高二文科推理与证明练习题

2024-07-22 版权声明 我要投稿

高二文科推理与证明练习题(精选10篇)

高二文科推理与证明练习题 篇1

增城市华侨中学陈敏星

一、选择题(每小题3分,共30分)

1.有个小偷 在警察面前作了如下辩解:

是我的录象机,我就一定能把它打开。

看,我把它大开了。

所以它是我的录象机。

请问这一推理错在哪里?()

A大前提B小前提C结论D以上都不是

2.数列2,5,11,20,x,47,┅中的x等于()

A28B32C33D27

3.否定“自然数a,b,c中恰有一个偶数”时正确的反设为()

A a,b,c都是奇数B a,b,c都是偶数Ca,b,c中至少有两个偶数Da,b,c都是奇数或至少有两个偶数 4的最小值是()x

1A2B3C4D5 4.设x1,yx

5.下列命题:①a,b,cR,ab,则ac2bc2;②a,bR,ab0,则ba2;③aba,bR,ab,则

abanbn;④ab,cd,则.cd

A0B1C2D

36.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为()

A29B254C602D2004 0123

b52,7.已知{bn}为等比数列,则b1b2b929。若an为等差数列,a52,则an的类似结论为()

A a1a2a929 B a1a2a929C a1a2a929 D a1a2a929

8.已知函a,b,c均大于1,且logaclogbc4,则下列等式一定正确的是()

AacbBabcCbcaDabc

9.设正数a,b,c,d满足adbc,且|ad||bc|,则()

AadbcBadbcCadbcDadbc

x(xy)31,例如344,则()(cos2sin)的最大值是()10.定义运算xy y(xy)24

A4B3C2D1

二、填空题(每小题4分,共16分)

11.对于“求证函数f(x)x在R上是减函数”,用“三段论”可表示为:大前提是___________________,小前提是_______________,结论是12.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定是

13.已知数列

an的通项公式

an

(nN)

2(n1),记

f(n)(1a1)(1a2)(1an),试通过计算f(1),f(2),f(3)的值,推测出

f(n)_______________._

14.设f(x)

122

x,利用课本中推导等差数列前n项和公式的方法,可求得

f(5)f(4)f(0)f(5)f(6)的值是________________.)

三、解答题:

15(8分)若两平行直线a,b之一与平面M相交,则另一条也与平面M相交。16(8分)设a,b都是正数,且ab,求证:abab。

17(8分)若x

18(10分)已知xR,试比较x与2x2x的大小。

19(10分)设{an}是集合{22|0st,且s,tZ}中的所有的数从小到大排成的数列,即a13,a25,a36,a49,a510,a612,,将数列{an}各项按照上小下大,左小右大的原则写成如下三角形数表:

t

s

abba

51,求证:14x-2。454x56

9101

2__________________

⑴写出这个三角形数表的第四行、第五行各数;

⑵求a100.exa

20(10分)设a0,f(x)是R上的偶函数。

aex

⑴求a的值;

⑵证明f(x)在(0,)上是增函数。

参考答案:

11、减函数的定义 ;函数f(x)x在R上满足减函数的定义

12、a≤b13、f(n)

三、解答题:

15、证明:不妨设直线a与平面M相交,b与a平行,今证b与平面M相交,否则,n214、322(n1)

设b不与平面M相交,则必有下面两种情况: ⑴b在平面M内,由a//b,则a//平面M,与题设矛盾。

16、设a,b都是正数,且ab,求证:abab。

ab

ba

aabbabaaabbba()ab,abb

aa

若ab,1,ab0,则()ab1,得aabbabba;

bbaa

若ab,1,ab0,则()ab1,得aabbabba.bb17、略

18、log23log827log927log916log34,log23log34.19、第四行:17182024第五行:3334364048

数列、不等式、推理证明专项练习 篇2

1.已知-π2<α<β<π2,则α-β2的取值范围是.

2.当x>0时,则f(x)=2xx2+1的最大值为.

3.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“”,这个类比命题的真假性是.

4.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.

5.设a,b为正实数.现有下列命题:

①若a2-b2=1,则a-b<1;

②若1b-1a=1,则a-b<1;

③若|a-b|=1,则|a-b|<1;

④若|a3-b3|=1,则|a-b|<1.

其中的真命题有.(写出所有真命题的编号)

6.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1k(k∈N*),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实事中提炼出一个不等式组是.

7.已知a∈R+,函数f(x)=ax2+2ax+1,若f(m)<0,比较大小:f(m+2)1.(用“<”或“=”或“>”连接).

8.观察下列等式:

1-12=12

1-12+13-14=13+14

1-12+13-14+15-16=14+15+16

……

据此规律,第n个等式可为.

9.设关于x,y的不等式组2x-y+1>0,x+m<0,y-m>0表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m的取值范围是.

10.在等比数列{an}中,已知a6-a4=24,a3·a5=64,则数列{an}的前8项和为.

11.已知函数y=ax+b的图象如图所示,则1a-1+2b的最小值=.

12.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示n条直线交点的个数,当n>4时,f(n)=.

13.已知x,y∈R,满足2≤y≤4-x,x≥1,则x2+y2+2x-2y+2xy-x+y-1的最大值为.

14.数列{an}满足(sn-n2)(an-2n)=0(n∈N),其中sn为数列{an}的前n项和,甲、乙、丙、丁四名同学各写了该数列的前四项:甲:1,3,5,7;乙:1,4,8,7;丙:1,4,4,7;丁:1,3,8,4.请你确定这四人中所有书写正确的学生.

二、解答题(共90分)

15.已知不等式mx2-nx-n2<0,

(1)若此不等式的解集为{x|-1

(2)若m=2,求此不等式的解集.

16.已知等比数列{an}的前n项和是Sn,满足an+1=(q-1)Sn+1(q≠0).

(1)求首项a1的值;

(2)若S4,S10,S7成等差数列,求证:a3,a9,a6成等差数列.

17.已知集合A={x|x2-(3a+3)x+2(3a+1)<0,x∈R)},B={x|x-ax-(a2+1)<0,x∈R}.

(1)求4B时,求实数a的取值范围;

(2)求使BA的实数a的取值范围.

18.设向量a=(x,2),b=(x+n,2x-1)(n∈N*),函数y=a·b在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1.

(1)求证:an=n+1;

(2)求数列{bn}的通项公式;

(3)设cn=-anbn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

19.如图,某生态园欲把一块四边形地BCED辟为水果园,其中∠C=∠D=90°,BC=BD=3,CE=DE=1.若经过DB上一点P和EC上一点Q铺设一条道路PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.

(1)求x,y的关系式;

(2)如果PQ是灌溉水管的位置,为了省钱,希望它最短,求PQ的长的最小值;

(3)如果PQ是参观路线,希望它最长,那么P、Q的位置在哪里?

20.设正整数a,b,c满足:对任意的正整数n,an+bn=cn+1.

(1)求证:a+b≥c;

(2)求出所有满足题设的a,b,c的值.

参考答案

一、填空题

1.(-π2,0)

2.1

3.如果两个二面角的两个半平面分别对应垂直,则这两个二面角相等或互补.(答案不唯一)假命题

4.80

5.①④

6.47+47k<147+47k+47k2≥1

7.>

8.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n

9.(-∞,-23)

10.85或255

11.3+22

12.12(n-2)(n+1)

13.103

14.甲、丙、丁

二、解答题

15.(1)因为mx2-nx-n2<0的解集为{x|-1

所以-1,2是方程mx2-nx-n2=0的两个根.

根据根与系数的关系,有nm=-1+2=1,-n2m=(-1)×2=-2,

解得m=n=2.

(2)m=2,不等式mx2-nx-n2<0即2x2-nx-n2<0,

2x2-nx-n2<0(2x+n)(x-n)<0.

(1)若n=0,则原不等式为2x2<0,解集为.

(2)若n>0,则n-(-n2)=3n2>0,即-n2

(3)若n<0,则n-(-n2)=3n2<0,即-n2>n,原不等式的解集为(n,-n2).

故当n=0时,不等式的解集为;

当n>0时,解集为(-n2,n);

当n<0时,解集为(n,-n2).

16.(1)由an+1=(q-1)Sn+1可得an=(q-1)Sn-1+1(n≥2),

两式相减得an+1-an=(q-1)an,所以an+1=qan(n≥2).

欲使数列{an}等比数列,只需a2=qa1即可,

因为a2=(q-1)S1+1=(q-1)a1+1,所以(q-1)a1+1=qa1,所以a1=1.

若由a22=a1·a3,求出a1=1再验证数列{an}是等比数列,参照上述解法给分.

(2)方法一:若q=1,2S10≠S4+S7,与已知矛盾,故q≠1.

由2S10=S4+S7,得

2a1(1-q10)1-q=a1(1-q4)1-q+a1(1-q7)1-q,

即2a1q8=a1q2+a1q5,即2a9=a3+a6,所以a3,a9,a6成等差数列.

方法二:由S4,S10,S7成等差数列,可得2S10=S4+S7,

因为S7=S4+q4S3,S10=S4+q4S3+q7S3,可得q4S3+2q7S3=0,

因为S3≠0,所以q3=-12,

又2a9-(a3+a6)=a1q2(2q6-q3-1)=0,所以a3,a9,a6成等差数列.

17.(1)若4∈B,则4-a3-a2<0a<-3或3

∴当4B时,实数a的取值范围为[-3,3]∪[4,+∞).

(2)∵A={x|(x-2)(x-3a-1)<0},B={x|a①当a<13时,A=(3a+1,2).

要使BA,必须a≥3a+1a2+1≤2,此时-1≤a≤-12;

②当a=13时,A=,使BA的a不存在;

③当a>13时,A=(2,3a+1),

要使BA,必须a≥2a2+1≤3a+1,此时2≤a≤3.

综上可知,使BA的实数a的取值范围是[2,3]∪[-1,-12].

18.解:(1)∵y=x(x+n)+4x-2=x2+(4+n)x-2在[0,1]上为增函数,

∴an=-2+1+4+n-2=n+1﹒

(2)∵nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1=10[1-(910)n],

∴(n-1)b1+(n-2)b2+…+bn-1+0=10[1-(910)n-1](n≥2)﹒

两式相减得b1+b2+…+bn=(910)n-1(n≥2),

∴b1+b2+…+bn-1=(910)n-2(n≥3).

两式相减得bn=-110·(910)n-2(n≥3).

又b1=1,b2=-110,

∴bn=1,(n=1)-110·(910)n-2,(n≥2,n∈N*).

(3)由cn=-2,(n=1)n+110·(910)n-2,(n≥2,n∈N*)及当k≥3时ckck-1≥1,ckck+1≥1,得k=9或8﹒

又n=1,2也满足,∴存在k=8,9使得cn≤ck对所有的n∈N*成立.

19.(1)延长BD、CE交于点A,则AD=3,AE=2,则S△ADE=S△BDE=

S△BCE=32.

∵S△APQ=3,

∴14(x+3)(y+2)=3,

∴(x+3)(y+2)=43.

(2)PQ2=AP2+AQ2-2AP·AQcos30°

=(x+3)2+(43x+3)2-2×43×32

≥2×43-12=83-12,

当(x+3)2=(43x+3)2,即x=243-3时,

PQmin=83-12=223-3.

(3)令t=(x+3)2,∵x∈[33,3],∴t∈[163,12],(x的范围由极限位置定)

则PQ2=f(t)=t+48t-12,

∵f′(t)=1-48t2,令f′(t)=1-48t2=0,得t=43,

∴f(t)在(0,43)上是减函数,在(43,+∞)上是增函数,

∴f(t)max=max(f(163),f(12)}=f(12)=4,PQmax=2,

此时t=(x+3)2=12,x=3,y=0,P点在B处,Q点在E处.

20.证明:(1)依题意,当n=1时,a+b=c2,

则a+b-c=c2-c=c(c-1),

因为c∈N*,所以c(c-1)≥0,

从而a+b-c≥0,故a+b≥c;

(2)an+bn=cn+1即(ac)n+(bc)n=c,(*)

若a>c,即ac>1,则当n≥logacc时,

(ac)n≥c,而(bc)n>0,于是(ac)n+(bc)n>c,与(*)矛盾;

从而a≤c,同理b≤c.

若a≤c,则0

又c∈N*,故c=1或2,

当c=1时,an+bn=1,而an+bn≥2,故矛盾,舍去;

当c=2时,(ac)n+(bc)n=2,从而ac=bc=1,故a=b=2,

综上,所有满足题意的a,b,c依次为2,2,2.

(作者:夏志勇,海安县曲塘中学)

高二文科推理与证明练习题 篇3

7《复数推理证明算法》

班级__ 姓名_____ 学号__

一、选择题

1.两个共扼复数的差是()D

A.实数B.纯虚数C.零D.零或纯虚数

2.若(a2i)ibi,其中a、bR,i使虚数单位,则a2b2(D)(A)0(B)2(C)

3.复数z

A.

1252(D)5 11i1

2i 的共轭复数是()B B.1

21

2i C.1i D.1i

4.若复数

值集合为()BABC()在复平面内对应的点位于虚轴上,则 的取D5、复数z1cosisin23的模为()D

A.2cos6、当

232B.2cos2C.2sin2D.2sin2 m1时,复数m3i2i在复平面内对应的点位于:D

A.A.

1x1x

;B.

x1x

1;C.x;D.

1x;

14.下列推理正确的是D

(A)把a(bc)与 loga(xy)类比,则有:loga(xy)logaxlogay .(B)把a(bc)与 sin(xy)类比,则有:sin(xy)sinxsiny.(C)把(ab)n 与(ab)n 类比,则有:(xy)nxnyn.(D)把(ab)c 与(xy)z 类比,则有:(xy)zx(yz).

15.用反证法证明命题:“三角形内角和至少有一个不大于600”时,应假设(B)A.三个内角都不大于600B.三个内角都大于600C.三个内角至多有一个大于600D.三个内角至多有两个大于600 16.设a、b、c都是正数,则a

1b、b

1c、c

1a

三个数D

A.都大于2B.都小于2C.至少有一个大于2D.至少有一个不小于

217.将两个数a=8,b=7交换,使a=7,b=8,使用赋值语句正确的一组BA.a=b,b=aB.c=b,b=a,a=cC.b=a,a=bD.a=c,c=b,b=a

18.下列各数中最小的数是()A

A.1111112B.2106C.10004D.819

19.二进制数10111转化为五进制数是DA.41B.25C.21D.4320A.“集合的概念”的下位

B.“集合的表示”的下位 C.“基本关系”的下位 D.“基本运算”的下位

21.右边框图属于()B A.流程图B.结构图 C.程序框图D.工序流程图

22.根据21题图示,总经理的直接下属是()C A.总工程师和专家办公室B.开发部 C.总工程师、专家办公室和开发部

D.总工程师、专家办公室和所有七个部

23.给出下面的程序框图,那么输出的数是()A A.2450B.2550C.5050D.4900

24.如图所示,这是计算是.D

2012高三文科数学查缺补漏7复数推理证明算法

2

4



120的值的一个程序框图,其中判断框内应填入的条件

A.n>9

n>20

C.n10D.n20

24题图

二、填空题: 1.复数z

11i的实部是___

2__虚部是___

__模是2

___共轭复数是__

i___。

2.复数zii2i3i4的值是___________。0

3.方程(2i)x2(5i)x(22i)0的实数解是x=_______2

4、设复数z满足

1z1z

i,则|1z|=______________

5、设z=3+2i,z和z在复平面内对应的点分别为A和B,O为坐标原点,则AOB的面积为___6 6.分别用辗转相除法及更相减损术求出153和119的最大公约数是______________.17

7.演绎推理的一般模式“三段论”包括:____大前提____, ____小前提____,___结论_____用三段论证明

f(x)x在R上是增函数,其中大前提是:_________增函数的定义 8.图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个

SABC1

2类比这一结论有:若三棱锥ABCD的内切球半径为R,则三棱锥体积VABCDr(abc);

R(SABCSABDSACDSBCD

高二期末复习推理与证明 篇4

(一).推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

(二)证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

3.数学归纳法

一般的证明一个与正整数n有关的一个命题,可按以下步骤进行:

⑴证明当n取第一个值n0是命题成立;

⑵假设当nk(kn0,kN)命题成立,证明当nk1时命题也成立。

那么由⑴⑵就可以判定命题对从n0开始所有的正整数都成立。

注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行; ②n0的取值视题目而定,可能是1,也可能是2等。

注:①证明时,两个步骤,一个都不能少。其中,第一步是递推的基础,第二步则是证明了递推关系成立。,②用归纳法证明命题,格式很重要,通常可以简记为“两步三结论”。两步是指证明的两步(1)(奠定递推基础)和(2)(证明递推关系);三结论分别是指:步骤(1)中最后要指出当n=n0时命题成立,步骤(2)最后要指出当n=k+1时命题成立,证明的最后要

*给出一个结论“根据(1)(2)可知,命题对任意n∈N(n≥n0)都成立”。

易错点分析:①初始值取值是多少;②第二步证明n=k+1时命题成立需要使用归纳假设;

1111n 2

321111

kkk1共2k项从n=k到n=k+1时,实际增加的项是k

2122232

③由n=k到n=k+1时,命题的变化(增减项),如:fn1例1.1.当a0,b0时,有

ab

ab成立,并且还知道此结论对三个正数、四个正数均成立2abc当a,b,c0时,有abc成立

abcd当a,b,c,d0时,有成立。猜想,当a1,a2,,an0时,有怎样的不等式成立?

2..观察以下各等式:

①tan10tan20tan20tan60tan60tan101 ②tan5tan10tan10tan75tan75tan5

1分析上述各式的共同特点,写出能反映一般规律的等式,并对你的结论进行证 3.、将下列三段论形式的演绎推理补充完整: 纯虚数的平方是负实数,_______________________,3i的平方是负实数。.例2.设在R上定义的函数f(x),对任意实数x都)有f(x2)f(x1)f(x),且f(1)lg3lg2,f(2)lg3lg5,试求归纳出f(200

1的值。

例3.1.设SAB的两边SA、SB互相垂直,则SASBBC。类比到空间中,写出相应的结论

2.设A1、B1分别是PAB的两边PA、PB上的点,则

SPA1B1SPAB

PA1PB

1PAPB

四面体猜想:设A1、B1、C1分别是四面体PABC的三条侧棱PA、PB、PC上的点,则有什么结论?

,则3.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为、cos2cos21。若把它推广到空间长方体中,试写出相应的命题形式

例4.1.设k0,且k是奇数,求证:方程x2x2k0没有有理根

2.设a,b都是整数,且ab能被3整除,试用反证法证明a,b都能被3整除

例5.1.已知数列an的前n项和为Sn,且a11,Snn2an(nN),(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;(2)证明你的猜想,并求出an的表达式。

2.设nN,fn52

3

n

n

1(2)你对fn的值2,3,4时,计算fn;1,1当N1,有何猜想,用数学归纳法证明你的猜想

推理与证明

1.从112,23432,3456752中,得出一般性结论是2.已知函数f(x)

xx,则ff....f(x)

n个f

3.f(n)1

111357

(nN),f(2),f(4)2,f(8),f(16)3,f(32),23n22

2推测当n2时,有

4.平面上有kk2条直线,其中任何两条不平行,任何三条不交于同一点,则这kk2条直线将平面分成的区域个数是

5.在RtABC中,若C900,ACb,BCa,则三角形ABC的外接圆半径

r

a2b2,把此结论类比到空间,写出类似的结论 2

,则6.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为、cos2cos21。若把它推广到空间长方体中,试写出相应的命题形式:7.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫为直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.请仿照直角三角形以下性质:(1)斜边的中线长等于斜边边长的一半;(2)两条直角边边长的平方和等于斜边边长的平方;(3)斜边与两条直角边所成角的余弦平方和等于1.写出直角三棱锥相应性质(至少一条):

8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列的一些性质,①各棱长相等,同一顶点上的两条棱的夹角相等;②各个面都是全等的正三角形,相邻两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点上的任何两条棱的夹角相等.你认为比较恰当的是.

9.下面说法中是合情推理的是1由圆的性质类比出球的性质;(2)某次考试小明的成绩是100分,由此推出全班同学的成绩是100分;(3)三角形有内角和是180,四边形的内角和是360五边形的内角和是540,由此得凸多边形的内角和是n2180;(4)我

国古代工匠鲁班根据带齿的草叶发明了锯子

10.下面说法中是演绎推理的是(1)由三角形的性质,推测空间四面体的性质;(2)高三有10个班,一班有51人,二班有53人,三班有52人,由此推测各班都超过50人;(3)在数列an中,a11,an

11an1n2,由此可求a2,a3,,即可归纳2an1

出an的通项公式 ;(4)两条直线平行,同旁内角互补,如果A,B是两条平行直线的同旁内角,则AB180

11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b∥平面,直线a平面,则直线b∥直线a”的结论显然是错误的,这是因为错误?

12.用反证法证明“三角形的内角中至少有一个不大于60”时,正确的反设是 13.用反证法证明“若x2abxab0,则xa且xb”, 正确的反设是14.下列叙述“(1)a2的反面是a2;(2)mn的反面是mn;(3)三角形中最多有一个直角的反面是没有直角;(4)a,b,c不都为0的反面是a2b2c20a,b,cR 15.用数学归纳法证明1

11111111

nN,2342n12nn1n22n

n3n1的第二步中,nk1时的则从nknk1,左边所要添加的项是16.用数学归纳法证明n1n2nn

等式的左边与nk时的等式的左边的差是

17.用数学归纳法证明“52能被3整除”的第二步中,当nk1时,为了使用假设的结论,应将5

k1

n

n

2k1变形为

推理与证明习题专题 篇5

一、选择题:

1、用反证法证明:“a,b至少有一个为0”,应假设()A.a,b没有一个为0B.a,b只有一个为0C.a,b至多有一个为0D.a,b两个都为0

2、若函数f(x)sinx是为周期的奇函数,则f(x)可以是()(A)sin2x(B)cos2x(C)sinx(D)cosx

3、设函数f(x)

1,x01,x0,则

(ab)(ab)f(ab)

2(ab)的值为()

AaB b a,b中较小的数Da,b中较大的数

4、设a、b、m都是正整数,且ab,则下列不等式中恒不成立的是()(A)

abambm

1(B)

1b,b

ab1cambm

1(C)

ab

ambm

1(D)1

ambm

ab5、设a,b,c(,0),则a

a

A都不大于2B都不小于2C 至少有一个不大于2D 至少有一个不小于2

6、平面内有n个圆,其中每两个都相交于两点,每三个点都无公共点,它们将平面分成f(n)块区域,,c()

有f(1)2,f(2)4,f(3)8,则f(n)()(A)2(B)2(n1)(n2)(n3)(C)nn2(D)n5n10n4

7、设f(x)是定义在R上的函数且f(x)

1f(x2)1f(x2)

n

n

32,且f(3)2

3

3,则f(2007)()

(A)32(B)32(C)2

8、用数学归纳法证明

1n

1

1n

2

1n

3

3(D)2112

4nn1,nN时,由n=k到n=k+1时,不等式

左边应该添加的项是()(A)(C)

12(k1)12k1

(B)

12k2

1k1

2k11

12k212k2

1k1

1k2

(D)

2k1

9、已知数列{xn}满足xn1xnxn1(n2),x1a,x2b,Snx1x2xn,则下面正确的是()

(A)x100a,S1002ba(B)x100b,S1002ba(C)x100b,S100ba(D)x100a,S100ba10、、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜

想当n≥1时,Sn=

A.

2n

()

2n

1n1

222211、已知f(x)是R上的偶函数,对任意的xR都有f(x6)f(x)f(3)成立,若f(1)2,则

B.

1n1

C.

n(n1)

n

D.1-

n1

f(2007)()

(A)2007(B)2(C)1(D)0 12、已知函数f(x)lg

1x1x,若f(a)b,则f(a)()

1b

(A)b(B)b(C)(D)

1b

*

13、已知数列{an}中,a11,a2an1nN,且n2),则a9可能是:()

n

2an

1A、1B、2C、1D、

1ax

n

91x

2,x

4x14、已知aR,不等式x

n

3,,可推广为x

2(n1)

n1,则a的值()

n

A 2BnC 2Dn15、定义A㊣B、B㊣C、C㊣D、D㊣A的运算分别对应下图中的(1)、(2)、(3)、(4)。

(1)))则图中的甲、乙的运算式可以表示为:(A、B㊣D、C㊣AB、B㊣D、A㊣C

C、D㊣B、C㊣AD、D㊣B、A㊣乙

16、根据下列图案中圆圈的排列规律,第2008个图案组成的情形是:()●☆☆☆●●●

☆●☆●☆●☆●☆●☆●●●☆☆● A、其中包括了1004×2008个☆B、其中包括了1003×2008+1个☆ C、其中包括了1003×2008+1个●D、其中包括了1003×2008个●

二、填空题:

17、从下列式子1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…计算得出的结果能得的一般性结论是_________________________________________________

18、已知a,b是不相等的正数,x

a

2b,yab,则x,y的大小关系是

19、若数列an中,a11,a235,a37911,a413151719,...则a10____20、f(n)1

2

3

1n

(nN),经计算的f(2)

32,f(4)2,f(8)

52,f(16)3,f(32)

72,推测当n2时,有

21、若数列an的通项公式an

1(n1)

(nN),记f(n)(1a1)(1a2)(1an),试通过

计算f(1),f(2),f(3)的值,推测出_______________________

22、为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:现在加密密

密文密文明文。钥为yloga(x4),明文如上所示,明文“4”

加密密钥密码发送解密密钥密码

通过加密加密后得到“3”再发送,接受方通过解密钥解密得明文“4”,问若接受方接到密文为“4”,则解密后得明文是______________________。

23、在等差数列an中,(n29且nN)若a200,则有a1a2a3ana1a2a39n 成立,类比上述性质,在等比数列bn中,若b201,则存在怎样的等式________________________.24、半径为r的圆的面积S(r)=r,周长C(r)=2r,若将r看作(0,+∞)上的变量,则(r)`

1,=2r○

1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。○

1的式对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于○子:。○

2式可以用语言叙述为:。○

*

25、若f(x)

4x

x

2,则f(1100

1)f(26、已知数列an满足a12,an

110011001

1an*(nN),则a3的值为,1an)f(1000)=_____________。

a1a2a3a2007的值为.

三、解答题:

27、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,用反证法证明:a, b, c > 028、已知:0a1,求证:

1a

41a

9

2n

28n9能被64整除。29、试证当n为正整数时,f(n)

330、是否存在常数a,b,c使等式

1(n1)2(n2)n(nn)anbnc对一切正整数n成立? 并证明你的结论。

31、由下列各式:1﹥

2,1+

3﹥1,1+

4

5

32,1+



115

﹥2,你能得出怎样的结论,并进行证明。

32、已知f10,afnbfn11,n2,a0,b0(1)求f3,f4,f5

推理与证明复习题3 篇6

3A.甲B.乙C.丙D.丁

10.已知直线a,b是异面直线,直线c∥a,那么c与b的位置关系()1.用反证法证明命题“已知xR,ax21,b2x2,则a,b中至少有一个不 小

于0”反设正确的是()

A.假设a,b都不大于0B.假设a,b至多有一个大于0

C.假设a,b都大于0D.假设a,b都小于0

2.下列属于相关现象的是()A.利息与利率

B.居民收入与储蓄存款 C.电视机产量与苹果产量

D.某种商品的销售额与销售价格

3.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为()

A.310B.2779C.8D.9 4.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大()

A.EB.CC.DD.A5、每一吨铸铁成本yc(元)与铸件废品率x%建立的回归方程y

c568x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元

6.下列说法中正确的有:①若r0,则x增大时,y也相应增大;②若r0,则x增大时,y也相应增大;③若r1,或r1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上()

A.①②B.②③C.①③D.①②③

7.用数学归纳法证明:“1+a+a

2+„+an+

1=1an2

1a

(a≠1)”在验证n=1时,左端计算所得的项为

A.1B.1+aC.1+a+a

2D.1+a+a2+a

38.若一个命题的结论是 “直线l在平面内”,则用反证法证明这个命题时,第一步应作 的假设为()

A.假设直线l//平面B.假设直线l平面于点A

C.假设直线l平面D.假设直线l平面

9.有一天,某城市的珠宝店被盗走了价值数万元的钻石.报案后,经过三个月的侦察,查明作案人肯定是甲.乙.丙.丁中的一人.经过审讯,这四个人的口供如下: 甲:钻石被盗的那天,我在别的城市,所以我不是罪犯.乙:丁是罪犯.丙:乙是盗窃犯,三天

前,我看见他在黑市上卖一块钻石.丁:乙同我有仇,有意诬陷我.因为口供不一致,无法判断谁

是罪犯.经过测谎试验知道,这四人只有一个人说的是真话,那么你能判断罪犯是

A.一定是异面直线B.一定是相交直线 C.不可能是平行直线D.不可能是相交直线 11.已知a+b+c=2,则ab+bc+ca的值()(A)大于

43(B)小于

43(C)不小于43

(D)不大于

12.用数学归纳法证明命题“当n是正奇数时,xn

+yn

能被x+y整除”,在第二步时,正确的证法是()

A.假设n= k(kN*),证明n= k +1命题成立

B.假设n= k(k是正奇数),证明n= k+1命题成立

C.假设n=2 k+1(kN*),证明n= k+1命题成立 D.假设n= k(k是正奇数),证明n= k+2命题成立

13.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2

θ-sin2

θ)(cos2

θ+sin2

θ)=cos2

θ-sin2

θ=cos2θ”过程应用了()

A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法

14.要证:a

2+b2

-1-a2b2

≤0,只要证明()

A.2ab-1-a2b2

≤0B.a2+b2

-1a4+b

42C.a+b2

-1-ab≤0

D.(a-1)(b-1)≥0

15.①已知p

3+q3

=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,②已知a,b∈R,|a|+|b|<1,求证方程x2

+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根

x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()

A.①与②的假设都错误 B.①与②的假设都正确 C.①的假设正确;②的假设错误

D.①的假设错误;②的假设正确

16、在对吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若随机变量K2的观测值k>6.635,我们有99%的把握说明吸烟与患肺病有关,则若某人

吸烟,那么他有99%的可能患有肺病

B.若由随机变量求出有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99个人患有肺病

C.若由随机变量求出有95%的把握说吸烟与患肺病有关,那么有5%的可能性使得推断错误

D.以上说法均不正确

17、以下关于独立性检验的说法中,错误的是()

A.独立性检验依据小概率原理 B.独立性检验得到的结论一定正确

23、列三角形数表

1-----------第一行22-----------第二行343-----------第三行4774-----------第四行 C.样本不同,独立性检验的结论可能有差异

D.独立性检验不是判定两分类变量是否相关的唯一方法

根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是()

A.0.4B.0.5C.0.75D.0.8

5二 填空题

19用三段论证明f(x)=x

3+sinx(x∈R)为奇函数的大前提是________ 20 已知a,b是不相等的正数,xa

2,yab,则x,y的大小关系是_____用数学归纳法证明1+1+1+„+12

<2(n∈N,且n>1),第一步要证的不等式

2n

1三 解答题

22、.已知数列{an}的各项都是正数,且满足:a0=1,an+1=12

an·(4-an)(n∈N).证明:an<an+1<2(n∈N).

51114115

„„„„

„„„„„

假设第n行的第二个数为an(n2,nN*)(1)依次写出第六行的所有数字;

(2)归纳出an1与an的关系式并求出an的通项公式;(3)设anbn1求证:b2b3„bn2

24若两个分类变量X与Y的列联表为:

高二文科数学几何证明试题 篇7

经典试题:

1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则

EFBC+FG

AD

=.

2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 cm2.

3.(2007广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(2007深圳二模文)如图所示,从圆O外一点P

作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__

5.(2008广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点

D、E,则∠DAC=,线段AE的长为

三、基础训练:

1.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB

经过圆心O,弦CD⊥AB于 点

E,PC=4,PB=8,则CD=________.2.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知

AD= AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(2008东莞调研文、理)如图所示,圆O上一

点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

D C

B

4.(2008韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(2007韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(2008广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N

7.(2007湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(2007湛江一模理)如图,在△ABC中,D D

是AC的中点,E是BD的中点,AE交BC

BF=于F,则

FC

9.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(2008汕头一模理)如图,AB是圆O

直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(2008佛山一模理)如图,AB、CD是圆O的两条弦,C

且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C

B

AD=2,AC= 2,则AB=____

14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=

1PABC,则的值是________.2PB

15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3(2011)

(2011年佛山一模)16.如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________. 17.(湛江市)如图,圆O上一点C在直径AB上的射影为D.AD2,AC2,则AB.

18(广州)如图3,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切, 切点为A,MAB35

则D.19(广州一模)CD是圆O的切线, 切点为C,点A、B在圆O上,BC1,BCD30,则圆O的面积为

A

O

C

B

D

320(韶关)如图,⊙O的半径R5,P是弦BC过P点作⊙O的切线,切点为A,若PC1,PA3,则圆心O到弦BC的距离是。

P

B的点,21(深圳)如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD2,CBCD

22(肇庆一模)如图2,PC、DA为⊙O的 切线,A、C为切点,AB为⊙O的直径,若 DA=2,CDDP=12,则AB=

B

图2C

D

23(东莞)如图,⊙O的割线

PBA过

圆心O,弦CD交PA于点F,且COF∽PDF, PBOA2,则PF

24(惠州)如图,已知⊙O的割线PAB交⊙O于A,B 两点,割线PCD经过圆心,若PA=3,AB=4,PO=5 则⊙O的半径为_____________.25(江门)如图3,PT是圆O的切线,O

D A P

PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.

26((2007湛江一模理)如图1,在△ABC中,D是ACF 图

1BF

E是BD的中点,AE交BC于F,则FC

27(2010天津理科)如图2,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若则

PB1PC1

,,PA2PD

3图

2BC的值为。AD

28如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且 与BC相切于点B,与AC交于点D,连结BD,若BC=51, 则AC=

29如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,O 

D

B

C

已知∠BPA=30,PA=PC=1,则圆O的半径等于.

B

第 28 题图

A30如图1所示,圆O的直径AB6,C为圆周上一点,BC3.

过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D,E,则∠DAC,线段AE的长为.

A

高二文科推理与证明练习题 篇8

一、选择题:

1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作

圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()

A.15B.30C.45D.60

第1题图 2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角

形与ABC相似,则x()

A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()

4.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知

22PA6,PO12,AB,则

O的半径为()3

A.4B

.6C.6

D.8

5.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD3DB,设COD,则tan2

2=()

第5题图 11 A.B.C.4D.3 3

4二、填空题:

6.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且

与BC相切于点B,与AC交于点D,连结BD,若BC=51,则AC=

7.如图,AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=

.O

 D B C 第 6 题图

第7题图

三、解答题:

8.如图:EB,EC是O的两条切线,B,C是切点,A,D是 O上两点,如果E46,DCF32,试求A的度数.9.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P, E为⊙O上一点,AEAC,DE交AB于点F,且AB2BP4, 求PF的长度.EA

C FB OD P

高中数学推理与证明 篇9

1、推理:

(1)合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,称为合情推理。

①归纳推理:

�《ㄒ澹河赡忱嗍澄锏牟糠侄韵缶哂心承┨卣鳎�推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

�⑻氐悖�

*归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围;

*归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性;

*归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上;

*归纳是立足于观察、经验、实验和对有限资料分析的基础上,提出带有规律性的结论。

�2街瑁�

*对有限的资料进行观察、分析、归纳整理;

*提出带有规律性的结论,即猜想;

*检验猜想。

②类比推理:

�《ㄒ澹河闪嚼喽韵缶哂欣嗨坪推渲幸焕喽韵蟮哪承┮阎�特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

�⑻氐悖�

*类比是从人们已经掌握了的`事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;

*类比是从一种事物的特殊属性推测另一种事物的特殊属性;

*类比的结果是猜测性的不一定可靠,单它却有发现的功能。

�2街瑁�

*找出两类对象之间可以确切表述的相似特征;

*用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;

*检验猜想。

(2)演绎推理:

①定义:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

②演绎推理是由一般到特殊的推理;

③“三段论”是演绎推理的一般模式,包括:

大前提――已知的一般结论;

小前提――所研究的特殊情况;

结 论――根据一般原理,对特殊情况得出的判断。

④“三段论”推理的依据,用集合的观点来理解:

若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。

(3)合情推理与演绎推理的区别与联系:

①归纳是由特殊到一般的推理;

②类比是由特殊到特殊的推理;

③演绎推理是由一般到特殊的推理.

④从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确。

⑤演绎推理是证明数学结论、建立数学体系的重要思维过程;而数学结论、证明思路的发现,主要靠合情推理.

2、证明:

(1)直接证明:

①综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法,其特点是:“由因导果”。

②分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法,其特点是:“执果索因”。

③数学归纳法:

�∈�学归纳法公理:

如果①当n取第一个值

(例如

等)时结论正确;

②假设当

时结论正确,证明当n=k+1时结论也正确;

那么,命题对于从

开始的所有正整数n都成立。

�⑺得鳎�

*数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;

*数学归纳法公理是证明有关自然数命题的依据。

(2)间接证明(反证法、归谬法):假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

用反证法证明一个命题常采用以下步骤:

①假定命题的结论不成立;

②进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;

③由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;

④肯定原来命题的结论是正确的。

即“反设――归谬――结论”

期末复习:推理与证明,复数 篇10

期末复习:推理与证明,复数

一、推理

1.归纳推理是由,从的推理。

Ex1:将全体正整数排成一个三角形数阵:按照以上排列的规律,(二)间接证明:反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结

论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:

(1)反设;(2)归谬;(3)结论。

Ex: 用反证法证明数学命题: 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于1

4三、复数

24k4k+14k+24k+

31、虚数单位i,规定:i=;i=;i=;i=;i=(kN*)

2、复数的代数形式是,全体复数所成的集合叫做________集。用字母________来表示。

3.z=a+bi(a、bR),则复数z的实部是;复数z的虚部是。复数z是实数,复数z是虚数,复数z是纯虚数

4、z1=a+bi(a、bR),z2=c+di(c、dR),复数z1=z2;复数z1>z2

5、复数的几何表示:建立了直角坐标系来表示复数的平面叫做________,x轴叫做________轴,y轴叫做

_______轴.实轴上的点都表示______数;除原点外,虚轴上的点都表示__________数。

6、z=a+bi(a、bR),则|z|=|a+bi|=,|z|的几何意义是

7、z1=a+bi(a、bR),z2=c+di(c、dR),则z1+z2=,对应向量运算;

z1-z2=,对应向量运算

8、z1=a+bi(a、bR),z2=c+di(c、dR),则|z1-z2|=,|z1-z2|的几何意义是

9、z1,z2是两个已知复数,z是满足下列等式的复数,写出z所对应的图形分别是什么?

(1)|z-z1|=a(aR,a>0)

(2)|z-z1|=|z-z2|

(3)||z-z1|+|z-z2||=2a(aR,|z1-z2|<2a)

(4)||z-z1|-|z-z2||=2a(aR,|z1-z2|>2a)

10、复数乘除法:(1)43i54i(2)2i74i11、z=a+bi(a、bR),则复数z的共轭复数为z=,zz=

12、实系数一元二次方程ax+bx+c=0(a、b、cR,且a0)的根的情况

当>0时,方程有根,分别为

当=0时,方程有根,为

当<0时,方程有根,分别为

四、题型分类

(一)i的运算1、1iiii12321232010、1iiii20101232010i3、i2i3i20105、f(n)=iinn2010、1i111i2i3i2010nn(nN*)的值域是1i

6、1i1i1i=

7、n为奇数,=1i1i

(二)复数分类

21、z=(2+i)m-3(1+i)m-2(1-i)(mR),z是实数,m取值; z是虚数,m取值;z是纯虚数,m取值;

2、z1=a+bi(a、bR),z2=2+ci(cR),则z1> z2的充要条件是

(三)复数的坐标表示、与向量之间的关系1、3+4i的点关于原点对称的点对应的复数为

22、(m+m-2)+(6-m-m2)i对应复平面上的点一定不在第象限

3、平行四边形中,z1=1+2i,z2=-2+i,z3=-1-2i对应复平面上的点为三个顶点,第四个顶点对应的复数

为

4、复数3-4i和5-6i分别对应向量,求向量AB所对应的复数

(四)共轭运算

1、z1z223i,z1=1-5i,则z2=

2、(z+2)(z2)z,则z=

(五)模的运算及几何意义

2(12i)5(34i)

1、=

2、| z1+ z2|| z1|+| z2| 5(2i)

3、若集合M={z| |z+1|=1, zC},集合N={z| |z-2i|=|z|,zC},则MN=

4、复数z满足条件|z|=1,则|z+3-i|的取值范围是

5、复数z=cos+isin,(R),则|z+1-i|的取值范围是

6、复数z1 z2满足| z1|=3,| z2|=4,| z1+ z2|=5,则|z1 –z2|=

7、|z|+z=8-4i,则z=

8、(1+i)z115i, z2=a-2i , |z1z2||z1|, a的范围(六)函数

1、f(z)=1-z,则z1=2+3i, z2=5-i, 则f(z1z22、f(z)=z-1,则z1=2-3i,f(z1 –z2)=4+4i,求z2=, |z1+z2|=

(七)一元二次方程1、2+ai,b+i(a、bR)是实系数一元二次方程x2pxq0的两根,2、、是方程xxm0(mR)的两个根,且||=2,求m的值

3、复数、是方程xxm0(mR)的两个根,且||||=2,4、方程x+(k-2i)x+4+2i=0有一个根是2,复数另一个根为

五、反思小结

六、巩固练习

上一篇:写作文猫和老鼠100字下一篇:韶关丹霞山作文