立体几何中平行与垂直的证明(共9篇)
姓名
2.掌握正确的判定和证明平行与垂直的方法.D
1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;
例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.
求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:
AD
C1
BC【变式一】如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;
【反思与小结】1.证明线线垂直的方法:
1. 谈谈对“点E在棱AB上移动”转化的动态思考 2. 比较正方体、正四棱柱、长方体
【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩
形,且AF
D
1A
E
B
C
C
AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识? 【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC
(Ⅰ)求证:
10,D是BC边的中点.ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;
【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识? 【变式三】如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.
【反思与小结】
1.观察两个图之间的变化联系,写出感受。
2.和【变式一】进行比较,谈谈你把握动态问题的新体会
【变式四】如图,四边形ABCD
为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同? _P【变式五】如图5所示,在三棱锥PABC中,PA平面ABC,ABBCCA3,M为AB的中点,四点P、A、M、C都在球O的球面上。
(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;
【反思与小结】1.探讨球与正方体、长方体等与球体之间的关系。
2.结合前面几组图形的分割变化规律,说明正方体、正四棱
柱、长方体、直三棱柱、四棱锥、三棱锥的变化联系。
3.总结立几中证明“平行与垂直”的思路和方法
课后练习
1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;
(II)求证:B1C1⊥平面ABB1A
(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面BDE,并说明理由。
2.如图,已知AB平面ACD,DE平面ACD,三角形ACD
为等边三角形,ADDE2AB,F为CD的中点
(1)求证:AF//平面BCE;
(2)求证:平面BCE平面CDE;
P1. 如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.(1)求证:CDAE;
A
D(2)求证:PD面ABE.
2. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=_A_M_B_C1AD.2B
(I)求证:平面PAC⊥平面PCD;
(II)在棱PD上是否存在一点E,使CE∥平面PAB?若
存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB
2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论. D【课后记】1.设计思路(1)两课时; C(2)认识棱柱与棱锥之间的内在联系;
(3)掌握探寻几何证明的思路和方法;
(4)强调书写的规范性
2.实际效果:
(1)用时两节半课;
1 中点用于平行问题的证明
在立体几何的平行证明问题中若出现了中点的已知条件,这时我们应特别留意这一条件,因为它往往是解决本题的关键.在立体几何中若能利用好中点,平行问题的证明将会变得更具特征性,其遵循的原理即为若知一中点,即想办法找出另一个中点,那常常应注意能否应用三角形中位线、梯形中线等来证明线线平行,使之能利用中位线性质,从而得到两直线平行或平行四边形,进而可以证明线面平行的问题,从而达到证明线面的平行关系.
例1如图1,已知S是△ABC所在平面外一点,O是边AC的中点,点P是SA的中点,求证:SC∥平面BOP.
分析要证SC∥平面BOP,根据线面平行的判定定理,应证线线平行,即要证SC平行平面BOP内的一条直线.
证明因为P为AS中点,O为AS中点,所以PO为△ASC的中位线,所以PO∥SC,即SC∥PO.又SC平面BOP,PO平面BOP,所以SC∥平面BOP.
例2如图2,PA⊥平面AC,四边形ABCD是矩形,E,F分别是AB,PD的中点,求证:AF∥平面PCE.
分析要证明AF∥平面PCE,根据线面平行的判定定理,应证线线平行,即在平面PCE内找一条直线与AF平行.
证明取PC中点K,连结EK,FK.因为F为PD中点,在△PCD中,KF是△PCD的中位线,所以KF∥CD,KF=CD.
又E为AB中点,四边形ABCD是矩形,所以AE∥CD,AE=CD,所以KF瓛AE,四边形AEKF为平行四边形,AF∥EK.
又AF平面PCE,EK⊂平面PCE,所以AF∥平面PCE.
本例条件中已经告知E,F分别为AB,PD中点这一重要信息,这一重要信息如何用上呢?由于AB,PD为两条异面直线,不能直接将现有中点连接构成三角形中位线,所以需另觅中点,当再添加PC的中点K,就会使所求证的问题出现了例1中的应用三角形中位线的情况.在△PCD中即可应用中位线定理得到KF∥CD且KF=CD这一重要桥梁信息,进而可证得四边形AEKF为平行四边形,由平行四边形的性质可得到线线平行的结论.
例3如图3,在底面是菱形的四棱锥P-ABCE中,点E是PD的中点,求证:PB∥平面EAC.
分析要证明线面平行,很自然就会想着证明线线平行,而题中已知条件有点E是PD中点,若能出现第二个中点,即可以转化为前例中三角形中位线的问题,所证问题即可迎刃而解.
证明如图3,连结BD交AC于点O,连结EO.因为四边形ABCD为菱形,所以O为PD中点.又E是PD的中点,在△DPB中,EO是△DPB的中位线,所以EO∥PB.
又EO平面EAC,PB平面EAC,所以PB∥平面EAC.
本例通过连结BD交AC于点O,巧妙地构造出第二个中点,结合条件中的E是PD的中点,这就出现了三角形中两边中点问题,利用三角形中位线定理就可轻松地把问题解决.
2 中点用于垂直问题的证明
在立体几何的有关垂直问题的证明中,常见的是以证明线线垂直,线面垂直和面面垂直的题型为主,究其规律,该类垂直问题常由线线垂直证得线面垂直,由线面垂直进而证得面面垂直,这证明思路源于证明垂直问题的判定定理和垂直的定义.当题目中给出中点或在一个三角形中有两边相等时,利用好中点往往是解题的关键.
例4如图4,P是边长为1的正六边形ABCDEF所在平面外的一点,P在平面ABC内的射影为BF的中点O,求证:PA⊥BF.
分析PA,BF为两条异面直线,要证明线线垂直,不能直接证得,唯有通过线面垂直证得线线垂直.即证明PA垂直BF所在的平面或证明BF垂直PA所在的平面来实现.
证明连结AO.因为AF=AB,O为BF的中点,所以AO⊥BF即BF⊥AO.
又O为P在平面ABC内的射影,所以PO⊥BF,即BF⊥PO.
又AO∩PO=O, AO, PO⊂平面PAO, 所以BF⊥平面PAO.
又PA⊂平面PAO,所以BF⊥PA,即PA⊥BF.
上例通过证明BF⊥平面PAO,进而证明了PA⊥BF,而这一证明过程中用了O为BF的中点,且AF与AB相等这一重要条件,而当连结AO时,由等腰三角形底边上的中线也为底边上的高这一结论可知有BF⊥AO,即得到了线线垂直.从而得到了证明本题的关键.
例5如图5,在三棱锥P-ABC中,AB=AC, PB=PC, 求证:PA⊥BC.
分析要证明PA⊥BC,即证明线线垂直,可证明PA垂直BC所在的平面或证明BC垂直PA所在的平面,本题有AB=AC,PB=PC两个等腰三角形,若能用好等腰三角形三线合一的性质便可使求证的问题得到解决.
证明取BC中点O,连结AO,PO.
因为AB=AC,PB=PC,O为BC中点,所以BC⊥AO,BC⊥PO.
又AO∩PO=O, AO, PO平面PAO, 所以BC⊥平面PAO.而PA平面PAO, 所以BC⊥PA, 即PA⊥BC.
本例关键是取BC的中点,由等腰三角形底边上的中点引出线线垂直,进而证得了线面垂直.
例6如图6,三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC,求证:AB⊥BC.
分析本题要证明的AB⊥BC是同一个平面内的两条直线,结合题中所给出的条件,想通过证明线面垂直来证明,这显然是走不通的,但它有条件PA=PB=PC,即它的突破点依旧是中点问题,这缘于有等腰三角形的出现.
证明如图6,取AC中点O,连结PO,BO.因为PA=PC,所以PO⊥AC.
又侧面PAC⊥底面ABC,PO⊥底面ABC,所以OB为PB在底面ABC的射影.
又PA=PB=PC,所以OA=OB=OC,即OB=AC.所以AC为直角三角形ABC的斜边,所以AB⊥BC.
要证明线线垂直,当两直线为共面直线,又无法用线面垂直进行证明时,应积极寻求其他的垂直证明依据,而出现有等腰三角形时,关注这个三角形底边上的中点常会使求证问题得到突破.
例7如图7,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点,求证:EF⊥平面PAB.
分析欲证线面垂直,应证线线垂直,即证EF⊥平面PAB内的两条相交线.
证明如图7,取PA中点O,连结DO,FO.因为AD=PD,所以OD⊥PA.
又底面ABCD为矩形,所以AB⊥AD.
又PD⊥底面ABCD,所以PD⊥AB,即AB⊥PD.
又PD∩AD=D,PD,AD平面PAD,所以AB⊥平面PAD.
又OD⊂平面PAD,所以AB⊥OD,即OD⊥AB.
又AB∩PA=A,AB,PA⊂平面PAB,所以OD⊥平面PAB.
又E,F分别为CD,PB的中点,所以ED
所以四边形EFOD为平行四边形,所以EF∥OD,所以EF⊥平面PAB.
本题是一道比较抽象的线面垂直证明题,从题中已知条件是无法直接证明EF⊥平面PAB,证明的突破口出现在等腰三角形PDA与已知条件中的E,F分别为CD,PB的中点的这两个条件上,总之还是由中点问题进行求证的突破,从而使求证得以证明.由此可见中点问题在立体几何证明问题应用中的重要性.
由于知识的不断深化,立体几何的证明问题将会有越来越多的变式题,但不论其如何变化,我们都可以通过对已知条件进行整理,最后回归到我们所常见的、基本的题型进行寻求解答.
参考文献
[1]王申怀.高中数学必修2 (A版) [M].北京:人民教育出版社, 2008.
[2]王林全.中学数学思想方法概论[M].广州:暨南大学出版社, 2003.
[3]陈德崇.中学数学教学论[M].广州:广东高等教育出版社, 1995.
[4]王金贵.怎样解题[M].北京:北京教育出版社, 2005.
[5]李玉琪.简明数学方法论[M].北京:科学技术文献出版社, 1994.
例1 正方体ABCDA1B1C1D1中,M,N分别是对角线AB1,BC1上两点,且
B1MMA=C1NNB,求证:MN∥平面A1B1C1D1.
分析 在图中,根据已知条件找不出现成的线线平行关系,怎么办?往往通过两条途径去探索证明思路:①用“面面平行线面平行”;②添加辅助线,创设使用线面平行判定定理的条件,具体方法如下:
图1
(1) 由“面面平行线面平行”去证.
在面A1B内,作MK∥A1B1,交BB1于K点,连结KN,由平行线截割定理知B1MMA=B1KKB,而已知B1MMA=C1NNB,所以B1KKB=C1NNB,则KN∥B1C1,
因为MK∩KN=N,
所以平面MKN∥平面A1B1C1D1,
而MN平面MKN,
所以MN∥平面A1B1C1D1.
(2) 添加辅助线,由“线线平行线面平行”去证.
图2
连结BM并延长,交A1B1于P点,连接PC1,则可证△B1MP∽△AMB,
所以B1MMA=PMMB,而B1MMA=C1NNB(已知),
所以PMMB=C1NNB,由平行截割定理得MN∥PC1,
而PC1平面A1B1C1D1,
所以
MN∥平面A1B1C1D1.
评析 较低一级的位置关系,决定着较高一级的位置关系,如线线平行线面平行面面平行,反之较高一级的位置关系具有较低一级的性质,如面面平行线面平行线线平行,这种低级到高级、高级到低级的转化构成位置关系证明题中的主要思维指向.辅助线、辅助面所具有的性质,一定要以某一性质定理为依据,决不能凭主观臆断.
图3
例2 如图3,在正方体ABCDA1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.
分析一 若能证明MN平行于平面AA1B1B中的一条直线,则依线面平行判定定理,MN∥平面AA1B1B.于是有以下两种添辅助线的方法.
证法一 如图4,作ME∥BC,交BB1于E;作NF∥AD,交AB于F.连结EF,则EF平面AA1B1B.
图4
因为BD=B1C,DN=CM,所以B1M=BN.
因为MEBC=B1MB1C,NFAD=BNBD,
所以MEBC=NFAD,所以ME=NF.
又ME∥BC∥AD∥NF,所以MEFN为平行四边形.
所以MN∥EF.从而MN∥平面AA1B1B.
证法二 如图5,连结并延长CN,交BA延长线于点P,连结B1P,则B1P平面AA1B1B.因为△NDC∽△NBP,所以DNNB=CNNP.
又CM=DN,B1C=BD,
所以CMMB1=DNNB=CNNP.
所以MN∥B1P.
因为B1P平面AA1B1B,所以MN∥平面AA1B1B.
图5
分析二 若过MN能作一个平面与平面AA1B1B平行,则由面面平行的性质定理,可得MN与平面AA1B1B.
证法三 如图6,作MP∥BB1,交BC于点P,连结NP.
图6
因为MP∥BB1,所以CMMB1=CPPB.
因为BD=B1C,DN=CM,所以B1M=BN.
因为CMMB1=DNNB,所以CPPB=DNNB.
所以NP∥CD∥AB,所以面MNP∥面AA1B1B.又MN面MNP,所以MN∥面AA1B1B.
评析 证明直线l与平面α平行,通常有以下两个途径:①
通过线线平行来证明,即证明该直线l平行于平面α内的一条直线;
②通过面面平行来证明,即证明过该直线l的一个平面平行于平面α.
例3 已知正方体ABCDA1B1C1D1中,E,F,G分别是棱AB,BC,BB1上的点,且BE=BF=BG,求证:BD1⊥平面EFG.
分析 根据条件,在正方体中易得EF∥AC,而AC⊥BD1,
故BD1⊥EF,同理BD1⊥EG.
图7
证明 如图7,
因为ABCD为正方形,BE=BF,所以EF∥AC.
又因为AC⊥BD,所以EF⊥BD.
因为BD为BD1在面AC上的射影,所以BD1⊥EF.
同理BD1⊥EG.又EF∩EG=E,
所以BD1⊥平面EFG.
评析 证明线面垂直,常常先证线线垂直,而证线线垂直,通常又是借助线面垂直完成的.
图8
例4 如图8,已知PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.
(1) 求证:MN∥平面PAD;
(2) MN⊥CD;
(3) 若∠PDA=45°,求证:MN⊥平面PCD.
分析 (1) 要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M,N分别为AB,PC的中点,可取PD的中点E,从而只须证明MN∥AE即可.
因为AE平面PAD,MN平面PAD,所以MN∥平面PAD.
(2) 要证MN⊥CD,可证MN⊥AB.由(1)知,只需证AE⊥AB.
因为PA⊥平面ABCD,所以PA⊥AB.又AD⊥AB,PA∩AD=A,
所以AB⊥平面PAD.又AE平面PAD,所以AB⊥AE,即AB⊥MN,又CD∥AB,所以MN⊥CD.
(3) 由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.
因为PA⊥平面ABCD,AD平面ABCD,所以PA⊥AD.
又∠PDA=45°,E为PD的中点,
所以AE⊥PD,即MN⊥PD.
又MN⊥CD,所以MN⊥平面PCD.
评析 本题是涉及线面平行、线线垂直、线面垂直诸知识点的一道综合题.(1)的关键是选取PD的中点E,所做的辅助线使问题处理明朗化.线线垂直←线面垂直←面面垂直是证垂直的转化规律.
图9
例5 如图9,在空间四面体SABC中,已知∠ABC=90°,SA⊥平面ABC,AN⊥SB,AM⊥SC,证明:SC⊥平面AMN.
分析 由结论联想判定定理,要证明SC⊥平面AMN,须证明SC垂直于平面AMN中的两条相交直线.已知AM⊥SC,尚缺条件SC⊥AN.于是考虑从其它条件所具备的性质中去寻找.
证明 由∠ABC=90°,知BC⊥AB.
又因为SA⊥平面ABC,而AB为SB在平面ABC中的射影,
由三垂线定理,BC⊥SB,所以BC⊥平面SAB.
因为AN平面SAB,所以BC⊥AN.
因为AN⊥SB,所以AN⊥平面SBC,所以SC⊥AN.
因为AM⊥SC,所以SC⊥平面AMN.
评析 本题在运用判定定理证明线面垂直(SC⊥平面AMN)时,将问题化为证明线线垂直(SC⊥AN);而证明此线线垂直时,又转化为证明线面垂直(AN⊥平面SBC).
巩 固 练 习
1. 正方体AC1中,E,F分别为CD,B1C1的中点,M、N分别为A1C1,AD1上的点,使A1M=AN.
(1) 求证:EF∥平面B1BDD1;
(2) 求证:MN∥平面C1CDD1.
图10
本考点以空间几何体为载体,既考查几何体的概念和性质,又考查空间线面位置关系(平行与垂直)的判定与性质,还可结合一些简单的计算进行考查,是每年高考的必考内容,也是重点考查的内容.该部分试题难度适中,一般都可用几何综合法解决,少部分不易证明的才通过建立空间直角坐标系用坐标法求解.(1)掌握线面平行、垂直的判定与性质定理,能用判定定理证明线面平行与垂直,会用性质定理解决线面平行与垂直的问题.(2)通过线面平行、垂直的证明,培养同学们的空间观念及观察、操作、实验、探索、合情推理的能力.该知识点的重点、难点是:线线垂直、线面垂直及面面垂直之间的灵活转化;同时要注意推理表达的规范与完整.(1)证明平行或垂直问题,一般利用平行或垂直的判定定理及其推论,将面面平行转化为线面平行或线线平行来证明;而无论是线面垂直还是面面垂直,都源自于线线垂直.可见,转化是证明平行、垂直问题的关键.(2)在处理实际问题的过程中,可以先从题设条件入手,再从结论中分析所要证明的关系,从而架起已知与未知之间的桥梁.增添辅助线是解决问题的关键,常见的添辅助线的方法有:中点、垂足等特殊点,用中位线、高线转化;有面面垂直的条件,则作交线的垂线,等等.例1 如图12,矩形ABCD所在的平面和平面ABEF互相垂直,在等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.图12
(1)求证:平面ADF⊥平面CBF;?摇
(2)求证:PM∥平面AFC.破解思路 对于第(1)问,将证明面面垂直转化为证明线面垂直;
(2)根据面面平行的性质定理,将线面平行的问题转化为面面平行来证明.答案详解(1)因为矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,所以CB⊥平面ABEF.?摇 又AF?奂平面ABEF,所以CB⊥AF.又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=,所以AF2+BF2=AB2,所以AF⊥BF.又BF∩CB=B,所以AF⊥平面CFB.因为AF?奂平面ADF,所以平面ADF⊥平面CBF.?摇
(2)连结OM并延长交BF于H,则H为BF的中点.又P为CB的中点,所以PH∥CF.又因为CF?奂平面AFC,所以PH∥平面AFC.连结PO,则PO∥AC.因为AC?奂平面AFC,所以PO∥平面AFC.又PO∩PH=P,所以平面POH∥平面AFC.因为PM?奂平面POH,所以PM∥平面AFC.?摇
例2 如图13,平面ABCD⊥平面ABE,其中四边形ABCD是正方形,△ABE是等边三角形,且AB=2,点F,G分别是BC,AE的中点.(1)求三棱锥F-ABE的体积;
(2)求证:BG∥平面EFD;
(3)若点P在线段DE上运动,求证:BG⊥AP.图13 图14
破解思路 对于第(1)问,求出三棱锥F-ABE的高后可直接求解.对于第(2)问,根据线面平行的判定定理,在平面EFD中,只要找出与BG平行的直线即可证明.对于第(3)问,可通过证明线面垂直来转化.答案详解(1)因为平面ABCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE.因为G是等边三角形ABE的边AE的中点,所以BG⊥AE,所以VF-ABE= S△ABE?BF= ? ?AE?BG?BF= ×2× ×1=.(2)如图14,取DE的中点M,连结MG,FM.因为MG AD,BF AD,所以MG BF,所以四边形FBGM是平行四边形,所以BG∥FM.又因为FM?奂平面EFD,BG?埭平面EFD,所以BG∥平面EFD.(3)因为DA⊥平面ABE,BG?奂平面ABE,所以DA⊥BG.又BG⊥AE,AD∩AE=A,所以BG⊥平面DAE.又AP?奂平面DAE,所以BG⊥AP.1.如图15,直角梯形ACDE与等腰直角三角形ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.图15
(1)求证:平面BCD⊥平面ABC;
(2)求证:AF∥平面BDE;
(3)求四面体B-CDE的体积.2.如图16,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.图16
(1)求证:MD⊥AC;
一、利用三角形及一边的平行线a.利用中位线
b.利用对应线段成比例
(a)、利用中位线
例
1、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
例
2、如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证AB1//平面BC1D
例
3、在四棱锥P-ABCD中,AB∥CD,AB=
练习
1、ABCDA1B1C1D1是正四棱柱,E是棱BC的中点。求证:BD1//平面C1DE1DC,E为PD中点.求证:AE∥平面PBC;
2练习
2、在三棱柱ABCA1B//平面ADC1; 1B1C1中,D为BC中点.求证:A
B
1B
C1
练习
3、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点,证明: EB//平面PAD;
练习
4、如图所示,正三棱柱ABC—A1B1C1中,D是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论.(b)、利用对应线段成比例
例
4、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且
SDC
AMBN
=,求证:MN∥平面SMND
例
5、在正方体ABCD—A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1。
1A
A
二、利用平行四边形的性质
例6.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD的中点.求证:AF∥平面PCE;
例
7、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,求证:FG∥面BCD;
例
8、正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
例
9、在四棱锥P-ABCD中,AB∥CD,AB=
DC,E为PD中点.求证:AE∥平面PBC
2练习
5、四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点,求证:MN∥平面
PAD;
练习
6、如图,在正方体ABCD——A1B1C1D1中,O是底面ABCD对角线的交点.求证:C1O//平面AD1B1.练习
7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是
AB、PD的中点.求证:AF//平面PEC
P
A
E
B
C
练习
8、在三棱柱ABC-A1B1C1中,M,N分别是CC1,AB的中点.求证:CN //平面AB1M.
C
1A1
M
B1
C
A
B
3利用平行线的传递性
例
10、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:C1D∥平面B1FM.F
A
1D
A
练习
9、三棱柱ABC—A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;
4利用面面平行
例
「考情研析」 1.从具体内容上:①以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题;②以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查. 2.从高考特点上,难度中等,常以一道选填题或在解答题的第一问考查.
核心知识回顾
1.直线与平面平行的判定和性质
(1)判定
①判定定理:a∥b,b⊂α,a⊄α⇒a∥α.
②面面平行的性质:α∥β,a⊂α⇒a∥β.
(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.
2.直线和平面垂直的判定和性质
(1)判定
①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O⇒a⊥α.
②线面垂直的其他判定方法:
a.a∥b,a⊥α⇒b⊥α.
b.l⊥α,α∥β⇒l⊥β.
c.α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
(2)性质
①l⊥α,a⊂α⇒l⊥a.
②l⊥α,m⊥α⇒l∥m.
3.两个平面平行的判定和性质
(1)判定
①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.
②面面平行的其他判定方法:
a.l⊥α,l⊥β⇒α∥β.
b.α∥γ,α∥β⇒β∥γ.
(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.
4.两个平面垂直的判定和性质
(1)判定:a⊂α,a⊥β⇒α⊥β.
(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
热点考向探究
考向1 空间线面位置关系的判定
例1(1)(多选)(2020·山东省烟台市模拟)已知m,n为两条不重合的直线,α,β为两个不重合的平面,则()
A.若m∥α,n∥β,α∥β,则m∥n
B.若m⊥α,n⊥β,α⊥β,则m⊥n
C.若m∥n,m⊥α,n⊥β,则α∥β
D.若m∥n,n⊥α,α⊥β,则m∥β
答案 BC
解析 由m,n为两条不重合的直线,α,β为两个不重合的平面,知:对于A,若m∥α,n∥β,α∥β,则m与n相交、平行或异面,故错误;对于B,若m⊥α,n⊥β,α⊥β,则由线面垂直、面面垂直的性质定理得m⊥n,故正确;对于C,若m∥n,m⊥α,n⊥β,则由线面垂直的性质定理和面面平行的判定定理得α∥β,故正确;对于D,若m∥n,n⊥α,α⊥β,则m∥β或m⊂β,故错误.故选BC.(2)
(多选)(2020·山东省实验中学高考预测卷)在棱长为1的正方体ABCD-A1B1C1D1中,点M在棱CC1上,则下列结论正确的是()
A.直线BM与平面ADD1A1平行
B.平面BMD1截正方体所得的截面为三角形
C.异面直线AD1与A1C1所成的角为
D.MB+MD1的最小值为
答案 ACD
解析 对于A,因为平面ADD1A1∥平面BCC1B1,BM⊂平面BCC1B1,即可判定直线BM与平面ADD1A1平行,故正确;对于B,如图1,平面BMD1截正方体所得的截面为四边形,故错误;对于C,如图2,异面直线AD1与A1C1所成的角为∠D1AC,即可判定异面直线AD1与A1C1所成的角为,故正确;对于D,如图3,将正方体的侧面展开,可得当B,M,D1共线时,MB+MD1有最小值,最小值为BD1==,故正确.故选ACD.判断空间线面位置关系常用的方法
(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.
(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.(多选)(2020·山东省聊城市一模)正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点,则()
A.直线D1D与直线AF垂直
B.直线A1G与平面AEF平行
C.平面AEF截正方体所得的截面面积为
D.点C与点G到平面AEF的距离相等
答案 BC
解析 ∵CC1与AF不垂直,而DD1∥CC1,∴AF与DD1不垂直,故A错误;取B1C1的中点N,连接A1N,GN,可得平面A1GN∥平面AEF,则直线A1G∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由四边形AEFD1为等腰梯形可得平面AEF截正方体所得的截面面积S=,故C正确;假设点C与点G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG的中点,连接CG交EF于点H,而H不是CG中点,则假设不成立,故D错误.故选BC.考向2 空间平行、垂直关系的证明
例2(2020·山东省青岛市高三期中)如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AB⊥BC,AB=2,PA=PD=CD=BC=1,面PAD⊥面ABCD,E为AD的中点.
(1)求证:PA⊥BD;
(2)在线段AB上是否存在一点G,使得BC∥面PEG?若存在,请证明你的结论;若不存在,请说明理由.
解(1)证明:取AB的中点F,连接DF.∵DC∥AB且DC=AB,∴DC∥BF且DC=BF,∴四边形BCDF为平行四边形,又AB⊥BC,BC=CD=1,∴四边形BCDF为正方形.
在Rt△AFD中,∵DF=AF=1,∴AD=,在Rt△BCD中,∵BC=CD=1,∴BD=,∵AB=2,∴AD2+BD2=AB2,∴BD⊥AD,∵BD⊂面ABCD,面PAD∩面ABCD=AD,面PAD⊥面ABCD,∴BD⊥面PAD,∵PA⊂面PAD,∴PA⊥BD.(2)在线段AB上存在一点G,满足AG=AB,即G为AF的中点时,BC∥面PEG,证明如下:连接EG,∵E为AD的中点,G为AF中点,∴GE∥DF,又DF∥BC,∴GE∥BC,∵GE⊂面PEG,BC⊄面PEG,∴BC∥面PEG.空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.
(2020·江苏省泰州中学、宜兴中学、江都中学联考)如图,在四棱锥S-ABCD中,已知SA=SB,四边形ABCD是平行四边形,且平面SAB⊥平面ABCD,点M,N分别是SC,AB的中点.
求证:(1)MN∥平面SAD;
(2)SN⊥AC.证明(1)取SD的中点E,连接EM,EA.∵M是SC的中点,∴EM∥CD,且EM=CD.∵底面ABCD是平行四边形,N为AB的中点,∴AN∥CD,且AN=CD,∴EM∥AN,EM=AN,∴四边形EMNA是平行四边形,∴MN∥AE.∵MN⊄平面SAD,AE⊂平面SAD,∴MN∥平面SAD.(2)∵SA=SB,N是AB的中点,∴SN⊥AB,∵平面SAB⊥平面ABCD,平面SAB∩平面ABCD=AB,SN⊂平面SAB,∴SN⊥平面ABCD,∵AC⊂平面ABCD,∴SN⊥AC.考向3 立体几何中的翻折问题
例3(1)(2020·山东省潍坊市三模)如图1,四边形ABCD是边长为10的菱形,其对角线AC=12,现将△ABC沿对角线AC折起,连接BD,形成如图2的四面体ABCD,则异面直线AC与BD所成角的大小为________;在图2中,设棱AC的中点为M,BD的中点为N,若四面体ABCD的外接球的球心在四面体的内部,则线段MN长度的取值范围为________.
答案(,8)
解析 连接BM,DM,∵四边形ABCD是菱形,M为棱AC的中点,∴AC⊥BM,AC⊥DM,又BM∩DM=M,则AC⊥平面BMD,∵BD⊂平面BMD,∴AC⊥BD,则异面直线AC与BD所成角的大小为.∵四边形ABCD是边长为10的菱形,其对角线AC=12,∴MA=6,MB=8.设O1是△ABC的外心,则O1在中线BM上,设过点O1的直线l1⊥平面ABC,易知l1⊂平面BMD,设O2是△ACD的外心,则O2在中线DM上,设过点O2的直线l2⊥平面ACD,易知l2⊂平面BMD,由对称性易知l1,l2的交点O在直线MN上,根据外接球的性质,知点O为四面体ABCD的外接球的球心,O1A2=O1M2+MA2,O1A+O1M=BM=8,∴(8-O1M)2=O1M2+36,解得O1M=,令∠BMN=θ,根据题意可知BD⊥CN,BD⊥AN,且CN∩AN=N,∴BD⊥平面ACN,又MN⊂平面ACN,∴BD⊥MN,∴0<θ<,∴MN=BM
cos
θ=8cos
θ<8.∵cos
θ==,∴OM·MN=O1M·BM=×8=14,又OM ①当M在何处时,平面ADM⊥平面P′BC,并证明; ②若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.解 ①当点M为P′C的中点时,平面ADM⊥平面P′BC,证明如下:∵DP′=DC,M为P′C的中点,∴P′C⊥DM,∵AD⊥DP′,AD⊥DC,DP′∩DC=D,∴AD⊥平面DP′C,∴AD⊥P′C,又DM∩AD=D,∴P′C⊥平面ADM,∴平面ADM⊥平面P′BC.②在平面P′CD上作P′H⊥CD的延长线于点H,由①中AD⊥平面DP′C,可知平面P′CD⊥平面ABCD,又平面P′CD∩平面ABCD=CD,P′H⊂平面P′CD,P′H⊥CD,∴P′H⊥平面ABCD,由题意,得DP′=2,∠P′DH=45°,∴P′H=,又VP′-ADC=VC-P′AD,设点C到平面P′AD的距离为h,即S△ADC×P′H=S△P′AD×h,由题意,知△ADC≌△ADP′,则S△ADC=S△P′AD.∴P′H=h,故点C到平面P′AD的距离等于点P′到平面ABCD的距离,且该距离为.翻折前后位于同一个半平面内的直线间的位置关系、数量关系不变,翻折前后分别位于两个半平面内(非交线)的直线位置关系、数量关系一般发生变化,解翻折问题的关键是辨析清楚“不变的位置关系和数量关系”“变的位置关系和数量关系”. 如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=AB=2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D-ABC中,(1)求证:BC⊥平面ACD; (2)若点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积. 解(1)证明:在图1中,由题意,知AC=BC=2,AB=4,所以AC2+BC2=AB2,所以AC⊥BC.如图2,因为E为AC的中点,连接DE,则DE⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DE⊂平面ACD,从而ED⊥平面ABC,所以ED⊥BC.又AC⊥BC,AC∩ED=E,所以BC⊥平面ACD.(2)如图2,取DC的中点F,连接EF,BF,因为E是AC的中点,所以EF∥AD,又EF⊂平面BEF,AD⊄平面BEF,所以AD∥平面BEF,由(1)知,DE为三棱锥D-ABC的高,因为三棱锥F-BCE的高h=DE=×=,S△BCE=S△ABC=××2×2=2,所以三棱锥F-BCE的体积为 VF-BCE=S△BCE·h=×2×=.真题押题 『真题检验』 1.(2020·浙江高考)已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 B 解析 依题意m,n,l是空间中不过同一点的三条直线,当m,n,l在同一平面时,可能有m∥n∥l,故不能得出m,n,l两两相交.当m,n,l两两相交时,设m∩n=A,m∩l=B,n∩l=C,则m,n确定一个平面α,而B∈m⊂α,C∈n⊂α,所以直线BC即l⊂α,所以m,n,l在同一平面.综上所述,“m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件.故选B.2.(2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是() A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 答案 B 解析 若α∥β,则α内有无数条直线与β平行,反之则不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此,B中条件是α∥β的充要条件.故选B.3.(2020·新高考卷Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为________. 答案 解析 如图所示,取B1C1的中点为E,BB1的中点为F,CC1的中点为G,因为∠BAD=60°,直四棱柱ABCD-A1B1C1D1的棱长均为2,所以△D1B1C1为等边三角形,所以D1E=,D1E⊥B1C1.又四棱柱ABCD-A1B1C1D1为直四棱柱,所以BB1⊥平面A1B1C1D1,所以BB1⊥D1E.因为BB1∩B1C1=B1,所以D1E⊥侧面B1C1CB.设P为侧面B1C1CB与球面的交线上的点,则D1E⊥EP.因为球的半径为,D1E=,所以EP===,所以侧面B1C1CB与球面的交线上的点到E的距离为.因为EF=EG=,所以侧面B1C1CB与球面的交线是扇形EFG的弧.因为∠B1EF=∠C1EG=,所以∠FEG=,所以根据弧长公式可得交线长l=×=.4.(2020·全国卷Ⅲ)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明: (1)当AB=BC时,EF⊥AC; (2)点C1在平面AEF内. 证明(1)连接BD,B1D1.∵在长方体ABCD-A1B1C1D1中,BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1.∵AB=BC,∴四边形ABCD为正方形,∴AC⊥BD.∵BB1∩BD=B,BB1,BD⊂平面BB1D1D,∴AC⊥平面BB1D1D.∵EF⊂平面BB1D1D,∴EF⊥AC.(2)在CC1上取点M使得CM=2MC1,连接DM,MF,EC1.∵D1E=2ED,DD1∥CC1,DD1=CC1,∴ED=MC1,ED∥MC1.∴四边形DMC1E为平行四边形,∴DM∥EC1.∵在长方体ABCD-A1B1C1D1中,BF=2FB1,CM=2MC1,∴DA∥CB,DA=CB,MF∥CB,MF=CB,∴MF∥DA,MF=DA,∴四边形MFAD为平行四边形,∴DM∥AF,∴EC1∥AF.∴点C1在平面AEF内. 5.(2020·江苏高考)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点. (1)求证:EF∥平面AB1C1; (2)求证:平面AB1C⊥平面ABB1.证明(1)由于E,F分别是AC,B1C的中点,所以EF∥AB1.由于EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)由于B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.由于AB⊥AC,AC∩B1C=C,所以AB⊥平面AB1C,由于AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.『金版押题』 6.(多选)在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则() A.CM与PN是异面直线 B.CM>PN C.平面PAN⊥平面BDD1B1 D.过P,A,C三点的正方体的截面一定是等腰梯形 答案 BCD 解析 由C,N,A三点共线,得CN,PM交于点A,因此CM,PN共面,A错误;记∠PAC=θ,则PN2=AP2+AN2-2AP·AN cos θ=AP2+AC2-AP·AC cos θ,CM2=AC2+AM2-2AC·AM cos θ=AC2+AP2-AP·AC cos θ,又AP0,所以CM2>PN2,即CM>PN,B正确;在正方体ABCD-A1B1C1D1中,AN⊥BD,BB1⊥平面ABCD,则BB1⊥AN,BB1∩BD=B,可得AN⊥平面BDD1B1,AN⊂平面PAN,从而可得平面PAN⊥平面BDD1B1,C正确;在C1D1上取一点K,使得D1K=D1P,连接KP,KC,A1C1,易知PK∥A1C1,又在正方体ABCD-A1B1C1D1中,A1C1∥AC,所以PK∥AC,所以PK,AC共面,PKCA就是过P,A,C三点的正方体的截面,它是等腰梯形,D正确.故选BCD.专题作业 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·武汉部分学校质量检测)若点A,B,C,M,N为正方体的顶点或所在棱的中点,则下列各图中,不满足直线MN∥平面ABC的是() 答案 D 解析 对于A,因为A,C,M,N分别为所在棱的中点,由正方体的性质知MN∥AC,又MN⊄平面ABC,AC⊂平面ABC,所以MN∥平面ABC.对于B,取AC的中点E,连接BE,由条件及正方体的性质知MN∥BE.因为MN⊄平面ABC,BE⊂平面ABC,所以MN∥平面ABC.对于C,取AC的中点E,连接BE,由条件及正方体的性质知MN∥BE,因为MN⊄平面ABC,BE⊂平面ABC,所以MN∥平面ABC.对于D,连接AM,BN,由条件及正方体的性质知四边形AMNB是等腰梯形,所以AB与MN所在的直线相交,故不能推出MN∥平面ABC.故选D.2.(2020·长春高三质量监测)已知直线a和平面α,β有如下关系:①α⊥β,②α∥β,③a⊥β,④a∥α,则下列命题为真的是() A.①③⇒④ B.①④⇒③ C.③④⇒① D.②③⇒④ 答案 C 解析 如图正方体中,当直线a为AB,平面α为平面A1ABB1,平面β为平面B1BCC1时,α⊥β,a⊥β,a⊂α,故A不正确;当直线a为DD1,平面α为平面A1ABB1,平面β为平面B1BCC1时,α⊥β,a∥α,a∥β,故B不正确;若a⊥β,a∥α,则由面面垂直的判定定理可推出α⊥β,故C正确;当直线a为A1D1,平面α为平面A1ABB1,平面β为平面D1DCC1时,α∥β,a⊥β,a⊥α,故D不正确.综上所述,C为真命题,故选C.3.(2020·四川省泸州市模拟)如图,在正方体ABCD-A1B1C1D1中,下列命题正确的是() A.AC与B1C是相交直线且垂直 B.AC与A1D是异面直线且垂直 C.BD1与BC是相交直线且垂直 D.AC与BD1是异面直线且垂直 答案 D 解析 如图,连接AB1,可得△AB1C为正三角形,可得AC与B1C是相交直线且成60°角,故A错误;∵A1D∥B1C,∴AC与A1D是异面直线且成60°角,故B错误;BD1与BC是相交直线,所成角为∠D1BC,其正切值为,故C错误;连接BD,可知BD⊥AC,则BD1⊥AC,可知AC与BD1是异面直线且垂直,故D正确.故选D.4.(2020·河北省石家庄模拟)已知α,β是空间两个不同的平面,m,n是空间两条不同的直线,则给出的下列说法正确的是() ①m∥α,n∥β,且m∥n,则α∥β; ②m∥α,n∥β,且m⊥n,则α⊥β; ③m⊥α,n⊥β,且m∥n,则α∥β; ④m⊥α,n⊥β,且m⊥n,则α⊥β.A.①②③ B.①③④ C.②④ D.③④ 答案 D 解析 对于①,当m∥α,n∥β,且m∥n时,有α∥β或α,β相交,所以①错误;对于②,当m∥α,n∥β,且m⊥n时,有α⊥β或α∥β或α,β相交且不垂直,所以②错误;对于③,当m⊥α,n⊥β,且m∥n时,得出m⊥β,所以α∥β,③正确;对于④,当m⊥α,n⊥β,且m⊥n时,α⊥β成立,所以④正确.综上知,正确的命题序号是③④.故选D.5.(2020·甘肃省靖远县高三第四次联考)在正方体ABCD-A1B1C1D1中,E为棱CD上的一点,且CE=2DE,F为棱AA1的中点,且平面BEF与DD1交于点G,则B1G与平面ABCD所成角的正切值为() A. B. C. D. 答案 C 解析 因为平面ABCD∥平面A1B1C1D1,所以B1G与平面ABCD所成角即为B1G与平面A1B1C1D1所成角,易知B1G与平面A1B1C1D1所成角为∠D1B1G.设AB=6,则AF=3,DE=2,平面BEF∩平面CDD1C1=GE且BF∥平面CDD1C1,可知BF∥GE,易得△FAB∽△GDE,则=,即=⇒DG=1,D1G=5,在Rt△B1D1G中,tan ∠D1B1G===,故B1G与平面ABCD所成角的正切值为,故选C.6.在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F与平面D1AE的垂线垂直,如图所示,下列说法不正确的是() A.点F的轨迹是一条线段 B.A1F与BE是异面直线 C.A1F与D1E不可能平行 D.三棱锥F-ABC1的体积为定值 答案 C 解析 由题知A1F∥平面D1AE,分别取B1C1,BB1的中点H,G,连接HG,A1H,A1G,BC1,可得HG∥BC1∥AD1,A1G∥D1E,故平面A1HG∥平面AD1E,故点F的轨迹为线段HG,A正确;由异面直线的判定定理可知A1F与BE是异面直线,故B正确;当F是BB1的中点时,A1F与D1E平行,故C不正确;∵HG∥平面ABC1,∴F点到平面ABC1的距离不变,故三棱锥F-ABC1的体积为定值,故D正确. 7.(2020·长沙模拟)在长方体ABCD-A1B1C1D1中,AB=AD=6,AA1=2,M为棱BC的中点,动点P满足∠APD=∠CPM,则点P的轨迹与长方体的面DCC1D1的交线长等于() A. B.π C. D.π 答案 A 解析 如图,由题意知,只需考虑点P在平面DCC1D1上的情况,此时AD⊥DP,MC⊥CP,所以tan ∠APD=,tan∠CPM=.因为∠APD=∠CPM,所以=.因为M是BC的中点,所以AD=2MC,所以DP=2PC.在平面D1DCC1内,以D为原点,的方向为x轴的正方向,DD1的方向为y轴的正方向,建立平面直角坐标系,则D(0,0),C(6,0).设P(x,y),则 =2,化简,得y2+(x-8)2=42.该圆与平面D1DCC1的交线长对应的圆心角为,则对应弧长为×4=.8.(2020·佛山模拟)如图,矩形ABCD中,AB=1,BC=2,点E为AD的中点,将△ABE沿BE折起,在翻折过程中,记点A对应的点为A′,二面角A′-DC-B的平面角的大小为α,则当α最大时,tan α=() A.B. C. D. 答案 D 解析 如图,取BC的中点F,连接AF,交BE于点O,则AF⊥BE,连接OA′,A′F,则OA′=OA=,OA′⊥BE,OF⊥BE,又OA′∩OF=O,所以BE⊥平面OA′F,又BE⊂平面ABCD,所以平面OA′F⊥平面ABCD.设A′在AF上的投影为M,连接A′M,设∠A′OM=β,则A′M=sin β,OM=cos β,过点M作MN⊥CD交CD于点N,连接A′N,则∠A′NM=α.易得α∈,MN=-cos β,所以当α最大时,tan α最大,tan α==,令=t,所以sin β=3t-t cos β,所以3t=sin β+t cos β=sin (β+θ),所以3t≤,所以t≤,即tan α≤,故选D.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.(2020·山东省青岛市高三期中)在正方体ABCD-A1B1C1D1中,下列直线或平面与平面ACD1平行的是() A.直线A1B B.直线BB1 C.平面A1DC1 D.平面A1BC1 答案 AD 解析 如图,由A1B∥D1C,且A1B⊄平面ACD1,D1C⊂平面ACD1,故直线A1B与平面ACD1平行,故A正确;直线BB1∥DD1,DD1与平面ACD1相交,故直线BB1与平面ACD1相交,故B错误;显然平面A1DC1与平面ACD1相交,故C错误;由A1B∥D1C,AC∥A1C1,且A1B∩A1C1=A1,AC∩D1C=C,故平面A1BC1与平面ACD1平行,故D正确.故选AD.10.如图,在以下四个正方体中,直线AB与平面CDE垂直的是() 答案 BD 解析 在A中,AB与CE的夹角为45°,所以直线AB与平面CDE不垂直,故不符合题意;在B中,AB⊥CE,AB⊥DE,CE∩DE=E,所以AB⊥平面CDE,故符合题意;在C中,AB与EC的夹角为60°,所以直线AB与平面CDE不垂直,故不符合题意;在D中,AB⊥DE,AB⊥CE,DE∩CE=E,所以AB⊥平面CDE,故符合题意.故选BD.11.(2020·海南省高三三模)如图,四棱锥P-ABCD中,平面PAD⊥底面ABCD,△PAD是等边三角形,底面ABCD是菱形,且∠BAD=60°,M为棱PD的中点,N为菱形ABCD的中心,下列结论正确的有() A.直线PB与平面AMC平行 B.直线PB与直线AD垂直 C.线段AM与线段CM长度相等 D.PB与AM所成角的余弦值为 答案 ABD 解析 如图,连接MN,易知MN∥PB,又MN⊂平面AMC,∴PB∥平面AMC,A正确;在菱形ABCD中,∠BAD=60°,∴△BAD为等边三角形.设AD的中点为O,连接OB,OP,则OP⊥AD,OB⊥AD,∴AD⊥平面POB,又PB⊂平面POB,∴AD⊥PB,B正确;由平面PAD⊥平面ABCD,得△POB为直角三角形,设AD=4,则OP=OB=2,∴PB=2,MN=PB=.在△MAN中,AM=AN=2,MN=,可得cos ∠AMN=,故异面直线PB与AM所成角的余弦值为,D正确;∵cos ∠MNC=-cos ∠MNA=-cos ∠AMN=-,又NC=2,MN=,∴-=,得CM=2>AM,C错误.故选ABD.12.(2020·山东省威海市一模)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,BC=CD=AB=2,E为AB的中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2.则() A.平面PED⊥平面EBCD B.PC⊥ED C.二面角P-DC-B的大小为45° D.PC与平面PED所成角的正切值为 答案 AC 解析 A项,PD=AD===2,在三角形PDC中,PD2+CD2=PC2,所以PD⊥CD,又CD⊥DE,可得CD⊥平面PED,CD⊂平面EBCD,所以平面PED⊥平面EBCD,正确;B项,若PC⊥ED,又ED⊥CD,可得ED⊥平面PDC,则ED⊥PD,而∠EDP=∠EDA=45°,显然矛盾,故错误;C项,二面角P-DC-B的平面角为∠PDE,又∠PDE=∠ADE=45°,故正确;D项,由上面分析可知,∠CPD为直线PC与平面PED所成的角,在Rt△PCD中,tan ∠CPD==,故错误.故选AC.三、填空题 13.在正三棱柱ABC-A1B1C1中,AB=AA1=2,M,N分别为AA1,BB1的中点,则异面直线BM与C1N所成角的余弦值为________. 答案 解析 如图,连接A1N,则A1N∥BM,所以异面直线BM与C1N所成的角就是直线A1N和C1N所成的角.由题意,得A1N=C1N==,在△A1C1N中,由余弦定理得cos ∠A1NC1==.所以异面直线BM与C1N所成角的余弦值为.14.(2019·北京高考)已知l,m是平面α外的两条不同直线.给出下列三个论断: ①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________. 答案 若m∥α且l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α) 解析 已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.15.已知四边形ABCD是矩形,AB=4,AD=3.沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面ABC,F是AD′的中点,E是AC上一点,给出下列结论: ①存在点E,使得EF∥平面BCD′; ②存在点E,使得EF⊥平面ABC; ③存在点E,使得D′E⊥平面ABC; ④存在点E,使得AC⊥平面BD′E.其中正确的结论是________(写出所有正确结论的序号).答案 ①②③ 解析 对于①,存在AC的中点E,使得EF∥CD′,利用线面平行的判定定理可得EF∥平面BCD′;对于②,过点F作EF⊥AC,垂足为E,利用面面垂直的性质定理可得EF⊥平面ABC;对于③,过点D′作D′E⊥AC,垂足为E,利用面面垂直的性质定理可得D′E⊥平面ABC;对于④,因为ABCD是矩形,AB=4,AD=3,所以B,D′在AC上的射影不是同一点,所以不存在点E,使得AC⊥平面BD′E.16.如图,AB是圆锥SO的底面圆O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论: ①△SAC为直角三角形; ②平面SAD⊥平面SBD; ③平面PAB必与圆锥SO的某条母线平行. 其中正确结论的序号是________(写出所有正确结论的序号).答案 ①③ 解析 如图,连接OC,∵SO⊥底面圆O,∴SO⊥AC,C在以AO为直径的圆上,∴AC⊥OC,∵OC∩SO=O,∴AC⊥平面SOC,AC⊥SC,即△SAC为直角三角形,故①正确;假设平面SAD⊥平面SBD,在平面SAD中过点A作AH⊥SD交SD于点H,则AH⊥平面SBD,∴AH⊥BD,又BD⊥AD,∴BD⊥平面SAD,又CO∥BD,∴CO⊥平面SAD,∴CO⊥SC,又在△SOC中,SO⊥OC,在一个三角形内不可能有两个直角,故平面SAD⊥平面SBD不成立,故②错误;连接DO并延长交圆O于点E,连接PO,SE,∵P为SD的中点,O为ED的中点,∴OP是△SDE的中位线,∴PO∥SE,即SE∥平面PAB,即平面PAB必与圆锥SO的母线SE平行.故③正确.故正确是①③.四、解答题 17.在四棱锥P-ABCD中,底面ABCD是边长为6的菱形,且∠ABC=60°,PA⊥平面ABCD,PA=6,F是棱PA上的一动点,E为PD的中点. (1)求证:平面BDF⊥平面ACF; (2)若AF=2,侧面PAD内是否存在过点E的一条直线,使得直线上任一点M都有CM∥平面BDF,若存在,给出证明;若不存在,请说明理由. 解(1)证明:由题意可知,PA⊥平面ABCD,则BD⊥PA,又底面ABCD是菱形,所以BD⊥AC,PA,AC为平面PAC内两相交直线,所以BD⊥平面PAC,BD为平面BDF内一直线,从而平面BDF⊥平面ACF.(2)侧面PAD内存在过点E的一条直线,使得直线上任一点M都有CM∥平面BDF.设G是PF的中点,连接EG,CG,OF,则⇒平面CEG∥平面BDF,所以直线EG上任一点M都满足CM∥平面BDF.18.(2020·河北省保定市二模)如图,在四棱锥P-ABCD中,底面是边长为2的正方形,PA=PD=,E为PA的中点,点F在PD上且EF⊥平面PCD,M在DC延长线上,FH∥DM,交PM于点H,且FH=1.(1)证明:EF∥平面PBM; (2)求点M到平面ABP的距离.解(1)证明:取PB的中点G,连接EG,HG,则EG∥AB,且EG=1,∵FH∥DM,且FH=1 《平行与垂直》教学反思 本课内容是在学生学习了直线与角的知识的基础上教学的,也是进一步认识平行四边形和梯形的基础。垂直与平行是同一平面内两条直线的两种特殊的位置关系,学生对这部分内容有一感性的经验:有些线是交叉的,有些线是不交叉的(学生往往会这样分类)。这节课需要做的是让学生在原有的认知基础上体验在同一平面内,不相交的两条直线叫做平行线,相交里有一种特殊的叫做互相垂直,让学生的认识上升到思维的层面来。在实际教学中,的确大部分学生将这么多的直线分为两类:看上去交叉的一类,看上去不交叉的一类。这样的情况在我的预设之内,所以我从无限延长的角度拓宽学生对“相交”的认识视野。学生借助想象和认知经验,对两条直线的位置关系有自己的想法,所以在教学时我组织学生以分类为主线,通过小组汇报、班级争论、教师点拨等活动,帮助学生在复杂多样的情况中逐步认识到:在同一平面内两条直线的位置关系只有相交和不相交两种情况,相交中有成直角和不成直角两种情况。通过两次分类、分层理解,加深学生掌握重点、突破难点,培养学生初步的问题研究意识。 纵观整堂课,虽然我有意识地让自己少说话,让学生多参与、多讨论,尽可能地让学生成为课堂的小主人,但是涉及课堂的关键处,我总是忍不住“插一脚”,无形中剥夺了学生充分思考的机会,也使整个课堂不够开放。此其一,其二,对于“同一平面”的理解放在后面的练习中进行突破感觉迟了一些,临近课堂最后,学生的注意力有所分散,如果能把这一环节移到前面学生理解相交和不想交时,可能对学生的理解更合适一些,而且学生的注意力更集中一些,效果会更好一些。其三,这样的教学设计主要是自己课堂调控能力还有限,自己真的还想把课堂再开放些! 课题名称: 《垂直与平行》 执教者:来肖云 单位:河南省安阳市安阳县水冶镇小东关学校 教材内容:本内容是四年级上册第64—65页垂直与平行。 一、教材分析 垂直与平行是人教版新课标四年级上册第64-65页内容,垂直与平行是同一平面内两条直线的两种特殊位置关系,它是在学生学习了直线及角的知识的基础上教学的,也将是今后学生进一步认识长方形和正方形,学习习近平行四边形和梯形的基础。教学时让学生发现同一平面内两条直线间位置关系的不同情况,理解垂直与平行是同一平面内两条直线间的两种特殊位置关系,初步认识垂线和平行线,感知生活中的垂直与平行的现象。 二、学生分析 学生已经掌握了直线、角的基础知识,并且学生在日常生活中也能看到一些垂直与平行的现象,学生具备一些简单的分类思想,能够从实际的操作活动中进行分析、思考,可能存在困难,只要加以适当点拔,学生便会豁然开朗。 三、学习目标 1、知识与技能:学生通过动手操作、观察比较、口语交流等学习活动,清晰“垂直与平行”的位置特征,理解“在同一平面内”两条直线“垂直与平行”的概念。 2、过程与方法:在学习活动中,培养学生的动手实践能力、语言表达能力和小组合作探究的意识,发展空间观念。 3、情感态度与价值观:激发学生学习数学的兴趣,让学生感受到生活与数学息息相关。 四、教具、学具准备: 三角板、量角器、小棒、课件、实物投影仪。 五、教学过程: 一、创设情境、感知关系(2分钟) 同学们,前面我们认识了直线,知道了直线具有什么特点?(学生回答)今天我们来继续学习与直线有关的知识。 1、请同学们独立用手中的两根小棒在桌面上摆出不同的情况。 2、课件出示老师摆的情况,让学生比较自己与老师的情况有何异同。(本文转载淘课件网) 3、导入主题,今天我们就来一起研究在同一平面内两条直线间的不同位置关系。 (设计意图:首先通过让学生动手操作摆小棒,可使学生充分感知两根小棒在同一平面内的不同位置关系,和老师的拼摆情况做比较,可自然的实现由实物到图形,由具体变抽象的过渡,直接导入新课) 二、观察分类、了解特征(5分钟) 1、请同学们仔细看一看,以小组为单位给以上情况进行分类。(要求学生写清编号、做好记录、讨论分类理由) 2、以小组为单位汇报分类情况,并说出分类理由。 3、引导学生分类。 4、针对看似不相交,实际相交的情况,进行深入探究。课件演示两条直线延长后相交。 5、引导学生第二次正确分类。 6、师生共同总结:在同一平面内,两条直线间的位置关系只有两种:相交与不相交。 (设计意图:让学生以分类为主线,通过小组讨论、交流、汇报、教师点拔等活动,帮助学生从复杂多样的情况中逐步认识到:在同一平面内两条直线间的位置关系只有相交和不相交两种情况。通过两次分类、分层理解,提高学生的空间想象能力,培养学生初步的问题研究意识。) 三、归纳认识、总结含义(14分钟) (一)揭示平行线的概念 1、课件出示两条平行线,教师指出在同一平面内,如果两条直线无限延长永不相交,我们就说这两条直线互相平行。请学生用自己的话说一说什么是平行线,再用课件出示完整的平行线的概念,让学生读一读,对互相平行有一个完整的认识。(本文转载淘课件网) 2、对于为什么说“在同一个平面内”和“互相平行”先请学生试说,再由老师解释强调。 3、请学生概括总结:判断两条直线是否是互相平行的条件是什么? (二)揭示“垂直”的概念 1、(课件出示)再次引导学生观察两条直线相交的作品。说出两条直线相交形成了交点和角。对于相交成直角请学生拿三角板或量角器进行验证。 2、课件出示“垂直”,边出示边讲解垂直的含义。请学生用自己的话概括一下垂直的含义。课件出示完整的概念,通过学生自读,完整的认识互相垂直。(再次强调互相垂直) 3、教师提出疑问:判断两条直线是否互相垂直的条件是什么? 4、请学生概括总结:判断两条直线是否互相垂直其必须符合哪些条件? (三)揭示课题:垂直与平行(板书) (设计意图:在分类、比较的基础上引导学生揭示平行与垂直的概念,学生能够清楚的感受到概念间的区别与联系,初步感知在同一平面内两条直线间的位置关系是相交与平行,相交中的特殊情况是垂直,同时也进一步培养了学生的语言概括能力。) 六、巩固练习、拓展延伸(8分钟) 1、根据老师的要求,请学生用小棒独自摆一摆。(抽一生在实物投影仪下完成) (设计意图:在学生认识了垂直与平行之后,再次让学生摆小棒,可以加深对垂直与平行的认识,同时也培养了学生的的动手操作能力以及观察概括能力。) 2、说一说,我们周围的垂直与平行现象(课件出示课本主题图)。 (设计意图:由课堂转入生活,让学生从身边发现数学知识,进一步发现生活中的垂直与平行现象,使数学生活化,从而培养学生的观察能力。) 3、说一说几何图形中的垂直与平行现象。(课件出示图形)(设计意图:由生活的实物回归到数学中的几何图形,通过让学生说几何图形中的垂直与平行现象,不仅可巩固判断垂直与平行的方法,同时也为本章学生学习习近平行四边和梯形做下铺垫。) 七、课堂总结,提升认识(1分钟) 王诚华 《平行与垂直》说课稿 义务教育课程标准实验教科书小学数学四年级上册第64—65页的《垂直与平行》,我将分七个阶段完成说课,一是说教学理念,二是说教材,三是说教学目标,四是说教学重难点,五是说教法学法,六是说教学设计,七是说板书设计。 一、说教学理念 “数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”这是新的《数学课程标准》对数学教学活动提出的基本理念之一。 基于以上理念,我们应充分相信学生,把学习的主动权交给学生,让学生从生活中来,到生活中去。让学生在数学中获取数学经验。 二、说教材 “垂直与平行”是人教版四年级上册第四单元第一课时的教学内容。它是在学生认识了直线、线段、射线的性质、学习了角及角的度量等知识的基础上学习的。在“空间与图形”的领域中,垂直与平行是学生以后认识平行四边形、梯形以及长方体、正方体等几何形体的基础,也为培养学生空间观念提供了一个很好的载体。 从学生思维角度看,垂直与平行这些几何图形,在日常生活中应用广泛,学生头脑中已经积累了许多表象,但由于学生生活的局限性,理解概念中的“永不相交”比较困难;还有学生年龄尚小,空间观念及空间想象能力尚不丰富,导致他们不能正确理解“同一平面”的本质;再加上以前学习的直线、射线、线段等研究的都是单一对象的特征,而垂线与平行线研究的是同一个平面内两条直线位置的相互关系,这种相互关系,学生还没有建立表象。这些问题都需要教师帮助他们解决。 三、说教学目标 本节课我设计的教学目标是: 1、让学生通过观察、操作、讨论感知生活中的垂直与平行。 2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系 3、培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。 四、教学重点难点 本节课的教学重点是:正确理解“相交”“互相平行”“互相垂直”等概念,特别要注意对看似不相交,而实际上可以相交现象的理解。教学难点是:正确理解“在同一平面内”“永不相交”等概念的本质属性。 五、说教法学法 我根据教材的编排意图和学情状况,结合数学知识的生成特点,设计的教学方法主要是分类比较法和观察发现法。即让学生把同一平面内的两条直线的不同的位置关系,进行分类再分类,比较再比较,观察再观察,自主发现垂直与平行概念的本质特征,让学生经历感知——比较——理解——发现这一认知过程。 六、说教学设计 (一)联系生活,创设情境 早上收拾筷子时不小心把两根筷子掉在地上这样一个生活情境入手,把数学问题的研究置身于生活之中,激发了学生学习的兴趣。然后让学生用小棒摆一摆两根筷子的位置情况并把这两根筷子看做两条直线,画在纸上。使学生感受到这些图形都由两条直线组成,都在同一个平面内,初步建立了垂线与平行线的表象——同一个平面内、两条直线。 (二)观察分类、感受特征 学生画出两条直线的位置关系之后,让学生将图形进行初步分类。分类活动是开放的,分类结果也是多样的,当学生把它们分为交叉、不交叉、快要交叉三类时,引导学生自己发现问题,利用直线可以延长的性质,把快要交叉的两条直线延长后,使学生明白,看起来快要相交的实际上也属于相交,只是我们在画直线时,没有把直线全部画出;在观察比较、讨论交流、教师点拨中,逐步达成分类共识,也使学生在探究过程中,感受到“相交”“不相交”这些垂直和平行概念的基本特征,为深化理解概念的本质属性创造了条件。 (三)分析比较,感悟属性 首先探究是的不相交的一类直线,通过演示使学生明白这两条直线延长之后是永不相交的。这里要解决的一个难点是学生对“同一平面”理解,在这里我先让学生在长方体里找互相平行的线,并指一指这两条直线所在的平面,让学生初步感知之所以能找出互相平行的线,是因为他们都是在同一个平面内。随后出示两条不在同一平面内的两条线,让学生产生疑问:这两条直线既然是不相交的,那为什么也不平行呢?于是我又让学生找找这两条线所在的平面,使学生明白了“不在同一平面内”的道理。接着,利用生活中的实物,黑板的边和演示台的边,让学生再次感知要使两条直线互相平行,那这两条直线必须要在同一平面。 随后研究相交的一类图形,让学生观察图形,发现他们相交形成角,引出相交成直角这类特殊情况,引出互相垂直、垂足等概念。 (四)运用概念、巩固拓展 本课我设计了三种练习,一是判断,让学生加深对垂直与平行的特征的理解;二是理解应用练习,即出示几组图形,让学生运用概念的本质属性找出互相垂直和互相平行的现象;三是拓展延伸练习。即在同一平面内依次摆出三条直线,其中一条与另外两条分别平行,使学生发现感悟到两两平行,或者其中一条与另外两条分别平行,那么这两条直线一定互相平行,为学生今后进一步研究互相垂直与互相平行打下了坚实的基础。 判断题: (1)不相交的两条直线叫平行线。() (2)在同一平面内,两条直线不平行,就一定垂直。() (3)两条平行线延长后可以相交。() (4)两直线相交成90度,这两条直线一定互相垂直。() (5)长方形两条邻边一定互相垂直。() (6)正方形相邻两边互相平行。() 垂直与平行一课的教学,以学生知识经验和生活经验为基础,充分调动学生的各种感官,创设情境,联系生活,为学生搭建探究、发现的学习的平台,引导学生学会在“做”中学数学,在探究中学数学,在合作交流中学数学,这样真正促进了学生的主动学习,进而获得主动发展。 七、说板书设计 垂直与平行 垂足 垂线 【立体几何中平行与垂直的证明】推荐阅读: 立体几何证明平行垂直09-08 立体几何垂直和平行的证明练习题10-13 立体几何线面平行证明03-24 立体几何线面平行问题09-21 立体几何的证明方法04-10 分析立体几何证明题思路的方法12-11 几何证明与计算10-25 立体几何起始课06-11 高考数学立体几何11-18 立体几何教学思考02-03平行与垂直反思 篇7
垂直与平行教案 篇8
《平行与垂直》说课稿 篇9