cad三维技术

2025-04-03 版权声明 我要投稿

cad三维技术(共8篇)

cad三维技术 篇1

图1

三维协同设计重在解决三维设计中的信息沟通、知识共享等问题。开展三维协同设计有助于提高设计效率,降低设计成本,是未来CAD设计的发展趋势。

三维协同设计之所以在近几年成为业界关注的焦点,正是因为设计行业出现了很多新的需求――工程复杂程度越来越高,大型工程数量日益增多,这些都对CAD软件提出了更高的要求。在这种情况下,如果还是局限于采用2D设计的方式,很难达到我们想要的效果。

正因为如此,三维协同设计成为了一个热门的领域,以浩辰CAD为代表的国内CAD厂商纷纷推出了自己的三维协同设计解决方案,这些方案有也获得了越来越多的关注,

在近期国家住建部全国建设工作会议上,“大力推进建筑节能、积极发展绿色建筑、努力推动科技创新”成为了会议的主题要求,按照“方案优、投资省、耗能低、环保好”的产品选择理念,行业信息化专家最终决定选择三维协同设计方案,并推荐以“浩辰CAD双平台三维协同整体解决方案”来加快推进勘察设计行业软件正版化工作。

从长远角度来看,三维协同设计是非常有发展前景的技术方向,也是众设计企业争夺技术高地的选择。

而从短期来看,也正是由于三维协同设计是一个非常新的概念,所以其在应用上面临很多困难的概念。一方面,无论是三维软件还是协同设计软件得到的应用都非常少,很多设计人员并没有接触过,所以概念很难得到实际应用。

另一方面,现在的2D设计能够满足大部分的设计需求,这导致我们的设计产业缺乏从2D向3D转变的动力,这也使三维协同设计更多地体现在未来的技术储备上。

我们希望,三维协同设计在近几年能够更快的提升其实际应用的价值,完善功能,更好的为工业及工程设计服务。

cad三维技术 篇2

随着我国计算机技术和社会经济的发展, 现有的二维服装CAD技术已经不能满足纺织服装业CAD应用要求。成衣生产的多样化化、时装化、快速化、短周期的发展趋势, 使服装CAD迫切需要由目前的二维设计向立体三维设计发展。三维服装CAD技术, 是指在电子计算机上实现三维人体测量、三维服装设计、三维立体裁剪、三维立体缝合及三维穿衣效果展示等全过程, 其最终目的在于不经制作服装, 便可由虚拟模特试穿, 完成着装效果的预先演示, 从而大大节省了时间和财力, 不仅有助于服装生产率的提高, 更有助于服装满意率和设计质量的提高。目前, 国内外学者主要研究的内容分为以下三大块:人体测量、人体建模、虚拟模特;三维服装设计;三维服装展示。技术工作流程图如图1所示。

1 人体测量、人体建模和虚拟模特

这一阶段主要就是:经过CCD或CMOS成像实现三维人体尺寸的非接触性测量, 属光电法。通过对人体全身的3万个测量点进行测量而得到精确的人体虚拟三维图像, 以获得精确的人体三维尺寸。这些三维数据在计算机内重新构造人体模型, 进行人体仿真, 实现电脑中的虚拟模特。它可用于:在虚拟模特上进行虚拟三维服装设计和立体裁剪, 得到三维服装纸样;在虚拟模特上进行虚拟三维服装展示, 展示服装穿着效果, 有利于服装样板的修改和穿着效果的确认。具体效果如图2所示。

人体测量技术已经发展了几十年, 经历了由接触到非接触, 由二维到三维, 并向自动测量和利用计算机测量处理和分析的方向发展, 弥补了常规的人工人体测量的不足, 更加准确可靠。

三维人体建模作为计算机人体仿真的一个组成部分, 一直是人们研究的热点之一。关于人体建模的一个普遍问题就是如何系统地模拟各种不同的人体。在大多数情况下, 研究者都会选择构建一个所谓的人体模型模板或标准人台, 然后依照不同的需要对其进行修改。人体建模方法划分为线框建模、实体建模、曲面建模、基于物理的建模等方法。线框造型法构造的人体模型很难区分遮挡情况, 其实感的表示较差, 而且不能实现无二义性的表达三维人体, 无法实现对剖切图、消隐图、明暗色彩图等的加工处理。使用实体建模的方法对人体建模时, 由于它增加了三维人体的实心部分表达, 使其信息更加完备, 从而使得三维人体得到无二义性描述。并且实体建模方法提供了人体几乎所有的几何和拓扑信息, 因此它可以支持对表达人体的消隐、真实感图形显示。曲面模型是和计算机图形学最活跃、最关键的学科分支之一。它主要研究具有一定光滑程度的曲面外形的数学描述。使用曲面模型的方法对人体建模时, 曲面模型能提供三维人体的表面信息, 并进行隐藏线消除和真实感三维人体模型显示, 但曲面模型方法也存在着缺陷, 由于没有明确定义三维人体的实心部分, 因此曲面建模方法不能进行剖面操作。传统的人体建模方法对静止人体的建模是非常成功的, 但对于人体动态建模却相当乏力, 正是针对这一问题, 人们尝试将人体的物理特性和人体所受的外部环境因素引入到传统的几何建模方法中, 形成了全新的基于物理的建模方法。一种三维人体建模方法能否在具体人体模型实现中发挥作用, 要由建模方法本身设能和实现方法 (如计算机程序的质量) 两方面共同决定。实现方法的好坏很大程度上依赖于建模方法的原理, 因此对人体建模方法本身进行理论上的分析研究, 寻求一种好的建模方法是非常重要的。

虚拟模特是目前三维服装领域里最为先进的研究成果, 人体的动态仿真科技在国外的研究己经达到很高水平, 而国内对动态仿真的研究还不多。日内瓦大学实验室就创建服装设计和模拟的交互环境所提出的一个功能强大、机械式基础的服装仿真系统, 并表现出十分完美的虚拟模特的服装展示。

2 三维服装设计

在三维人台上直接进行服装设计, 包括三维服装的修改和自动裁剪, 服装二维三维的交互式修改等等, 其中自动裁剪是指三维服装到二维衣片的自动转化。如图3所示。

三维服装设计是指直接在三维服装上进行的设计操作, 比如修改衣服的长度、腰围、袖长或添加分割线、配饰等等。而且在修改三维服装的同时, 二维裁片上也应该有相应改动。这就使得服装具有一定的可控性, 必然是要在服装上定义一些特征曲线和型值点, 如何将可控服装与织物悬垂力学特性结合是一大难题。服装衣片的三维展平也是一个研究的热点, 主要有中心点法和网格平面法。前者主要适用于简单曲面, 如圆锥曲面;后者通常应用于复杂曲面, 如半球面三维衣片产生以后, 根据表面造型的复杂程度, 可以考虑可展曲面的第一次通近及展开, 然后再考虑第二次的局部曲面展平。首先用回台等可展曲面来作第一次通近展平, 接着考虑运用开省的方法把服装造型上较为复杂的部分展开, 如女性胸部进行第二次展开, 使衣片最终成形。在完成所有的衣片之后, 再将新衣片转换成三维服装造型来进行模拟和修改。中心点法, 就是在曲面上选一定点, 联系省道部位的结构线, 并旋转到给定的二维坐标平面, 计算出线段长度与坐标轴的夹角。并由省道开始, 一一展平, 最后留下缝隙正好生成省道, 考虑到面料的弹性和压缩等特性并将三维衣片展开成二维。网格平面法, 将服装曲面划分成四边形网格, 将每一个单元用相应的四边形来代替, 并考虑面料的弹性和压缩性能等, 按与前面类似的原则, 由省道线开始逐一向外扩展, 直至形成衣片平面网格映射图, 再用样条函数方法拟合出衣片边界。樊劲提出了一种通用的二维三维映射算法, 该算法基于弹簧质点变形模型, 能较好地解决计算机辅助服装设计的过程中立维三维的映射问题。Charlie C.L.等提出基于能源的表面展平, 采用三角片模型来表达一个曲面, 然后建立一个基于能量的模型将三维曲面展开为二维片。在这一过程中, 曲面展开的局部精度较易控制。

3 三维服装展示

将设计好的二维衣片, 在三维人台上进行自动缝合并展示三维成衣效果, 进行三维面料填充及效果显示。更为先进的是, 将设计好的衣片穿在虚拟模特的身上进行虚拟的动态时装表演。如图4所示。

将设计好的二维衣片, 在三维人台上进行自动缝合并展示三维成衣效果, 这一过程的关键是三维服装模型的建立, 由于纺织材料的各向异性和变形模拟的难度, 织物变形模型的建立很复杂。B.K Hinds和J.Mc Cartney提出了一种在人体模型的基础上定义一系列位移曲面片 (即服装曲面) 的3D服装造型方法。这是一种典型的基于几何技术的造型方法, 它没有考虑织物的物理性质, 仅集中于外观的表现, 不能准确表现局部结构。Terzopoulos所提出的基于物理的弹性变形模型是织物模拟技术的里程碑。该模型从连续介质力学的角度考虑物体的变形, 认为变形体的变化遵循牛顿力学和经典弹性力学原理, 将问题归结为一个微分方程, 求解方程得到物体上各点的空间几何位置。其后的研究都秉承了这种动力学思想, 提出了许多模拟技术, 如Thalmann小组和Okabe分别提出的粒子系统技术, Celniker, Eichen分别提出的有限元方法以及Provot和Howlettp利用弹簧———质点模型的模拟技术等等。这些模拟技术已经被广泛应用于织物模拟、虚拟演员着装和动画等, 取得了良好的效果。国内在这方面的研究也已经广泛开展, 浙江大学计算机科学与工程系对虚拟服装设计进行了研究, 对弹簧质点模型作了进一步的改进。西北工业大学自动控制系采用能量法进行了真实感布料的仿真。但是这些模拟方法缺点在于都需要求解复杂的微分方程, 运算效率较低, 在普通的计算机上做到实时比较困难。但在实际应用中, 如虚拟试衣镜、模特服装展示动画等, 都要求三维服装的造型与仿真达到实时运算, 在用户的忍受范围内完成, 这些方法有待进一步改进。

衣片的缝合问题, 即曲面的拼接, 可以通过两曲面取相同的型值点来解决。东华大学信息学院测量与控制实验室从人台上取得构造曲面的型值点, 通过曲面插值算法, 实现了三维衣片的构造与缝合。二维衣片的缝合也会遇到一些特殊情况, 如省道、褶皱的处理, 对位与不对位缝合的情况需要分别处理。

使用纹理映射技术填充的服装表面面料, 在服装曲面上实现图案纹理效果, 实质上就是织物图案在物体表面上的映射。其原理是首先根据纹理图案和物体的边界定义, 确定一个映射函数, 然后使用逆向映射将图案映射到服装曲面空间。先将纹理图案空间点通过投影逆变换成服装曲面上的点, 参数化成三维坐标, 由此可以把纹理元素的光亮度值作为该图像元素的明暗值。这一过程实际上是一个坐标转化过程。

4 结语

人们对服装的质量和合体性、个性化的要求越来越高, 使服装CAD迫切需要由目前的二维设计向立体三维设计发展。因此, 三维服装CAD技术在服装工业生产中具有非常重要得作用。随着这项技术的成熟必将会给我国生产加工带来一场大的变革和发展。

参考文献

[1]赵错平等.服装技术发展与展望[J].天津纺织工学院学报, 19 (5) .

[2]徐继红.三维服装技术现状综述[J].扬州职业大学学报, 6 (1) .

[3]徐军.虚拟三维服装研究技术及发展[J].上海纺织科技, 2002;30 (3) .

诠释三维CAD技术发展的新内涵 篇3

随着中国制造业信息化进程的不断加快,数字化技术在产品创新中的作用凸显。中国航天科技集团总工程师杨海成讲述了三维技术发展的新内涵,杨海成告诉记者,三维技术已经成为当前推动制造业信息化发展,推动两化融合的一个最重要、最核心的高技术的支撑和应用。在推动两化融合过程中,应该强调用数字化的设计和制造技术来促进企业的设计革命。

从产品设计向服务运行延伸

三维CAD技术在当代工业和制造业的发展中,得到了广泛的应用,是技术集成应用的现代高科技的产品设计制造技术。在航天工业的研发、生产、制造、实验,运营乃至产品全生命周期的过程中得到了贯通和广泛应用。特别是在载人航天的火箭的设计制造,飞船的设计制造中,得到了关键的重要应用。

杨海成说,火箭、卫星、飞船等都是高技术集成的装备产品,航天装备的结构复杂,零部件组建众多,相互之间的功能上和性能上的集成,也反映了现代高技术装备的特点,必须要用现代三维的数字化技术来进行产品的设计和定义,来充分评估产品的功能性。只有使用三维技术才能完整表达产品的各个零部件的功能,性能、结构状态,才能进行产品功能性能在制造之前的各种优化、仿真、试验。例如在产品定义阶段进行设计性能分析仿真,包括产品的技术状态管理、产品数据有效的组织管理等方面都是以三维数据、三维模型的形式进行管理。

在制造阶段,设计的数据,可以通过三维技术直接打通到制造的各个环节中去。把一个设计模型变成可制造的模型,需要进行三维的工艺设计,把制造的三维数据传递到现代的数控、机床,数控设备上进行加工生产实验,都需要用到三维制造技术。

产品在装配阶段,可以先用计算机三维模型进行预装配,使得装配的顺序、装配过程中的不协调环节,都能够充分的展现出来,能够做到产品装配完全逼真的三维在线展示。工人可以按照三维的装配工艺要求,按照装配的指令,完成整个零件的装配过程。到了实验环节,三维的数据、产品模型要与一系列性能数据进行比对,来确定产品的功能性是否满足实际工程的要求。

在杨海成看来,三维技术的应用已经从最初的卫星和飞船产品的设计,延伸到为产品在天空上运行提供支持服务。三维技术对整个的航天产品的功能、性能以及制造水平,运营状态,进行全面数字化定义、仿真优化的主要支撑工艺,起到核心的作用。

不仅如此,在我国由制造大国走向制造强国的过程中,在制造业信息化科技工程与两化融合中,三维CAD技术的应用发展起到非常重要的作用。

促进“两化融合”的重要支撑

我国当前在推动着信息化与工业化融合,特别是科技部以高技术为旗帜,推动制造业信息化如火如荼的进行。近二十年来,从“八五”、“九五”、“十五”到“十一五”,信息技术正在不断的发展,不断的向前迈进。在“八五”时期,国务委员宋健提出了“甩图板”工程,用电子图板代替原来手工的画图图板,这是一场二维CAD产业革命。

经过近二十年的发展,特别是现在的制造业信息化和两化融合,企业的产品设计到生产制造,已经开始由二维、二维半开始走向三维产品设计,开始用三维的方式来定义产品,来制造和销售产品。三维CAD技术的应用已经渗透到从产品设计到生产制造到产品的实验验证,一直到产品投入市场使用的环节中。可以说,三维CAD正在酝酿着更大的提升。

“三维技术已经成为当前推动制造业信息化发展,推动两化融合的一个最重要、最核心的高技术的支撑和应用。”杨海成表示,真正以三维技术为支撑的现代制造业的设计制造管理,更能本质性体现现代工业的一种从传统的以工程图纸定义产品的模式,迈到以三维模型定义的现代的、新型的工业产品定义模式,三维CAD应用是一场巨大的提升。它把传统的几百年来,工程师以工程图纸语言表达的产品设计制造,提升到了以数字化定义的模型、以真正的三维样机的模型来贯穿整个设计的过程。

所以,杨海成强调,在推动两化融合过程当中,要强调用数字化的设计和制造技术来促进企业的设计革命,制造提升,工业的转型升级。在制造业信息化发展中,强调使用三维技术实现设计制造的集成和并行,来缩短产品的设计和周期。而且通过三维和无纸化的设计制造方式,使得工业的现代化水平提升到与当代国际上一流产品设计的层次上。

支撑企业向服务型制造转型

现代服务业已经成为我国国民经济的重要产业和经济发展的一个重要增长点,并成为新技术的一个重要的促进者。过去传统制造业以产品的设计和制造为主,把设计图纸或生产的产品销售给用户。所以,长期以来,我国传统制造业是以产品生产和销售为主的。

杨海成表示,我国制造业企业在信息化技术的支撑下,特别是在数字化设计和制造,三维设计制造等技术的支撑下,正在由生产型制造向服务型制造转型,即:向制造服务转型。通过从生产型制造向服务型制造转型,可以使企业不仅仅获取的产品生产的价值和销售价值,也能够获得产品服务所带来的附加值和价值链的高端。

产品从研发、设计到生产、制造,到销售、使用、服务,是一个覆盖产品全生命周期的价值链环节。对于制造业来讲,要由过去所谓的只关注生产制造的低价值的苦笑曲线,到关注高价值的微笑曲线,向全价值链服务型制造扩充,这是制造业由低端向高端发展的一个必然趋势和规律,也是现代制造业和服务业结合的必然。现在可以看到,很多企业已经开始不仅是关注产品的设计制造,更关注产品的使用和服务。比如海尔,海尔的服务比其产品本身所创造的价值还要高。

杨海成说,有了三维技术,可以实现对产品的功能,性能和产品的使用状态,以及后续服务进行必要的支撑。即使产品已经交付给用户,一旦出现使用和维护方面的问题,通过完整的三维产品结构,可以追溯到产品最初的设计状态和制造状态,用产品在设计制造过程中积累的产品数据来更好的为用户提供技术支持服务。而且,通过数字化提供网络远程诊断,使数字化三维模型和网络密切结合,为用户提供更加全面、周到的服务。只有通过产品的三维数字化设计、三维建模,才可以把设计制造的产品信息生动化,形象化的应用到用户的使用中,渗透到相关功能的拓展及全程服务中。过去只掌握产品的说明书和产品图纸,无法满足用户在使用过程中的全部需求。

用CAD创建三维文字 篇4

在做做三维文字时,你的CAD须安装EXPress 工具!

安装 AutoCAD Express Tools 的步骤

将 AutoCAD CD 插入计算机的 CD-ROM 驱动器,

在 AutoCAD CD 浏览器中,单击“安装”选项卡。 在“安装”选项卡上的步骤 5“安装补充工具”下,单击“AutoCAD Express Tools Volumes 1-9”。

单击“安装”,然后按照屏幕上的说明操作。

按装界面如图!

用MT命令创建多行文字!

文字大小样式可自定!

按确认,回到操作窗口!

在命令行输入分解文字命令txtexp回车,选择文字回车!

现在我们看见每个字中间都有些不规则线!我们把它剪掉(TR),

最后效果如图

然后把字生成面域(REG)或多段线(PEDIT)!

我用的是编辑成多段线,输入命令PEDIT,选择M(多条),框选文字回车,选择J(合并),回车!

编完后,输入EXT拉伸命令,对文字实行拉伸!

然后运用差积SU运算,选择主体回车再选择须差去的回车。把文字中间的实体减去!

最后,加材质渲染!

视图/渲染/材质

从材质库中选择你喜欢的材质后,点附着,选择文字!

cad三维技术 篇5

n       三维视图n       用户坐标系(UCS)n       绘制三维实体n       编辑三维实体中望CAD 2010有较强的三维绘图功能,可以用多种方法绘制三维实体,方便的进行编辑,并可以用各种角度进行三维观察,

中望CAD2010教程(13)三维绘图基础

。在本章中将介绍简单的三维绘图所使用的功能,利用这些功能,用户可以设计出所需要的三维图纸。13.1 三维视图要进行三维绘图,首先要掌握观看三维视图的方法,以便在绘图过程中随时掌握绘图信息,并可以调整好视图效果后进行出图。13.1.1 视点1.命令格式命令行:Vpoint菜 单:[视图]→[三维视图]→[视点(V)]工具栏:[视图]控制观察三维图形时的方向以及视点位置。工具栏中的点选命令实际是视点命令的10个常用的视角:俯视、仰视、左视、右视、前视、后视、东南等轴测、西南等轴测、东北等轴测、西北等轴测,用户在变化视角的时候,尽量用这10个设置好的视角,这样可以节省不少时间。2.操作步骤图13-1中表示的是一个简单的三维图形,仅仅从平面视图,用户较难判断单位图形的样子。这时我们可以利用Vpoint命令来调整视图的角度,如图13-1中的右下角的视图,从而能够直观的感受到图形的形状。图13-1 用Vpoint命令观看三维图形命令: Vpoint                                 执行Vpoint命令透视(PE)/平面(PL)/旋转(R)/<视点><0,0,1>:      设置视点,回车结束命令以上各选项含义和功能说明如下:视点:以一个三维点来定义观察视图的方向的矢量。方向为从指定的点指向原点 (0,0,0)。透视(PE):打开或关闭“透视”模式。平面(P):以当前平面为观察方向,查看三维图形。旋转(R):指定观察方向与 XY平面中 X 轴的夹角以及与 XY平面的夹角两个角度,确定新的观察方向。3.注意@此命令不能在“布局”选项卡中使用。在运行Vpoint命令后,直接按回车键,会出现图13-2的设置对话框,用户可以通过对话框内的内容设置视点的位置。图13-2 设置视点对话框13.1.2 三维动态观察器1.命令格式命令行:Rtrot菜 单:[视图]→[三维动态观察器(B)]工具栏:[三维动态观察器] →[三维动态观察]进入三维动态观察模式,控制在三维空间交互查看对象。该命令可使用户同时从 X、Y、Z三个方向动态观察对象。用户在不确定使用何种角度观察的时候,可以用该命令,因为该命令提供了实时观察的功能,用户可以随意用鼠标来改变视点,直到达到需要的视角的时候退出该命令,继续编辑。2.注意@当 RTROT 处于活动状态时,显示三维动态观察光标图标,视点的位置将随着光标的移动而发生变化,视图的目标将保持静止,视点围绕目标移动。如果水平拖动光标,视点将平行于世界坐标系 (WCS) 的 XY平面移动。如果垂直拖动光标,视点将沿 Z 轴移动。也可分别使用RTROTX、RTROTY、RTROTZ命令,分别从X、Y、Z三个方向观察对象。RTROT 命令处于活动状态时,无法编辑对象。13.1.3 视觉样式1.命令格式命令行:Shademode菜 单:[视图]→[视觉样式]设置当前视口的视觉样式。2.操作步骤针对当前视口,可进行如下操作来改变视觉样式。命令: Shademode                          执行Shademode命令输入选项[二维线框(2D)/三维线框(3D)/消隐(H)/平面着色(F)/体着色(G)/带边框平面着色(L)/带边框体着色(O)] <体着色>:选择视觉样式后回车结束命令以上各选项含义和功能说明如下:二维线框(2D):显示用直线和曲线表示边界的对象。光栅和 OLE 对象、线型和线宽都是可见的。三维线框(3D):显示用直线和曲线表示边界的对象。消隐(H):显示用三维线框表示的对象并隐藏表示后面被遮挡的直线。平面着色(F):在多边形面之间着色对象。此对象比体着色的对象平淡和粗糙。体着色(G):着色多边形平面间的对象,并使对象的边平滑化。着色的对象外观较平滑和真实。带边框平面着色(L):结合“平面着色”和“线框”选项。对象被平面着色,同时显示线框。带边框体着色(O):结合“体着色”和“线框”选项。对象被体着色,同时显示线框。图13-3 视觉样式示意13.2用户坐标系(UCS)用户坐标系在二维绘图的时候也会用到,但没有三维那么重要。在三维制图的过程中,往往需要确定XY平面,很多情况下,单位实体的建立是在XY平面上产生的。所以用户坐标系在绘制三维图形的过程中,会根据绘制图形的要求,进行不断的设置和变更,这比绘制二维图形要频繁很多,正确地建立用户坐标系是建立3D模型的关键。13.2.1UCS命令1.命令格式命令行:UCS菜 单:[工具]→[新建UCS(W)]工具栏:[UCS]→[UCS]用于坐标输入、操作平面和观察的一种可移动的坐标系统。2.操作步骤如图13-4(a)所示,把该图中的原点与C点重合,X轴方向为CA方向,Y轴方向为CB方向,如图13-4(b)所示。(a)                               (b)图13-4 用Vpoint命令观看三维图形命令: UCS                            执行UCS命令指定UCS的原点(O)/面(F)/?/对象(OB)/上一个(P)/视图(V)/世界(W)/3点(3)/新建(N)/移动(M)/删除(D)/正交(G)/还原(R)/保存(S)/X/Y/Z/Z轴(ZA)/<世界>: 输入3                                选择3点确定方式新原点 <0,0,0>:点选点C                指定原点正 X 轴上点<4.23,13.8709,13.4118>: 点选点A        指定X轴方向X-Y 面上正 Y 值的点<3.23,14.8709,13.4118>:点选点B         指定Y轴方向以上各选项含义和功能说明如下:原点(O):只改变当前用户坐标系统的原点位置,X、Y 轴方向保持不变,创建新的 UCS。图13-5 UCS设置原点面(F):指定三维实体的一个面,使 UCS 与之对齐。可通过在面的边界内或面所在的边上单击以选择三维实体的一个面,亮显被选中的面。UCS 的 X 轴将与选择的第一个面上的选择点最近的边对齐。?:列出所有定义的新 UCS 定义。对象(OB):可选取弧、圆、标注、线、点、二维多义线、平面或三维面对象来定义新的 UCS。此选项不能用于下列对象:三维实体、三维多段线、三维网格、视口、多线、面域、样条曲线、椭圆、射线、构造线、引线、多行文字。图13-6 选择对象设置UCS根据选择对象的不同,UCS坐标系的方向也有所不同,具体如下:圆弧新 UCS 的原点为圆弧的圆心。X 轴通过距离选择点最近的圆弧端点。圆新 UCS 的原点为圆的圆心。X 轴通过选择点。标注新 UCS 的原点为标注文字的中点。新 X 轴的方向平行于当绘制该标注时生效的 UCS 的 X 轴。直线离选择点最近的端点成为新 UCS 的原点。系统选择新的 X 轴使该直线位于新 UCS 的 XZ平面上。该直线的第二个端点在新坐标系中 Y 坐标为零。点该点成为新 UCS 的原点。二维多段线多段线的起点成为新 UCS 的原点。X 轴沿从起点到下一顶点的线段延伸。实体二维实体的第一点确定新 UCS 的原点。新 X 轴沿前两点之间的连线方向。宽线宽线的“起点”成为新 UCS 的原点,X 轴沿宽线的中心线方向。三维面取第一点作为新 UCS 的原点,X 轴沿前两点的连线方向,Y 的正方向取自第一点和第四点。Z 轴由右手定则确定。形、块 参照、属性定义该对象的插入点成为新 UCS 的原点,新 X 轴由对象绕其拉伸方向旋转定义。用于建立新 UCS 的对象在新 UCS 中的旋转角度为零。上一个(P):取回上一个 UCS 定义。视图(V):以平行于屏幕的平面为 XY平面,建立新的坐标系。UCS 原点保持不变。图13-7 用当前视图方向设置UCS世界(W):设置当前用户坐标系统为世界坐标系。世界坐标系 WCS 是所有用户坐标系的基准,不能被修改。3点(3):指定新的原点以及 X、Y 轴的正方向。新建(N):定义新的坐标系。移动(M):移动当前 UCS 的原点或修改当前 UCS 的 Z 轴深度值,XY平面的方向不发生改变删除(D):删除已储存的坐标系统。正交(G):以系统提供的六个正交 UCS 之一为当前 UCS。图13-8 正交视图方向示意图还原(R):取回已储存的 UCS,使之成为当前用户坐标系。保存(S):保存当前 UCS 设置,并指定名称。X、Y、Z:绕著指定的轴旋转当前的 UCS,以创建新的 UCS 。图13-9 坐标系旋转示意Z 轴(ZA):以特定的正向 Z 轴来定义新的 UCS。13.2.2命名UCS1.命令格式命令行:DdUCS菜 单:[工具]→[命名UCS(U)]工具栏:[UCS]→[显示UCS对话框]命名UCS是UCS命令的辅助,通过命名UCS可以对以下三个方面进行设置。1)“命名UCS”选项卡,显示当前图形中所设定的所有UCS,并提供详细的信息查询。可选择其中需要的UCS坐标置为当前使用。图13-10 “命名UCS”显示和设置2)“正交UCS”选项卡,列出相对于目前UCS的6个正交坐标系,有详细信息供查询,并提供置为当前功能。图13-11 “正交UCS”显示和设置3)“设置”选项卡,提供UCS的一些基础设定内同,如图13-12。一般情况下,没有特殊需要,不需要调整该设定。图13-12 UCS的基本设置13.3绘制三维实体13.3.1长方体1.命令格式命令行:Box菜 单:[绘图]→[实体]→[长方体(B)]工具栏:[实体]→[长方体]创建三维长方体对象。2.操作步骤创建边长都为10的立方体,如图13-13。图13-13 用Box命令绘制立方体命令: Box                            执行Box命令指定长方体的角点或 [中心(C)] <0,0,0>: 点取一点         指定图形的一个角点指定角点或 [立方体(C)/长度(L)]: @10,10  指定XY平面上矩形大小长方体高度: 10                         指定高度,回车结束命令以上各选项含义和功能说明如下:长方体的角点:指定长方体的第一个角点。中心(C):通过指定长方体的中心点绘制长方体。立方体(C):指定长方体的长、宽、高都为相同长度。长度(L):通过指定长方体的长、宽、高来创建三维长方体。3.注意@若输入的长度值或坐标值是正值,则以当前 UCS 坐标的X、Y、Z 轴的正向创建立图形;若为负值,则以X、Y、Z 轴的负向创建立图形。13.3.2球体1.命令格式命令行:Sphere菜 单:[绘图]→[实体]→[球体(S)]工具栏:[实体]→[球体]绘制三维球体对象。默认情况下,球体的中心轴平行于当前用户坐标系 (UCS) 的 Z 轴。纬线与 XY平面平行。2.操作步骤创建半径为10的球体,如图13-14。图13-14 用Sphere命令创建球体命令: Sphere                          执行Sphere命令球体中心: 点选一点                    指定球心位置指定球体半径或 [直径(D)]:10            指定半径值,回车结束命令以上各选项含义和功能说明如下:球体半径(R):绘制基于球体中心和球体半径的球体对象。直径(D):绘制基于球体中心和球体直径的球体对象。13.3.3圆柱体1.命令格式命令行:Cylinder菜 单:[绘图]→[实体]→[圆柱体(C)]工具栏:[实体]→[圆柱体]创建三维圆柱体实体对象。2.操作步骤创建半径为10的,高度为10的圆柱体,如图13-15。图13-15 用Cylinder命令创建圆柱体命令: Cylinder                       执行Cylinder命令指定圆柱体底面的中心点或 [椭圆(E)] <0,0,0>: 点取一点   指定圆心指定圆柱体半径或 [直径(D)]: 10        指定圆半径指定圆柱体高度或 [中心(C)]: 10        指定圆柱高度,回车结束命令以上各选项含义和功能说明如下:圆柱体底面的中心点:通过指定圆柱体底面圆的圆心来创建圆柱体对象。椭圆(E):绘制底面为椭圆的三维圆柱体对象。3.注意@若输入的高度值是正值,则以当前 UCS 坐标的Z 轴的正向创建立图形;若为负值,则以Z 轴的负向创建立图形。13.3.4圆锥体1.命令格式命令行:Cone菜 单:[绘图]→[实体]→[圆锥体(O)]工具栏:[实体]→[圆锥体]创建三维圆锥体。2.操作步骤创建底面半径半径为10,高度为20的圆锥体,如图13-16。图13-16 用Cone命令创建圆锥体命令: Cone                           执行Cone命令指定圆锥体底面的中心点或 [椭圆(E)] <0,0,0>: 点取一点         指定底面圆心位置指定圆锥体底面半径或 [直径(D)]: 10     指定底面圆半径指定圆锥体高度或 [顶点(A)]: 20         指定高度,回车结束命令以上各选项含义和功能说明如下:圆锥体底面的中心点:指定圆锥体底面的中心点来创建三维圆锥体。椭圆(E):创建一个底面为椭圆的三维圆锥体对象。圆锥体高度:指定圆锥体的高度。输入正值,则以当前用户坐标系统 UCS 的 Z 轴正方向绘制圆锥体,输入负值,则以 UCS 的 Z 轴负方向绘制圆锥体。13.3.5楔体1.命令格式命令行:Wedge菜 单:[绘图]→[实体]→[楔体(W)]工具栏:[实体]→[楔体]绘制三维楔体对象。2.操作步骤任意建立一个楔体,如图13-17。图13-17 用Wedge命令创建楔体命令: Wedge                                         执行Wedge命令指定楔体的第一个角点或 [中心点(C)] <0,0,0>: 点取一点   指定楔体位置指定角点或 [立方体(C)/长度(L)]: 点取一点指点楔体底面矩形楔高:点取一点                         指定楔体高度,回车结束命令以上各选项含义和功能说明如下:第一个角点:指定楔体的第一个角点。立方体:创建各条边都相等的楔体对象图13-18 各条边相等的楔体长度:分别指定楔体的长、宽、高。其中长度与 X 轴对应,宽度与 Y 轴对应,高度与 Z 轴对应。图13-19 楔体的长宽高示意中心点(CE):指定楔体的中心点。13.3.6圆环1.命令格式命令行:Torus菜 单:[绘图]→[实体]→[圆环体(T)]工具栏:[实体]→[圆环]绘制三维圆环实体对象。2.操作步骤建立一个管状物半径为10,圆环半径为20的圆环,如图13-20。图13-20 用Torus命令创建圆环命令: Torus                           执行Torus命令圆环体中心: <0,0,0>点取一点           指定圆环中心指定圆环体的半径或 [直径(D)]: 20        指定圆环半径指定圆管的半径或 [直径(D)]: 10          指定管状物半径,回车结束命令以上各选项含义和功能说明如下:半径(R):指定圆环体的半径。直径(D):指定圆环体的直径。3.注意@圆环由两半径定义:一个是管状物的半径,另一个是圆环中心到管状物中心的距离。若指定的管状物的半径大于圆环的半径,即可绘制无中心的圆环,即自身相交的圆环。自交圆环体没有中心孔。13.3.7拉伸1.命令格式命令行:Extrude菜 单:[绘图]→[实体]→[拉伸(X)]工具栏:[实体]→[拉伸]以指定的路径或指定的高度值和倾斜角度拉伸选定的对象来创建实体。2.操作步骤对图13-21(a)中的图形进行拉伸,拉伸高度为20,倾斜角为30度,结果如图13-21(b)。(a)                                (b)图13-21 用Extrude命令拉伸图形命令: Extrude                         执行Extrude命令选择对象: 选择图形                     指定要拉伸的图形选择集当中的对象: 1                    提示选择对象的数量选择对象:                             回车结束选择指定拉伸高度或拉伸路径(P): 20           指定拉伸高度指定拉伸的倾斜角度 <0>: 30              指定拉伸倾角,回车结束命令以上各选项含义和功能说明如下:选择对象:选择要拉伸的对象。可进行拉伸处理的对象有平面三维面、封闭多段线、多边形、圆、椭圆、封闭样条曲线、圆环和面域。指定拉伸高度:为选定对象指定拉伸的高度,若输入的高度值为正数,则以当前 UCS 的 Z 轴正方向拉伸对象,若为负数,则以 Z 轴负方向拉伸对象。拉伸路径(P):为选定对象指定拉伸的路径,在指定路径后,系统将沿着选定路径拉伸选定对象的轮廓创建实体。图13-22 用路径拉伸图形示意3.注意@倾斜角度的值可为“-90—+90”之间的任何角度值,若输入正的角度值,则从基准对象逐渐变细地拉伸,若输入的为负的角度值,则从基准对象逐渐变粗地拉伸。角度为 0 时,表示在拉伸对象时,对象的粗细不发生变化,而且是在其所在平面垂直的方向上进行拉伸。当用户为对象指定的倾斜角和拉伸高度值很大时,将导致对象或对象的一部分在到达拉伸高度之前就已经汇聚到一点。13.3.8旋转1.命令格式命令行:Revolve菜 单:[绘图]→[实体]→[旋转(R)]工具栏:[实体]→[旋转]将选取的二维对象以指定的旋转轴旋转,最后形成实体。2.操作步骤对图13-23(a)中的图形进行旋转360度,结果如图13-23(b)。(a)                            (b)图13-23 用Revolve命令创建旋转体命令: Revolve                         执行Revolve命令选择对象:                             选择要旋转的图形选择集当中的对象: 1                    提示选择对象的数量选择对象:                             回车结束选择指定旋转轴的起始点或定义轴物体(O)/X轴(x)/Y轴(y): 点选轴端点指定旋转轴一端点指定轴的终点:点选轴另一端点            指定旋转轴另一端点指定旋转角度 <360>:360                 指定旋转角度,回车结束命令以上各选项含义和功能说明如下:旋转轴的起始点:通过指定旋转轴上的两个点来确定旋转轴,轴的正方向为第一点指向第二点物体(O):以选定的直线或多段线中的单条线段为旋转轴,接着围绕此旋转轴旋转一定角度,形成实体。X 轴(x):以当前用户坐标系统 UCS 的 X 轴为旋转轴,旋转轴的正方向与 X 轴正方向一致。Y 轴(y):以当前用户坐标系统 UCS 的 Y 轴为旋转轴,旋转轴的正方向与 Y 轴正方向一致。旋转角度:指定旋转角度值。第13章 三维绘图基础本章要点n       三维视图n       用户坐标系(UCS)n       绘制三维实体n       编辑三维实体中望CAD 2010有较强的三维绘图功能,可以用多种方法绘制三维实体,方便的进行编辑,并可以用各种角度进行三维观察。在本章中将介绍简单的三维绘图所使用的功能,利用这些功能,用户可以设计出所需要的三维图纸。13.1 三维视图要进行三维绘图,首先要掌握观看三维视图的方法,以便在绘图过程中随时掌握绘图信息,并可以调整好视图效果后进行出图。13.1.1 视点1.命令格式命令行:Vpoint菜 单:[视图]→[三维视图]→[视点(V)]工具栏:[视图]控制观察三维图形时的方向以及视点位置。工具栏中的点选命令实际是视点命令的10个常用的视角:俯视、仰视、左视、右视、前视、后视、东南等轴测、西南等轴测、东北等轴测、西北等轴测,用户在变化视角的时候,尽量用这10个设置好的视角,这样可以节省不少时间。2.操作步骤图13-1中表示的是一个简单的三维图形,仅仅从平面视图,用户较难判断单位图形的样子。这时我们可以利用Vpoint命令来调整视图的角度,如图13-1中的右下角的视图,从而能够直观的感受到图形的形状。图13-1 用Vpoint命令观看三维图形命令: Vpoint                                 执行Vpoint命令透视(PE)/平面(PL)/旋转(R)/<视点><0,0,1>:      设置视点,回车结束命令以上各选项含义和功能说明如下:视点:以一个三维点来定义观察视图的方向的矢量。方向为从指定的点指向原点 (0,0,0)。透视(PE):打开或关闭“透视”模式。平面(P):以当前平面为观察方向,查看三维图形。旋转(R):指定观察方向与 XY平面中 X 轴的夹角以及与 XY平面的夹角两个角度,确定新的观察方向。3.注意@此命令不能在“布局”选项卡中使用。在运行Vpoint命令后,直接按回车键,会出现图13-2的设置对话框,用户可以通过对话框内的内容设置视点的位置。图13-2 设置视点对话框13.1.2 三维动态观察器1.命令格式命令行:Rtrot菜 单:[视图]→[三维动态观察器(B)]工具栏:[三维动态观察器] →[三维动态观察]进入三维动态观察模式,控制在三维空间交互查看对象。该命令可使用户同时从 X、Y、Z三个方向动态观察对象。用户在不确定使用何种角度观察的时候,可以用该命令,因为该命令提供了实时观察的功能,用户可以随意用鼠标来改变视点,直到达到需要的视角的时候退出该命令,继续编辑。2.注意@当 RTROT 处于活动状态时,显示三维动态观察光标图标,视点的位置将随着光标的移动而发生变化,视图的目标将保持静止,视点围绕目标移动。如果水平拖动光标,视点将平行于世界坐标系 (WCS) 的 XY平面移动。如果垂直拖动光标,视点将沿 Z 轴移动。也可分别使用RTROTX、RTROTY、RTROTZ命令,分别从X、Y、Z三个方向观察对象。RTROT 命令处于活动状态时,无法编辑对象。13.1.3 视觉样式1.命令格式命令行:Shademode菜 单:[视图]→[视觉样式]设置当前视口的视觉样式。2.操作步骤针对当前视口,可进行如下操作来改变视觉样式。命令: Shademode                          执行Shademode命令输入选项[二维线框(2D)/三维线框(3D)/消隐(H)/平面着色(F)/体着色(G)/带边框平面着色(L)/带边框体着色(O)] <体着色>:选择视觉样式后回车结束命令以上各选项含义和功能说明如下:二维线框(2D):显示用直线和曲线表示边界的对象。光栅和 OLE 对象、线型和线宽都是可见的。三维线框(3D):显示用直线和曲线表示边界的对象。消隐(H):显示用三维线框表示的对象并隐藏表示后面被遮挡的直线。平面着色(F):在多边形面之间着色对象。此对象比体着色的对象平淡和粗糙。体着色(G):着色多边形平面间的对象,并使对象的边平滑化。着色的对象外观较平滑和真实。带边框平面着色(L):结合“平面着色”和“线框”选项。对象被平面着色,同时显示线框。带边框体着色(O):结合“体着色”和“线框”选项。对象被体着色,同时显示线框。图13-3 视觉样式示意13.2用户坐标系(UCS)用户坐标系在二维绘图的时候也会用到,但没有三维那么重要。在三维制图的过程中,往往需要确定XY平面,很多情况下,单位实体的建立是在XY平面上产生的。所以用户坐标系在绘制三维图形的过程中,会根据绘制图形的要求,进行不断的设置和变更,这比绘制二维图形要频繁很多,正确地建立用户坐标系是建立3D模型的关键。13.2.1UCS命令1.命令格式命令行:UCS菜 单:[工具]→[新建UCS(W)]工具栏:[UCS]→[UCS]用于坐标输入、操作平面和观察的一种可移动的坐标系统。2.操作步骤如图13-4(a)所示,把该图中的原点与C点重合,X轴方向为CA方向,Y轴方向为CB方向,如图13-4(b)所示。(a)                               (b)图13-4 用Vpoint命令观看三维图形命令: UCS                            执行UCS命令指定UCS的原点(O)/面(F)/?/对象(OB)/上一个(P)/视图(V)/世界(W)/3点(3)/新建(N)/移动(M)/删除(D)/正交(G)/还原(R)/保存(S)/X/Y/Z/Z轴(ZA)/<世界>: 输入3                                选择3点确定方式新原点 <0,0,0>:点选点C                指定原点正 X 轴上点<4.23,13.8709,13.4118>: 点选点A        指定X轴方向X-Y 面上正 Y 值的点<3.23,14.8709,13.4118>:点选点B         指定Y轴方向以上各选项含义和功能说明如下:原点(O):只改变当前用户坐标系统的原点位置,X、Y 轴方向保持不变,创建新的 UCS。图13-5 UCS设置原点面(F):指定三维实体的一个面,使 UCS 与之对齐。可通过在面的边界内或面所在的边上单击以选择三维实体的一个面,亮显被选中的面。UCS 的 X 轴将与选择的第一个面上的选择点最近的边对齐。?:列出所有定义的新 UCS 定义。对象(OB):可选取弧、圆、标注、线、点、二维多义线、平面或三维面对象来定义新的 UCS。此选项不能用于下列对象:三维实体、三维多段线、三维网格、视口、多线、面域、样条曲线、椭圆、射线、构造线、引线、多行文字。图13-6 选择对象设置UCS根据选择对象的不同,UCS坐标系的方向也有所不同,具体如下:圆弧新 UCS 的原点为圆弧的圆心。X 轴通过距离选择点最近的圆弧端点。圆新 UCS 的原点为圆的圆心。X 轴通过选择点。标注新 UCS 的原点为标注文字的中点。新 X 轴的方向平行于当绘制该标注时生效的 UCS 的 X 轴。直线离选择点最近的端点成为新 UCS 的原点。系统选择新的 X 轴使该直线位于新 UCS 的 XZ平面上。该直线的第二个端点在新坐标系中 Y 坐标为零。点该点成为新 UCS 的原点。二维多段线多段线的起点成为新 UCS 的原点。X 轴沿从起点到下一顶点的线段延伸。实体二维实体的第一点确定新 UCS 的原点。新 X 轴沿前两点之间的连线方向。宽线宽线的“起点”成为新 UCS 的原点,X 轴沿宽线的中心线方向。三维面取第一点作为新 UCS 的原点,X 轴沿前两点的连线方向,Y 的正方向取自第一点和第四点。Z 轴由右手定则确定。形、块 参照、属性定义该对象的插入点成为新 UCS 的原点,新 X 轴由对象绕其拉伸方向旋转定义。用于建立新 UCS 的对象在新 UCS 中的旋转角度为零。上一个(P):取回上一个 UCS 定义。视图(V):以平行于屏幕的平面为 XY平面,建立新的坐标系。UCS 原点保持不变。图13-7 用当前视图方向设置UCS世界(W):设置当前用户坐标系统为世界坐标系。世界坐标系 WCS 是所有用户坐标系的基准,不能被修改。3点(3):指定新的原点以及 X、Y 轴的正方向。新建(N):定义新的坐标系。移动(M):移动当前 UCS 的原点或修改当前 UCS 的 Z 轴深度值,XY平面的方向不发生改变删除(D):删除已储存的坐标系统。正交(G):以系统提供的六个正交 UCS 之一为当前 UCS。图13-8 正交视图方向示意图还原(R):取回已储存的 UCS,使之成为当前用户坐标系。保存(S):保存当前 UCS 设置,并指定名称。X、Y、Z:绕著指定的轴旋转当前的 UCS,以创建新的 UCS 。图13-9 坐标系旋转示意Z 轴(ZA):以特定的正向 Z 轴来定义新的 UCS。13.2.2命名UCS1.命令格式命令行:DdUCS菜 单:[工具]→[命名UCS(U)]工具栏:[UCS]→[显示UCS对话框]命名UCS是UCS命令的辅助,通过命名UCS可以对以下三个方面进行设置。1)“命名UCS”选项卡,显示当前图形中所设定的所有UCS,并提供详细的信息查询。可选择其中需要的UCS坐标置为当前使用。图13-10 “命名UCS”显示和设置2)“正交UCS”选项卡,列出相对于目前UCS的6个正交坐标系,有详细信息供查询,并提供置为当前功能。图13-11 “正交UCS”显示和设置3)“设置”选项卡,提供UCS的一些基础设定内同,如图13-12。一般情况下,没有特殊需要,不需要调整该设定。图13-12 UCS的基本设置13.3绘制三维实体13.3.1长方体1.命令格式命令行:Box菜 单:[绘图]→[实体]→[长方体(B)]工具栏:[实体]→[长方体]创建三维长方体对象。2.操作步骤创建边长都为10的立方体,如图13-13。图13-13 用Box命令绘制立方体命令: Box                            执行Box命令指定长方体的角点或 [中心(C)] <0,0,0>: 点取一点         指定图形的一个角点指定角点或 [立方体(C)/长度(L)]: @10,10  指定XY平面上矩形大小长方体高度: 10                         指定高度,回车结束命令以上各选项含义和功能说明如下:长方体的角点:指定长方体的第一个角点。中心(C):通过指定长方体的中心点绘制长方体。立方体(C):指定长方体的长、宽、高都为相同长度。长度(L):通过指定长方体的长、宽、高来创建三维长方体。3.注意@若输入的长度值或坐标值是正值,则以当前 UCS 坐标的X、Y、Z 轴的正向创建立图形;若为负值,则以X、Y、Z 轴的负向创建立图形。13.3.2球体1.命令格式命令行:Sphere菜 单:[绘图]→[实体]→[球体(S)]工具栏:[实体]→[球体]绘制三维球体对象。默认情况下,球体的中心轴平行于当前用户坐标系 (UCS) 的 Z 轴。纬线与 XY平面平行。2.操作步骤创建半径为10的球体,如图13-14。图13-14 用Sphere命令创建球体命令: Sphere                          执行Sphere命令球体中心: 点选一点                    指定球心位置指定球体半径或 [直径(D)]:10            指定半径值,回车结束命令以上各选项含义和功能说明如下:球体半径(R):绘制基于球体中心和球体半径的球体对象。直径(D):绘制基于球体中心和球体直径的球体对象。13.3.3圆柱体1.命令格式命令行:Cylinder菜 单:[绘图]→[实体]→[圆柱体(C)]工具栏:[实体]→[圆柱体]创建三维圆柱体实体对象。2.操作步骤创建半径为10的,高度为10的圆柱体,如图13-15。图13-15 用Cylinder命令创建圆柱体命令: Cylinder                       执行Cylinder命令指定圆柱体底面的中心点或 [椭圆(E)] <0,0,0>: 点取一点   指定圆心指定圆柱体半径或 [直径(D)]: 10        指定圆半径指定圆柱体高度或 [中心(C)]: 10        指定圆柱高度,回车结束命令以上各选项含义和功能说明如下:圆柱体底面的中心点:通过指定圆柱体底面圆的圆心来创建圆柱体对象。椭圆(E):绘制底面为椭圆的三维圆柱体对象。3.注意@若输入的高度值是正值,则以当前 UCS 坐标的Z 轴的正向创建立图形;若为负值,则以Z 轴的负向创建立图形。13.3.4圆锥体1.命令格式命令行:Cone菜 单:[绘图]→[实体]→[圆锥体(O)]工具栏:[实体]→[圆锥体]创建三维圆锥体。2.操作步骤创建底面半径半径为10,高度为20的圆锥体,如图13-16。图13-16 用Cone命令创建圆锥体命令: Cone                           执行Cone命令指定圆锥体底面的中心点或 [椭圆(E)] <0,0,0>: 点取一点         指定底面圆心位置指定圆锥体底面半径或 [直径(D)]: 10     指定底面圆半径指定圆锥体高度或 [顶点(A)]: 20         指定高度,回车结束命令以上各选项含义和功能说明如下:圆锥体底面的中心点:指定圆锥体底面的中心点来创建三维圆锥体。椭圆(E):创建一个底面为椭圆的三维圆锥体对象。圆锥体高度:指定圆锥体的高度。输入正值,则以当前用户坐标系统 UCS 的 Z 轴正方向绘制圆锥体,输入负值,则以 UCS 的 Z 轴负方向绘制圆锥体。13.3.5楔体1.命令格式命令行:Wedge菜 单:[绘图]→[实体]→[楔体(W)]工具栏:[实体]→[楔体]绘制三维楔体对象。2.操作步骤任意建立一个楔体,如图13-17。图13-17 用Wedge命令创建楔体命令: Wedge                                         执行Wedge命令指定楔体的第一个角点或 [中心点(C)] <0,0,0>: 点取一点   指定楔体位置指定角点或 [立方体(C)/长度(L)]: 点取一点指点楔体底面矩形楔高:点取一点                         指定楔体高度,回车结束命令以上各选项含义和功能说明如下:第一个角点:指定楔体的第一个角点。立方体:创建各条边都相等的楔体对象图13-18 各条边相等的楔体长度:分别指定楔体的长、宽、高。其中长度与 X 轴对应,宽度与 Y 轴对应,高度与 Z 轴对应,图13-19 楔体的长宽高示意中心点(CE):指定楔体的中心点。13.3.6圆环1.命令格式命令行:Torus菜 单:[绘图]→[实体]→[圆环体(T)]工具栏:[实体]→[圆环]绘制三维圆环实体对象。2.操作步骤建立一个管状物半径为10,圆环半径为20的圆环,如图13-20。图13-20 用Torus命令创建圆环命令: Torus                           执行Torus命令圆环体中心: <0,0,0>点取一点           指定圆环中心指定圆环体的半径或 [直径(D)]: 20        指定圆环半径指定圆管的半径或 [直径(D)]: 10          指定管状物半径,回车结束命令以上各选项含义和功能说明如下:半径(R):指定圆环体的半径。直径(D):指定圆环体的直径。3.注意@圆环由两半径定义:一个是管状物的半径,另一个是圆环中心到管状物中心的距离。若指定的管状物的半径大于圆环的半径,即可绘制无中心的圆环,即自身相交的圆环。自交圆环体没有中心孔。13.3.7拉伸1.命令格式命令行:Extrude菜 单:[绘图]→[实体]→[拉伸(X)]工具栏:[实体]→[拉伸]以指定的路径或指定的高度值和倾斜角度拉伸选定的对象来创建实体。2.操作步骤对图13-21(a)中的图形进行拉伸,拉伸高度为20,倾斜角为30度,结果如图13-21(b)。(a)                                (b)图13-21 用Extrude命令拉伸图形命令: Extrude                         执行Extrude命令选择对象: 选择图形                     指定要拉伸的图形选择集当中的对象: 1                    提示选择对象的数量选择对象:                             回车结束选择指定拉伸高度或拉伸路径(P): 20           指定拉伸高度指定拉伸的倾斜角度 <0>: 30              指定拉伸倾角,回车结束命令以上各选项含义和功能说明如下:选择对象:选择要拉伸的对象。可进行拉伸处理的对象有平面三维面、封闭多段线、多边形、圆、椭圆、封闭样条曲线、圆环和面域。指定拉伸高度:为选定对象指定拉伸的高度,若输入的高度值为正数,则以当前 UCS 的 Z 轴正方向拉伸对象,若为负数,则以 Z 轴负方向拉伸对象。拉伸路径(P):为选定对象指定拉伸的路径,在指定路径后,系统将沿着选定路径拉伸选定对象的轮廓创建实体。图13-22 用路径拉伸图形示意3.注意@倾斜角度的值可为“-90—+90”之间的任何角度值,若输入正的角度值,则从基准对象逐渐变细地拉伸,若输入的为负的角度值,则从基准对象逐渐变粗地拉伸。角度为 0 时,表示在拉伸对象时,对象的粗细不发生变化,而且是在其所在平面垂直的方向上进行拉伸。当用户为对象指定的倾斜角和拉伸高度值很大时,将导致对象或对象的一部分在到达拉伸高度之前就已经汇聚到一点。13.3.8旋转1.命令格式命令行:Revolve菜 单:[绘图]→[实体]→[旋转(R)]工具栏:[实体]→[旋转]将选取的二维对象以指定的旋转轴旋转,最后形成实体。2.操作步骤对图13-23(a)中的图形进行旋转360度,结果如图13-23(b)。(a)                            (b)图13-23 用Revolve命令创建旋转体命令: Revolve                         执行Revolve命令选择对象:                             选择要旋转的图形选择集当中的对象: 1                    提示选择对象的数量选择对象:                             回车结束选择指定旋转轴的起始点或定义轴物体(O)/X轴(x)/Y轴(y): 点选轴端点指定旋转轴一端点指定轴的终点:点选轴另一端点            指定旋转轴另一端点指定旋转角度 <360>:360                 指定旋转角度,回车结束命令以上各选项含义和功能说明如下:旋转轴的起始点:通过指定旋转轴上的两个点来确定旋转轴,轴的正方向为第一点指向第二点物体(O):以选定的直线或多段线中的单条线段为旋转轴,接着围绕此旋转轴旋转一定角度,形成实体。X 轴(x):以当前用户坐标系统 UCS 的 X 轴为旋转轴,旋转轴的正方向与 X 轴正方向一致。Y 轴(y):以当前用户坐标系统 UCS 的 Y 轴为旋转轴,旋转轴的正方向与 Y 轴正方向一致。旋转角度:指定旋转角度值。13.3.9剖切1.命令格式命令行:Slice菜 单:[绘图]→[实体]→[剖切(L)]工具栏:[实体]→[剖切]将实体对象以平面剖切,并保留剖切实体的所有部分,或者保留指定的部分。2.操作步骤对图13-24(a)中的立方体进行剖切,留下一个四面体,结果如图13-24(b)。(a)                            (b)图13-24 用Slice命令剖切实体命令: Slice                          执行Slice命令选择对象: 点选立方体                  指定剖切对象选择集当中的对象: 1                   提示选择对象的数量选择对象:                            回车结束选择指定截面上的第一点或对象(O)/轴(Z)/视图(V)/平面(XY)/平面(YZ)/平面(ZX): 点选点A在平面上指定第二点:点选点B在平面上指定第叁点: 点选点C           通过三点来确定剖切面在要保留的一侧指定一点或保留两侧(B):点选点D                指点保留部分,回车结束命令以上各选项含义和功能说明如下:截面上的第一点:通过指定三个点来定义剪切平面。对象(O):定义剪切面与选取的圆、椭圆、弧、2D样条曲线或二维多段线对象对齐。轴(Z):通过指定剪切平面上的一个点,及垂直于剪切平面的一点定义剪切平面。图13-25 通过设定Z轴确定剪切平面视图(V):指定剪切平面与当前视口的视图平面对齐。平面(XY):通过在 XY平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 XY平面对齐。平面(YZ):通过在 YZ平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 YZ平面对齐。平面(ZX):通过在 ZX平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 ZX平面对齐。3.注意@剖切实体保留原实体的图层和颜色特性。13.3.10截面1.命令格式命令行:Section菜 单:[绘图]→[实体]→[截面(E)]工具栏:[实体]→[截面]以实体对象与平面相交的截面创建面域。2.操作步骤在图13-26(a)中的圆柱体上,建立一个截面,其结果如图13-26(b)所示。(a)                                (b)图13-26 用Section命令建立截面命令: Section                         执行Section命令选择对象: 点选圆柱体                   指定截面对象选择集当中的对象: 1                    提示选择对象数量选择对象:                             回车结束选择指定截面上的第一点或对象(O)/轴(Z)/视图(V)/平面(XY)/平面(YZ)/平面(ZX): 点选点A在平面上指定第二点: 点选点B在平面上指定第叁点:点选点C             用三点指定截面,回车结束命令以上各选项含义和功能说明如下:截面上的第一点:通过指定三个点来定义截面。对象(O):定义截面与选取的圆、椭圆、弧、2D样条曲线或二维多段线对象对齐。轴(Z):通过指定截面上的一个点,及垂直于截面的一点定义截面。视图(V):指定截面与当前视口的视图平面对齐。平面(XY):通过在 XY平面指定一个点来确定截面所在的位置,并使截面与当前用户坐标系统 UCS 的 XY平面对齐。平面(YZ):通过在 YZ平面指定一个点来确定截面所在的位置,并使截面与当前用户坐标系统 UCS 的 YZ平面对齐。平面(ZX):通过在 ZX平面指定一个点来确定截面所在的位置,并使截面与当前用户坐标系统 UCS 的 ZX平面对齐。13.3.11干涉1.命令格式命令行:Interfere菜 单:[绘图]→[实体]→[干涉(I)]工具栏:[实体]→[干涉]选取两批实体进行比较,并用两个或多个实体的公共部分创建三维组合实体。2.操作步骤把图13-27(a)中两个实体相干涉的部分创建实体,结果如图13-27(b)所示。(a)                                (b)图13-27 用Interfere命令创建干涉实体命令: Interfere                       执行Interfere命令选择第一批Acis对象: 点选圆柱体        指定发生干涉的实体选择集当中的对象: 1                   提示选择对象数量选择第一批Acis对象:                  回车结束第一批对象的选择选择第二批Acis对象: 点选楔体          指定发生干涉的实体选择集当中的对象: 1                   提示选择对象数量选择第二批Acis对象:                  回车结束第二批对象的选择将 1 实体同 1 实体比较.干涉实体对数目: 1 提示发生干涉的结果创建干涉实体吗? 是(Y)/<否n>: y       创建干涉对象高亮显示相互干涉的实体对吗? 是(Y)/<否n>: 回车结束命令3.注意@Interfere 将亮显重叠的三维实体。若用户只选择第一个选择集,在提示选择第二批对象时按 ENTER 键,系统将对比检查第一集合中的全部实体。若用户在提示选择两批 ACIS 对象时定义了两个选择集,系统将对比检查第一个选择集中的实体与第二个选择集中的实体。若在两个选择集中包括了同一个三维实体,系统会将此三维实体视为第一个选择集中的一部分,而在第二个选择集中忽略它。在选取了第二批 ACIS 对象后,按回车键系统会进行各对三维实体之间的干涉测试。重叠或有干涉的三维实体将被亮显,并显示干涉三维实体的数目和干涉的实体对。13.4编辑三维实体13.4.1并集1.命令格式命令行:Union菜 单:[修改]→[实体编辑]→[并集(U)]工具栏:[实体编辑]→[并集]通过两个或多个实体或面域的公共部分将两个或多个实体或面域合并为一个整体。得到的组合实体包括所有选定实体所封闭的空间。得到的组合面域包括子集中所有面域所封闭的面积。2.操作步骤图13-28(a)中两个圆柱体垂直相交,用并集命令将这两个实体合为一个整体,结果如图13-28(b)所示。(a)                                (b)图13-28 用Union命令将实体合并命令: Union                          执行Union命令选取连接的 ACIS 对象: 点选一个圆柱     指定合并对象选择集当中的对象: 1                   提示选择对象数量选取连接的 ACIS 对象: 点选另一个圆柱   指定合并对象选择集当中的对象: 2                   提示选择对象数量选取连接的 ACIS 对象:                 回车结束命令13.4.2差集1.命令格式命令行:Subtract菜 单:[修改]→[实体编辑]→[差集(S)]工具栏:[实体编辑]→[差集]将多个重叠的实体或面域对象通过“减”操作合并为一个整体对象。2.操作步骤图13-29(a)中大的圆柱体和小的圆柱体相交,利用差集命令,将大圆柱体减去小圆柱体,达到在大圆柱体上打孔的效果,结果如图13-29(b)所示。(a)                                (b)图13-29 用Subtract命令将大圆柱体打孔命令: Subtract                        执行Subtract命令选择从中减去的ACIS对象: 选择大圆柱体   选择需要留下的对象选择集当中的对象: 1                    提示选择对象数量选择从中减去的ACIS对象:               回车结束选择留下的对象选择用来减的ACIS对象: 选择小圆柱体     选择除去的对象选择集当中的对象: 1                    提示选择对象数量选择用来减的ACIS对象:                 回车结束命令13.4.3交集1.命令格式命令行:Intersect菜 单:[修改]→[实体编辑]→[交集(S)]工具栏:[实体编辑]→[交集]选取两个或多个实体或面域的相交的公共部分交集,创建复合实体或面域,并删除交集以外的部分。2.操作步骤将图13-30(a)中两实体相交部分形成新的实体同时删除多余部分,结果如图13-30(b)所示。(a)                                (b)图13-30 用Intersect命令留下实体相交部分命令: Intersect                        执行Intersect命令选取被相交的 ACIS 对象: 选择一个实体     选择要编辑的实体选择集当中的对象: 1                     提示选择对象的数量选取被相交的 ACIS 对象: 选择另一个实体    选择要编辑的实体选择集当中的对象: 2                     提示选择对象的数量选取被相交的 ACIS 对象:                 回车结束命令13.4.4实体编辑1.命令格式命令行:Solidedit菜 单:[修改]→[实体编辑(N)]对实体对象的面和边进行拉伸、移动、旋转、偏移、倾斜、复制、着色、分割、抽壳、清除、检查或删除等操作。2.操作步骤将图13-31(a)中实体的一个面进行拉伸,结果如图13-31(b)所示。(a)                                (b)图13-31 用Solidedit命令拉伸实体的一个面命令: Solidedit                       执行Solidedit命令输入一个实体编辑选项: 面(F)/边(E)/体(B)/放弃(U)/<退出x>: F                   指定对实体的面进行编辑输入面编辑选项: 拉伸(E)/移动(M)/旋转(R)/偏移(O)/倾斜(T)/删除(D)/复制(C)/着色(L)/放弃(U)/<退出x>: E        指定进行拉伸操作选择面或 [删除(R)/撤消(U)]: 找到1个面  选择要拉伸的面选择面或 [删除(R)/撤消(U)/选择全部(A)]:  回车结束对象选择指定拉伸高度或拉伸路径(P): 5            指定拉伸长度指定拉伸的倾斜角度 <0>:0                指定倾角输入面编辑选项: 拉伸(E)/移动(M)/旋转(R)/偏移(O)/倾斜(T)/删除(D)/复制(C)/着色(L)/放弃(U)/<退出x>:            回车结束面编辑输入一个实体编辑选项: 面(F)/边(E)/体(B)/放弃(U)/<退出x>:                     回车结束命令以上各选项含义和功能说明如下:面(F):编辑三维实体的面。拉伸(E):将选取的三维实体对象面拉伸指定的高度或按指定的路径拉伸。移动(M):以指定距离移动选定的三维实体对象的面。(a)                    (b)图13-32 用Solidedit命令移动面示意旋转(R):将选取的面围绕指定的轴旋转一定角度。(a)                    (b)图13-33 用Solidedit命令旋转面示意偏移(O):将选取的面以指定的距离偏移。(a)                    (b)图13-34 用Solidedit命令偏移孔示意倾斜(T):以一条轴为基准,将选取的面倾斜一定的角度。(a)                    (b)图13-35 用Solidedit命令倾斜孔示意删除(D):删除选取的面。(a)                    (b)图13-36 用Solidedit命令删除斜面示意复制(C):复制选取的面到指定的位置。(a)                    (b)图13-37 用Solidedit命令复制面示意着色(L):为选取的面指定线框的颜色。边(E):编辑或修改三维实体对象的边。可对边进行的操作有复制、着色。体(B):对整个实体对象进行编辑。压印:选取一个对象,将其压印在一个实体对象上。但前提条件是,被压印的对象必须与实体对象的一个或多个面相交。可选取的对象包括:圆弧、圆、直线、二维和三维多段线、椭圆、样条曲线、面域、体及三维实体。图13-38 用Solidedit命令压印示意分割实体:将选取的三维实体对象用不相连的体分割为几个独立的三维实体对象。注意只能分割不相连的实体,分割相连的实体用“剖切”命令抽壳:以指定的厚度创建一个空的薄层。抽壳时输入的偏移距离,距离值为正,则从外开始抽壳,若为负,则从内开始抽壳。图13-39 用Solidedit命令抽壳示意清除:删除与选取的实体有交点的,或共用一条边的顶点。删除所有多余的边和顶点、压印的以及不使用的几何图形。图13-40 用Solidedit命令清除多余对象示意3.注意@Solidedit命令包含的内容有三大部分:面、边、体。其中对面的编辑最为常用,也最为复杂,用户要仔细体会每个小命令的作用。13.4.5三维阵列1.命令格式命令行:3darray菜 单:[修改]→[三维操作(3)]→[三维阵列(3)]在立体空间中创建三维阵列,复制多个对象。2.操作步骤将图13-41(a)中的实体按3行3列3层进行矩形阵列,结果如图13-41(b)所示。(a)                                (b)图13-41 用3darray命令进行三维阵列命令: 3darray                         执行3darray命令选取阵列对象: 点选立方体               选择需阵列对象选择集当中的对象: 1                   提示选择对象数量选取阵列对象:                         回车结束对象选择阵列样式: 环形(P)/中心(C)/<矩形r>: R 选择矩形阵列阵列的行数 <1>: 3                      指定行数列数 <1>: 3                           指定列数层次数 <1>: 3                         指定层数指定行间距: 15                        指定行间距指定列间距: 15                        指定列间距层次的深度: 15                        指定层间距,回车结束命令以上各选项含义和功能说明如下:环形阵列(P):依指定的轴线产生复制对象。矩形阵列(R):对象以三维矩形(列、行和层)样式在立体空间中复制。一个阵列必须具有至少两个行、列或层。13.4.6三维镜像1.命令格式命令行:Mirror3d菜 单:[修改]→[三维操作(3)]→[三维镜像(M)]以一平面为基准,创建选取对象的反射副本。2.操作步骤将图13-42(a)中的实体按端面部分进行镜像,使之成为一个对称的管路,结果如图13-42(b)所示。(a)                                (b)图13-42 用Mirror3d命令进行三维镜像命令: Mirror3d                        执行Mirror3d命令选择对象: 点选实体                    指定需镜像的对象选择集当中的对象: 1                   提示选择对象数量选择对象:                            回车结束选择对象确定镜面平面:对象(E)/上次(L)/视图(V)/Z轴(Z)/X-Y面(XY)/Y-Z面(YZ)/Z-X面(ZX)/<3点面(3)>:                    点选镜像面上一点面上第二点:                           点选镜像面上第二点面上第叁点:                           点选镜像面上第三点删除原来对象? <否n>                  回车结束命令以上各选项含义和功能说明如下:3点面:通过指定三个点来确定镜像平面。对象(E):以对象作为镜像平面创建三维镜像副本。图13-43 用选择对象方式确定镜像面上次(L):以最近一次指定的镜像平面为本次创建三维镜像所需要的镜像平面。视图(V):以当前视图的观测平面来镜像对象。Z轴(Z):以平面上的一点和垂直于平面的法线上的一点来定义镜像平面。图13-44 用法线方式确定镜像面X-Y面、Y-Z面、Z-X面:以 xy、yz 或 zx平面来定义镜像平面。13.4.7三维旋转1.命令格式命令行:Rotate3d菜 单:[修改]→[三维操作(3)]→[三维旋转(R)]绕著三维的轴旋转对象。2.操作步骤将图13-45(a)中的实体以AB为轴,旋转30度,结果如图13-45(b)所示。(a)                                (b)图13-45 用Rotate3d命令进行三维旋转命令: Rotate3d                        执行Rotate3d命令选择旋转对象: 选择长方体               选择旋转对象选择集当中的对象: 1                    提示选择对象数量选择旋转对象:                         回车结束对象选择指定轴上的第一点或定义轴依据 [对象(O)/上次(L)/视图(V)/X轴(X)/Y轴(Y)/Z轴(Z)/两点(2)]: 点选点A指定轴上的第二点: 点选点B              两点确定旋转轴指定旋转角度或 [参照(R)]:30            指定旋转角度,回车结束命令以上各选项含义和功能说明如下:2点:通过指定两个点定义旋转轴。对象(E):选择与对象对齐的旋转轴。上次(L):以上次使用 Rotate3d 命令定义的旋转轴为此次旋转的旋转轴。视图(V):将旋转轴与当前通过指定的视图方向轴上的点所在视口的观察方向对齐。X 轴:将旋转轴与指定点所在坐标系统 UCS 的 X 轴对齐。Y 轴:将旋转轴与指定点所在坐标系统 UCS 的 Y 轴对齐。Z 轴:将旋转轴与指定点所在坐标系统 UCS 的 Z 轴对齐。13.4.8对齐1.命令格式命令行:Align菜 单:[修改]→[三维操作(3)]→[对齐(L)]在二维和三维选择要对齐的对象,并向要对齐的对象添加源点,向要与源对象对齐的对象添加目标点,使之与其他对象对齐。2.操作步骤将图13-46(a)中的四棱锥对齐到立方体上,结果如图13-46(b)所示。(a)                                (b)图13-46 用Align命令让两实体对齐命令: Align                           执行Align命令选择对象: 选择锥体                    选择要移动的对象选择集当中的对象: 1                   提示选择对象数量选择对象:                             回车结束对象选择指定第一个源点: 点选点A指定第一个目标点: 点选点A’指定第二个源点: 点选点B指定第二个目标点: 点选点B’指定第叁个源点: 点选点C指定第叁个目标点:点选点C’              回车结束命令3.注意@对齐命令在二维绘图的时候也可以使用。要对齐某个对象,最多可以给对象添加三对源点和目标点。图13-47 用Align命令只选择一对点的情况图13-48 用Align命令选择两对点的情况本章小结本章主要介绍了三维坐标、三维视图、三维建模和三维编辑四个方面的内容,尽管中望CAD是一个主要针对二维绘图的软件,但其中也有三维绘图的功能,甚至可以做出具有渲染效果的图。学完这章后,用户应该具有基本的三维绘图的理念,能够制作出简单的三维图纸。练习1.填空题(1) 3点定义UCS,第一点为______,第二点为__________第三点为____________。(2) Z轴矢量定义UCS,第一点为____________第二点为__________________。2.选择题(1) 将两个或更多的实心体合成一体用命令是 ( )。

A.SLICE

B.UNIONC.SUBTRACTIOND.INTERFERENCE(2)执行ALIGN命令后,选择两对点对齐,结果 ( )。

A.物体只能在2D或3D空间中移动

B.物体只能在2D或3D空间中旋转

C.物体只能在2D或3D空间中缩放

高效三维CAD教程之矿泉水建模 篇6

创建瓶底造型

1. 在底部绘制草图,并连接成一条曲线

3.使用封闭瓶底曲面(图三),

4.使用修剪底部的面。(图四)

5.使用缝合底部的两个面,使瓶身柱面和瓶底曲面合并为一个造型(图五)。

6. 对底部的边做圆角(图六)。

7.同样对顶部使用并做圆角(图七)。

8.对瓶体做一次抽壳(图八),

创建瓶嘴

9.在顶面创建圆柱体,并抽壳,此例中瓶嘴厚度大于瓶身的抽壳厚度(图九)。

10. 以瓶嘴的内圆边为轮廓拉伸圆柱体,使用减运算剪切出瓶口里的洞(图十)。

11.使用将瓶嘴与瓶身合并为一个造型(图十一)。

12.在瓶嘴与瓶身连接处做圆角,由于瓶嘴与瓶身厚度不同,在连接处的两条边有不同的圆角半径,内部边的圆角半径=外部边圆角半径+瓶嘴厚度(图十二)。

13.对瓶嘴顶部的两条边做圆角,此例中使用了不同的圆角半径(图十三)。

14. 渲染效果图(图十四)。

cad三维技术 篇7

作为一项技术性的工作, 机械设计从产生到发展, 已经具有几百年的历史, 随着经济的发展, 科学技术的进步, 机械设计领域也发生了翻天覆地的变化。现代社会对机械产品提出了更高的要求, 对于机械设计的要求也日益增多, 为了满足这些要求, 必然导致与之相关的技术以更快的速度发展和创新, 因此, 三维CAD技术也在不断更新变化中得以快速发展。文章对三维CAD技术在机械设计中的应用以及对于机械设计的影响进行了简要的分析。

1 机械设计和三维CAD技术的含义

1.1 机械设计的含义

机械设计顾名思义也就是指设计机械产品的工作领域, 具体说来就是依据机械的使用要求, 设想、分析并计算机械的运转原理、整体构造、运转模式、能量传递方式、每一个零件的尺寸、材质和形状等等各种方面, 并且将它们转化成为具体的能够作为制造依据的描述。

1.2 三维CAD技术的含义

我们通常所说的CAD, 即计算机辅助设计, 属于先进制造技术的范畴。而三维CAD技术则是在CAD的基础上, 更加深化的、更深层次的、先进的计算机辅助设计技术。作为一项计算机技术, 三维CAD技术也毫不例外, 仍然由软件和硬件两部分组成。作为三维CAD技术的核心, 软件系统具有十分重要的作用, 三维CAD技术所具有的功能都取决于软件系统。而三维CAD技术的物质基础则由硬件系统来承担。

2 三维CAD技术的发展状况

目前, 我国的三维CAD技术已经获得了很好的发展, 无论是硬件方面还是软件方面, 都具有了较高的水准, 几乎不会出现错误, 比较适应当前机械设计发展的需求。现在经常采用的软件如Pro/E、I-DEAS、UG、Solid-Works、Solid-Edge、CADAM、CADDS等, 大多数软件不仅能够完成三维造型, 还具有CAM、CAE等功能, 远远超过了二维CAD技术。经济的发展和科技的进步, 促使计算机的质量和性能也日益提高, 信息技术趋向智能化的处理方式, 再加上多媒体技术的广泛应用, 三维CAD技术也进入了快速、稳定的发展阶段, 向着集成化、开放化、智能化的方向而发展。我国的三维CAD技术虽然已经取得了一定的成效, 然而同世界上的发达国家相比较, 还存在着一定的差距。此外, 人们对于三维CAD技术的要求也越来越高, 因此, 对于三维CAD技术, 需要进行更深入的研究, 运用各种高新科技和技术手段, 不断提高三维CAD的技术水平, 正确地把握三维CAD技术的发展趋势, 使其得到更加广泛的应用。

3 三维CAD技术在机械设计中的应用及影响

3.1 三维CAD技术在机械设计中的应用

在机械设计中, 应用三维CAD技术可以进行三维实体建模、模具的集成制造、工程分析、设计审查与评价、计算机辅助绘图、工程数据库的建立及操作、工程设计信息的处理、检索和交换等方面。

3.2 三维CAD技术对于机械设计的影响

3.2.1 能够缩短机械设计的周期

机械产品通常具有对称性和相似性的特点, 而则具有很强的可复制性和灵活行的优点, 因此, 在利用三维CAD技术来进行机械设计时, 对于相似的零件, 只需要对其中某些参数进行修改, 而其他参数相同的部分就可以继续沿用之前设计出的零件的参数, 例如, 可以利用相邻零件的形状和位置参数, 加以适当的就该, 就可以设计出全新的机械零件, 这样, 就节省了很多时间, 提高零件设计的效率。值得一提的是, 通过采用快速重构的方式, 可以非常有效地节省机械设计的计划时间, 把时间缩短到原来的三分之二, 这就是三维CAD系统所具有的高度变型设计的功能。通过进行高度变形设计, 可以在极短的时间内就设计出全新的机械产品, 使机械设计的速度得以提升, 缩短了机械产品从研发设计到投入生产的时间, 即缩短了机械产品的生产周期。目前, 机械行业的竞争非常激烈, 早日设计出新产品并投产, 就意味着早日获得经济效益。因此, 利用三维CAD技术缩短机械设计的周期, 具有非常深远的意义。

3.2.2 方便直观地装配零件

在三维CAD系统中, 资源查找器中的装配路径查找器具有记录零件之间的装配关系的功能, 因此, 在进行机械零件的装配时, 如果零件之间存在干涉现象, 或是装配不正确, 通过资源查找器就可以对零件的装配实施静干涉检查, 这样就可以及时发现错误, 进而重新装配或者修改设计, 有效避免了全部设计完成后才发现错误, 进而导致所有相关设计都要进行修改的可能性, 因此, 提高设计的效率的同时也保证了设计的正确性。此外, 三维CAD系统还具有隐藏机械零件的功能, 为了观察内部零件的装配结构, 可以将外部零件隐藏, 从而检验装配是否达到要求。

3.2.3 方便直观地修改零件

在某一机械零件设计完成的同时, 通过查看零件环境中的资源查找器, 就可以获得完成该零件的所有指令, 而这些指令包含了设计这个零件的相关信息, 因此, 只要对这些信息中的特定参数进行修改, 就能够完成对零件设计的修改, 其操作非常简单、灵活。而且这种修改不仅仅是在零件环境, 在装配环境也可以进行轻松的修改。通过选择将要修改的零件, 就可以转入零件环境, 从而完成零件修改的过程。

3.2.4 有利于提高机械设计的技术水平和产品质量

在机械产品的设计过程中, 可以采用CAD设计方法进行优化设计, 从而提高设计的技术水平, 而在机械产品的生产过程中, 则可以采用CIMS对产品进行生产制造, 从而提高产品的质量。这也就是所说的机械设计与信息技术有机结合的生产方式。

3.2.5 有利于加强机械设计者的现代化设计意识

三维CAD技术给传统的设计模式带来了根本性的变革, 是一种全新的、有着巨大发展潜力的、以高科技为背景的高端设计技术。三维CAD技术已经被广大企业和设计人员所使用, 因此, 为了更好的掌握和运用这项高端的技术, 必将促进设计人员努力学习理论知识, 不断积累实践经验, 掌握最新的信息、技术、方法, 同时, 作为设计人员, 还要以现代化的思维方式来进行设计, 只有这样, 才能做到机械设计工作的与时俱进, 而不是落后于时代。

4 结束语

制造业的飞速发展推动了机械设计的进步, 而新兴的三维CAD技术在机械设计领域的引入, 则具有划时代的意义。三维CAD技术不仅突破了传统设计模式的限制, 还引入了现代设计理念, 因次, 具有先进性和高科技性的特征, 是推动机械制造业快速健康发展的重要保障。为了摆脱重制造、轻创造的局面, 对三维CAD技术进行更深入的研究和应用势在必行, 从而使机械产品设计、制造的水平得到进一步的提升。

摘要:CAD技术的开发与应用, 在机械设计的发展中具有划时代的意义。通过CAD技术的运用, 将设计人员从繁重的劳动中解脱出来, 不仅提高了设计的效率, 还提高了设计的质量。而CAD技术从二维到三维的进化, 对于机械设计的发展更是具有深远的意义。文章对三维CAD技术和机械设计的含义进行了阐述, 对三维CAD技术的发展状况和对机械设计的影响进行了分析。

关键词:三维CAD技术,机械设计,影响,分析

参考文献

[1]张立荣.三维CAD技术在机械设计中的应用[J].煤炭技术, 2011 (02) .

[2]温月祥.三维CAD技术在机械设计中的应用[J].湖南农机, 2011 (07) .

CAD三维建模走进劳技课堂教学 篇8

一、当前劳技课堂教学现状

新课程的改革和实施,标示着我们国家的教育迈入了一个崭新的高度。而小学劳动与技术教育是以学生获得积极劳动体验,形成良好技术素养为主要目标,以操作性学习为主要特征的国家指定性学习领域。新的教学理念,导致劳动与技术课程从根本上改变了教师的教学机制,也改变了学生的学习取向,同时,又对我们广大的劳技教师提出了更新、更高的进一步的要求。

在劳动与技术课程实施过程中,我们发现只给学生观看图片,而不帮助学生完成对形体形状的抽象和重组,在大脑中对该形状不能形成形状知觉,教学效果并不理想;在学生的大脑中对某形状尚未形成形突现之前,就进行逻辑推理教学,效果也不理想。最为凸显出来的是制作类的效果图不佳的现象。如五年级上册第27页的“投石机”效果图。(如图1)

方案一                   方案二

教师的根本任务是为学生的技术学习和技术探究提供有效的指导和优质服务。然而在实际教学中还存在许多不尽人意之处,学生对书中教材所呈现的信息并不能有一个清晰的认识。在有限的学时内,合理有效地优化课堂

教学内容,培养学生读图能力及动手操作的兴趣是每个老师都要探讨的课题。

二、CAD三维建模技术应用

CAD(Computer Aided Design)指利用计算机及其图形设备帮助设计人员进行设计工作。在设计中通常要用计算机对不同方案进行大量的计算、分析和比较,以决定最优方案;各种设计信息,不论是数字的、文字的或图形的,都能存放在计算机的内存或外存里,并能快速地检索;设计人员通常用草图开始设计,将草图变为工作图的繁重工作可以交给计算机完成;由计算机自动产生的设计结果,可以快速作出图形,使设计人员及时对设计作出判断和修改;利用计算机可以进行与图形的编辑、放大、缩小、平移和旋转等有关的图形数据加工工作。自1950 年诞生以来,已广泛应用于机械、电子、建筑、化工、航空航天以及能源交通等相关领域。随着产品设计效率的飞速提高,现已将计算机辅助制造技术(CAM)和产品数据管理技术(PDM)、计算机集成制造系统(CIMS)及计算机辅助测试(CAT)融于一体。

CAD有着广泛的应用领域,在全球500强企业中有90%的企业均使用,它来做辅助设计,在世界上其已成为衡量一个国家科技现代化和工业化现代化的重要标志之一。它广泛应用于:机械、建筑(如施工图)、电子、冶金、化工等设计制图;城市规划设计;室内设计也室内装潢设计;航空、航海图;服装设计与裁剪;印刷排版。

三、CAD三维建模技术与劳技课堂结合

如把这样的CAD三维建模技术融合于当前的劳技教学中会出现怎么样的场景呢?如图2,经过CAD技术Iventor软件三维仿真建模后的效果图更为逼真。同时还可以达到图3的效果。

图 2虚拟爆炸图         图 3虚拟装配图

没有拆装的动画效果,有些学生想象不出某些结构或者功能。经过CAD三维仿真建模,我们可以达到动画灵动的效果。在这整个探究的学习方式,很自然地让学习者主体性、能动性、独立性不断生成、张扬,唤醒、开掘、提升学生的创新潜能,促进学生的自主发展。为此,进行了本课题的实验研究,旨在利用“CAD三维仿真建模”的应用培养和提高学生的观察能力,培养学生良好的情感和态度;促使学生更积极、主动、有效的学习。使教师从多方面、多角度进行学科进行的整合,形成有效应用CAD三维仿真建模的方法、对策。从而服务于课堂教学,提升课堂教学的效益。

四、CAD三维建模技术与劳技课堂结合的作用

1.社会价值。为了适应时代发展,社会呼唤实践型、创新型人才。本课题研究的目的就是要通过重构小学劳技课结构类制作课型,培养学生的问题意识、解决问题能力、创新精神、实践能力,以适应社会的需求。

上一篇:初中班主任的个人工作总结下一篇:旅游业的未来发展趋势