高中数学《空间直角坐标系》教案11 新人教A版必修

2024-10-18 版权声明 我要投稿

高中数学《空间直角坐标系》教案11 新人教A版必修(精选4篇)

高中数学《空间直角坐标系》教案11 新人教A版必修 篇1

教学要求: 使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。

教学重点:在空间直角坐标系中,确定点的坐标

教学难点:通过建立适当的直角坐标系,确定空间点的坐标 教学过程: 一.复习准备:

1.提问:平面直角坐标系的建立方法,点的坐标的确定过程、表示方法? 2.讨论:一个点在平面怎么表示?在空间呢?

二、讲授新课:

1.空间直角坐标系:

如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别 以OD,OA,OB的方向为正方向,建立三条数轴

x轴.y轴.z轴。这时建立了一个空间直角坐标系Oxyz.1)叫做坐标原点

2)x 轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

2.右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。3.有序实数组

1)空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标 思考:原点O的坐标是什么?

讨论:空间直角坐标系内点的坐标的确定过程。

例题1:在长方体OBCDD,A,B,C,中,OA3,oC4,OD,2.写出D,C,A,B,四点坐标.(建立空间坐标系写出原点坐标各点坐标)

讨论:若以C点为原点,以射线BC、CD、CC1 方向分别为ox、oy、oz轴的正半轴,建立空间直角坐标系,那么,各顶点的坐标又是怎样的呢?(得出结论:不同的坐标系的建立方法,所得的同一点的坐标也不同。)4.练习:V-ABCD为正四棱锥,O为底面中心,若AB=2,VO=3,试建立空间直角坐标系,并确定各顶点的坐标。

三、巩固练习:

已知M(2,-3, 4),画出它在空间的位置。

思考题:建立适当的直角坐标系,确定棱长为3的正四面体各顶点的坐标。

四.小结:

高中数学《空间直角坐标系》教案11 新人教A版必修 篇2

设计理念

新课标指出:“感知数学,体验数学”是人类生活的一部分,是人类生活劳动和学习不可缺少的工具。课程内容应与学生生活实际紧密联系,从而让学生感悟到生活中处处有数学,进而有利于数学学习的生活化、情境化。因此我在教学“交通与数学”这一节内容的过程中,从实际生活中的实例出发,让学生感受到交通与数学的密切联系,体会到教学在实际生活中的应用,并学会运用所学的知识解决实际生活中的简单的问题。这样就充分体现学生的主体地位,充分提供让学生独立思考的机会。

本节内容是在学生已经学习和掌握了一位数乘三位数的乘法计算和搭配方法等数学知识的基础上进行教学的。其目的在于引导学生将学过的知识与生活实际联系起来,综合运用,提高解决问题的能力。因此,在教学中我尝试以“交通”为主线,设计密切联系学生实际生活的学习情境;在整个设计中,我始终引导学生在生活情境中提出问题,解决问题,这些都是和学生息息相关的生活问题,因此学生始终能保持较高的学习兴趣,乐于将自己的想法与他人交流,积极性很高。

教学内容:

本节课是《普通高中课程标准实验教科书.数学1》(人教版A)第一章第三节第一课时(1.3.1)《单调性与最大(小)值》。

教学目标:

1、理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性;

2、启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力;

3、通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

4、通过数形结合的数学思想,对学生进行辩证唯物主义的思想教育。

学情与教材分析:

高中数学《空间直角坐标系》教案11 新人教A版必修 篇3

(一)教学目标:

理解两个集合的交集的含义,会求两个集合的交集 教学重、难点:

会求两个集合的交集 教学过程:

(一)复习集合的概念、子集的概念、集合相等的概念。

(二)讲述新课

一、1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?

A B

2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.二、一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}. 如:{1,2,3,6}∩{1,2,5,10}={1,2}.

又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e}

三、基本性质

A∩B= B∩A;A∩A=A;A∩Ф=Ф;A∩B=AAB 注:是否给出证明应根据学生的基础而定.四、补充例子

例1.设A={x|x>-2},B={x|x<3},求A∩B.解:A∩B={x|x>-2}∩{x|x<3}={x|-2

3、已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1

B.(3,-1) C.{3,-1}

D.{(3,-1)}

分析: 由已知得M∩N={(x,y)|x+y=2,且x-y=4}={(3,-1)}.

也可采用筛选法.首先,易知A、B不正确,因为它们都不是集合符号.又集合M,N的元素都是数组(x,y),所以C也不正确.

注: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是xy2求方程组的解组成的集合.另外要弄清集合中元素的一般形式.xy4课堂练习:第18页练习A、B

高中数学《空间直角坐标系》教案11 新人教A版必修 篇4

(一)沅陵七中 黄有圣

2016.12.3 ●教学目标

知识与技能:1.梳理解三角形的知识点,及时查找知识点的漏洞,建立知识之间的联系,形成知识体系。

2.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题。

过程与方法:采用启发与尝试的方法,让学生在温故知新中学会正确解三角形,帮助学生逐步构建知识框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯,让学生在具体的实践中结合图形灵活把握正弦定理和余弦定理的特点,有利地进一步突破难点。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

●教学重点

1.正弦定理,余弦定理的掌握。

2.应用正、余弦定理进行边角关系的相互转化问题(内角和的灵活运用)。

●教学难点

让学生转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。●教学过程(课件上课)【复习导入】 1. 正弦定理: abc2R(2R可留待学生练习中补充)sinAsinBsinC111absinCbcsinAacsinB.222 S余弦定理 :a2b2c22bccosA b2a2c22accosB

c2a2b22abcosC

222222a2b2c2bcaacb求角公式:cosA cosB cosC

2ab2bc2ac 2.思考:各公式所能求解的三角形题型?

正弦定理: 已知两角和一边、两边和其中一边的对角,求其他边角

余弦定理 :已知两边和夹角、已知三边、两边和其中一边的对角,求其它边角

注意:由公式出发记忆较为凌乱,解题往往由条件出发。【合作探究】 5 注:求三角形的边角时,应注意挖掘隐含的条件上。如第3题的角A只能是锐角这个隐含条件。【战高考】

【一题多变】

【归纳小结】

1. 应用正、余弦定理进行边角关系的相互转化问题,要注意公式及题目的隐含条件。2. 解三角形问题要注意结合图形,特别是三角形的相关性质(内角和、边角关系)3.正确选择正弦定理和余弦定理是解决问题的关键。

【课后练习】(难度取舍不同,各班可按实际情况安排)、在 ABC中,AC=3,A45,C75,则BC A.2,B.3,C.2,D.5.ABC中,a,b,c分别为A、B、C的对边,如果 a、b、c成等差数列,B=30,ABC的面积 3 2,那么b等于

13为23,D.23 2 abc4.在ABC中,若,则ABC是conAconBconC

A.直角三角形,B.等边三角形,A.3,C.13,B.12C.钝角三角形,D.等腰直角三角形

9.在ABC中,已知(abc)(abc)3ab,且2cosAsinBsinC,试确定ABC的形状

10.tanC37 在ABC中,角A、B、C的对边分别为a,b,c,()求1cosC

5(2)若CACB,且ab9,求c2

上一篇:与中秋节相关的古诗下一篇:散客旅游委托代理协议书