放缩法证明“数列+不等式”问题的两条途径(精选3篇)
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、先放缩再求和
例1(05年湖北理)已知不等式[log
n]表示不超过log
nan1nan1nan1nan
11n
1213
1n12[log
2n],其中n为不大于2的整数,2
2n的最大整数。设数列an的各项为正且满足
2b2b[log
a1b(b0),an(n2,3,4),证明:an
n],n3,4,5
分析:由条件an
得:
1an
1an1
1n
1an1
1an1
(n2)
an1an2
1n1
……
1a2
1a1
12
以上各式两边分别相加得:
1an
1a11n
1n11n1
1an
1b1b
1n12
[logn](n3)2
=
2b[log
2b
n]
an
2b2b[log
n]
(n3)
本题由题设条件直接进行放缩,然后求和,命题即得以证明。
n
例2(04全国三)已知数列{an}的前n项和Sn满足:Sn2an(1),n1
(1)写出数列{an}的前三项a1,a2,a3;(2)求数列{an}的通项公式;(3)证明:对任意的整数m4,有
1a
41a
5
1am
78
分析:⑴由递推公式易求:a1=1,a2=0,a3=2;
⑵由已知得:anSnSn12an(1)n2an1(1)n1(n>1)化简得:an2an12(1)n1 an(1)
n
2
an1(1)
n1
2,an(1)
n
32[
an1(1)
n1
]
故数列{
an(1)2
n
}是以a1
为首项, 公比为2的等比数列.故
an(1)
n
12n2n1n
()(2)∴an[2(1)]
333
23[2
n2
∴数列{an}的通项公式为:an
(1)].n
⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能
够求和。而左边=
1a4
1a5
1am
3[1
221
121
m2
(1)
m
],如果我们把
上式中的分母中的1去掉,就可利用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:
121
121
121
12,
121
12,因此,可将
121
保留,再将后面的项两两组合后放缩,即可
求和。这里需要对m进行分类讨论,(1)当m为偶数(m4)时,1a4
1a5
1am
1a412
(3
1a51
1a61)(1am11
m2
1am)
2222
1311
(1m4)
2242137
288
()
(2)当m是奇数(m4)时,m1为偶数,1a4
1a5
1am
1a4
1a51a4
1a61a5
1am1am
1am178
所以对任意整数m4,有
。
本题的关键是并项后进行适当的放缩。
2、先求和再放缩
例3(武汉市模拟)定义数列如下:a12,an1anan1,nN 证明:(1)对于nN恒有an1an成立。
(2)当n2且nN,有an1anan1a2a11成立。(3)1
2006
1a1
1a2
1a2006
1。
分析:(1)用数学归纳法易证。(2)由an1anan1得:
an11an(an1)
an1an1(an11)……
a21a1(a11)以上各式两边分别相乘得:
an11anan1a2a1(a11),又a12an1anan1a2a11(3)要证不等式1
2006
1a1
1a21
1a2006
1,可先设法求和:
1a1
1a2
a2006,再进行适当的放缩。
an11an(an1)
1an11
1an1
1an
1an1a1
1an11a2
1an111a2006
(1a111
1a211)(1a21
1a31)(1a20061
1a20071)
a11
a200711
1
a1a2a2006
1
又a1a2a2006a1
1
1a1a2a2006
2006
2
2006
1
2006
原不等式得证。
近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略。
1、添加或舍弃一些正项(或负项)
例
1、已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an
1ak2k11111111证明: k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232k
aa1a2n1111n11n1...n(2...n)(1n), a2a3an1232222322
3an1aan12...n(nN*).23a2a3an1
2若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到.2、先放缩再求和(或先求和再放缩)
例
2、函数f(x)=4x
14xk,求证:f(1)+f(2)+…+f(n)>n+
12n11(nN*).2证明:由f(n)= 4n14n=1-111 14n22n
22
11得f(1)+f(2)+…+f(n)>1112221122n 11111n(1n1)nn1(nN*).424222
此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、先放缩,后裂项(或先裂项再放缩)
k
例
3、已知an=n,求证:∑<3.
k=1ak
n
证明:∑
k=
1n
n
2ak
∑
k=
1n
<1+∑
k=
2n
(k-1)k(k+1)
=1k2n
<1+∑
k=2
(k-1)(k+1)(k+1 +k
-1)=1+ ∑(k=2
n
-)
(k-1)
(k+1)
=1+1+<2+<3.
(n+1)2
2本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;
n
1例
4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k
1n
证明 0a1
n
11112,an1an,a2a12,a3.当k1时,0ak2a3, 241616
(akak1)ak
2k1
1n11(akak1)(a1an1).16k11632
本题通过对因式ak2放大,而得到一个容易求和的式子
5、逐项放大或缩小
(a
k
1n
k
ak1),最终得出证明.n(n1)(n1)
2an例
5、设an22334n(n1)求证: 22122n1
2证明:∵ n(n1)nnn(n1)(n)
2n
1∴ nn(n1)
13(2n1)n(n1)(n1)2
an∴ 123nan,∴
222
2n1
本题利用n,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。
6、固定一部分项,放缩另外的项;
例
6、求证:
11117 122232n2
4证明:
1
n2n(n1)n1n
11111111151171()().122232n22223n1n42n4
此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分
别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
7、利用基本不等式放缩
例
7、已知an5n
41对任何正整数m,n都成立.1,只要证
5amn1aman.因为 amn5mn4,aman(5m4)(5n4)25mn20(mn)16,故只要证
5(5mn4)125mn20(mn)16 即只要证
20m20n37
因为aman5m5n85m5n8(15m15n29)20m20n37,所以命题得证.本题通过化简整理之后,再利用基本不等式由aman放大即可.8、先适当组合, 排序, 再逐项比较或放缩 例
8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)>(1+n)
i
i
n
m
证明:(1)对于1<i≤m,且Aim =m·…·(m-i+1),Aimmm1Aimnn1mi1ni
1,同理,mmmnnnmini
由于m<n,对于整数k=1,2,…,i-1,有
nkmk,
nm
AinAim
所以ii,即miAinniAim
nm
(2)由二项式定理有:
22nn
(1+m)n=1+C1nm+Cnm+…+Cnm,22mm(1+n)m=1+C1mn+Cmn+…+Cmn,由(1)知
mAin
i
>nAim
i
(1<i≤m<n),而
Cim
AimiAin,Cn= i!i!
∴miCin>niCim(1<m<n)
00222211
高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强,形式复杂,运算要求高,往往能考查考生思维的严密性,深刻性以及提取和处理信息的能力,较好地体现高考的甄别功能。本文旨在归纳几种常见的放缩法证明不等式的方法,以冀起到举一反三,抛砖引玉的作用。
一、放缩后转化为等比数列。
例1.{bn}满足:b11,bn1bn(n2)bn
3(1)用数学归纳法证明:bnn
(2)Tn
解:(1)略
(2)bn13bn(bnn)2(bn3)
又bnn
bn132(bn3),nN
迭乘得:bn3
2n1211111...,求证:Tn 3b13b23b33bn2*(b13)2n1 11n1,nN* bn32
Tn1111111 ...234n1n12222222
2点评:把握“bn3”这一特征对“bn1bn(n2)bn3”进行变形,然后去
掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!
二、放缩后裂项迭加
例2.数列{an},an(1)
求证:s2nn11,其前n项和为sn
n
2解:s2n1
令bn11111 ...2342n12n1,{bn}的前n项和为Tn 2n(2n1)
1111()2n(2n2)4n1n当n2时,bn
s2nTn
111111111111()()...()
212304344564n1n71 104n2
点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。
例3.已知函数f(x)axbc(a0)的图象在(1,f(1))处的切线方程为 x
yx
1(1)用a表示出b,c
(2)若f(x)lnx在[1,)上恒成立,求a的取值范围
(3)证明:1
解:(1)(2)略
(3)由(II)知:当a111n ...ln(n1)23n2(n1)1时,有f(x)lnx(x1)2
111令a,有f(x)(x)lnx(x1).22x
11且当x1时,(x)lnx.2x
k111k1k111令x,有ln[][(1)(1)], kk2kk12kk1
111即ln(k1)lnk(),k1,2,3,,n.2kk1
将上述n个不等式依次相加得
ln(n1)
整理得 11111(), 223n2(n1)
1111nln(n1).23n2(n1)
点评:本题是2010湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。
三、放缩后迭乘
例4
.a11,an11(14annN*).16
(1)求a2,a3
(2)
令bn{bn}的通项公式
(3)已知f(n)6an13an,求证:f(1)f(2)f(3)...f(n)
解:(1)(2)略 1 2
21n1n1()() 3423
13231f(n)nn2nn11n 42424
111211(1n)(1n1)1nn2n11n11n11141n11n11n1444
11nf(n)1n14
11111121n1n...1f(1)f(2)...f(n)11111122
n144由(2)得an
【放缩法证明“数列+不等式”问题的两条途径】推荐阅读:
放缩法证明数列不等式经典例题10-12
高三数学数列放缩法09-19
用数学归纳法证明数列不等式11-12
数列求和公式证明06-29
证明等差数列习题06-25
等差数列判定和证明01-20
数列问题练习12-31
等差、等比数列问题12-08
导数证明不等式07-16