单调递增,则f′(x)≥0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的;若函数f(x)在区间(a,b)上单调递减,则f′(x)≤0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的.恒成立问题可以转化成求最值问题.

解析:∵ 函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,

∴ f′(x)=2x3-mx2≥0在x∈[2,+∞)上恒成立

∴ m≤2x3在x∈[2,+∞)上恒成立

∴ m≤(2x3)min,x∈[2,+∞)

∵ 当x∈[2,+∞)时,y=2x3是增函数

∴ (2x3)min=16∴ m≤16

当m=16时,f′(x)≥0且f′(x)=0的点是孤立的(只有f′(2)=0),∴ m=16合题

∴ m的取值范围为(-∞,16]

适用性分析:这是解决“逆用”问题的基本方法.注意检验f′(x)=0的点是否孤立.

例如:(1) 已知函数g(x)=ax+1在[1,2]上是减函数,则a的取值范围是a>0(a=0时,经检验不合题).

(2) 若函数f(x)=cosx+px+q在x∈R上是减函数,则p的取值范围是p≤-1(p=-1时,f′(x)=0的点有无数个,但这些点是孤立的,故p=-1合题)

【方法二】首先用m表示出f(x)的单调递增区间(a,b),然后根据关系[2,+m)(a,b)得出m的取值范围.

解析:f(x)的定义域为{x|x≠0}

∵ f′(x)=2x3-mx2,令f′(x)>0,得x>3m2

∴ f(x)的单调递增区间为(3m2,+∞)

∵ f(x)在x∈[2,+∞)时单调递增

∴ 3m2≤2解得m≤16

∴ m的取值范围为(-∞,16]

适用性分析:该法思路清晰、简单明了,但有时涉及解无理不等式,需要分类讨论,运算量大.例如(例3):已知函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减,求m的取值范围.利用该法需要解不等式组-a-a2-33≤-23

-a+a2-33≥-13,诸多不便.

那么,象上面的例3,该怎样解决呢?

【方法三】二次函数法,结合二次函数性质,寻求使得导数恒≥0(或恒≤0)成立的充要条件.

解析:∵ 函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减

∴ f′(x)=3x2+2mx+1≤0在x∈-23,-13上恒成立

∴ f′-23≤0

f′-13≤0即73-4m3≤0

43-2m3≤0解得m≥2

∴ m的取值范围是[2,+∞)

适用性分析:(1) 适用面窄,只有当f(x)是三次函数(此时,其导数为二次函数)时,才可用该法;(2) 列出的条件容易不充分(少条件)或不必要(多条件),需要进行严谨的分析.一般的解决二次函数问题可以从以下四个方面入手:① 开口方向② 对称轴③ 判别式④ 端点处函数值.

上一篇:南京师范大学纪检监察信访举报工作办法下一篇:年后发言稿