大跨度空间结构复习题(精选8篇)
——上海“2.4”厂房火灾感悟
战友,一路走好!
“90后”男孩,并肩战斗的“兄弟”。瞬间,正值青春年华的战友陆晨、孙络络永远的告别了那残垣断壁的火场,告别了那一身墨绿的军装,告别了昔日的战友、亲人。2014年2月4日,又一个让我们永远记住的特殊日子。自支队视频点名通报事件之后,这几天关注了网络上关于上海“2.4”厂房火灾的报道,一张张图片再现了当时惨剧的场景,让人感到惋惜。
假如我们多一点常识、多一点经验、再多一点细心,假如……,那么,是否可以避免惨剧的发生!
随手挪列了近年来大跨度、大空间厂房(仓库)发生惨剧的火灾,如1994年6月16日,广东省珠海市前山镇前山纺织城A座厂房,在扑救残火过程中,厂房突然坍塌,造成93人死亡、156人受伤,其中1名消防员牺牲、9名消防员受伤;2000年1月18日,江西南昌市郊区彭桥工业园区一木材加工厂火灾,在火灾扑救过程中,厂房突然倒塌,市特勤大队1名战士被压在墙体下牺牲;2004年7月28日,浙江绍兴三羊植绒厂火灾,在火灾扑救过程中,该植绒车间北面墙体突然倒塌,1名战士被埋压牺牲;2005年8月2日,安徽蒙牛乳业有限公司北冷库火灾,钢结构屋顶突然坍塌,正在内部搜救的3名战士被砸压牺牲;2008年7月17日,上海奉贤区航南公路上的上海奉贤雷盛德奎有限公司塑料车间火灾,在扑救过程中,一根60多米长的大梁突然倒塌,3名战士牺牲,9名队员受伤,……
查阅了相关资料,对于大跨度、大空间厂房(仓库)火灾,归纳其特点:
一、烟雾大、毒性强、蔓延快。一是顶棚、门窗等建筑材料大量使用易燃材料,耐火性能较低;二是企业在实际使用中,往往变更其使用功能,追求更大空间和低成本,忽视了必要的防火分隔,降低其耐火等级;三是建筑内多以堆垛的形式存放大量原材料、半成品、成品等物资,库区全部贯通,火场通透性较好,燃烧速度快。
二、坍塌速度快,造成二次灾害。大跨度建筑一旦发生火灾,屋顶或框架结构即可在短时间内失去承载能力发生坍塌。坍塌后将直接造成二次灾害。一是可引发内部阴然火灾突然形成有焰猛烈燃烧,扩大燃烧范围;二是坍塌后通风条件号,进一步加速火势蔓延扩大,较短时间内形成大面积火灾;三是坍塌后大量构件堆压在燃烧物上,给扑救带来较大的困难;四是建筑内部燃气、供电等设施毁坏,有毒气(液)体泄露,甚至发生爆炸形成连锁反应,扩大灾害。
三、易造成人员伤亡和重大财产损失。燃烧、冷却、垮塌,近年来的实例真实的体现了大跨度、大空间厂房(仓库)火灾所造成的一幕幕的惨剧。
结合上海“2.4”火灾案例,对于大跨度、大空间厂房(仓库)火灾扑救,些许感触:
假如,我们多一点常识。在平时组织的理论学习、战例研讨,耐心的记录、认真的思考,是否可以积累些许理论上的知识经验,是否可以将这些知识带入火场、融入到每一次作战行动,也许……。
假如,我们多一点经验。搜救、破拆、排烟导热、设置水枪阵地……,支队级领导在每次大型的战评总结中一再强调:在扑救复杂的火灾现场,战术是死的,人是活的,要学会灵活灵用,无论是侦察小组、搜救小组、破拆小组、还是内攻小组,必须由一名经验丰富的干部带队,而往往很多时候,冲在最前沿的是我们许多“富有满腔热血的消防战士”,一个个血淋淋的事例,一次次的经验教训,也许……。
假如,我们再多一点细心。纵观每一次的伤亡现场,不难看出,“细心”,很多指战员基本没有做到,不是鞭策、不是诋毁。近年来的大跨度厂房火灾扑救,大多数的伤亡都是在搜救、最后的残火清理,一次次的教训仍然没有让更多的人警醒,粗心大意,没有对建筑物的耐火、抗压评估,过多的对建筑施工方的信任。
1.1 钢结构高温中强度会变低, 存在塌陷风险。
钢结构物质在高于350℃的环境下, 它的强度就开始变低。在500℃时约为常温时的1/2, 600℃时约为常温时的1/3。一般火场温度可达到800-1000℃。在此种气温中, 钢结构会严重的变形, 部分区域发生破损, 导致钢结构发生塌陷。一般的钢结构在火灾发生后的15分钟, 就不具有了承重性, 进而发生塌陷。
1.2 钢结构厂内可燃物多, 火情发展快。
钢结构厂房建筑内, 人员、设备聚集, 厂房中原料等一般都是可燃的, 有的还是易爆或者有毒的, 如制衣厂的布匹、纺织厂的棉花、印刷厂的纸张电缆厂的橡胶、化工企业的爆炸性物质等。同时因为未设置合理的防火间隔, 门窗很多, 而且有着良好的通风性, 如果出现火灾, 火情发展速率非常快, 当受到热气流的干扰的时候, 就容易引发大规模的火情。
1.3 群众的撤离和火情的救助有难度。
建筑体出现火情之后, 在短时间内就会发展的很严重, 其中的易燃物的发烟数非常大, 同时烟雾之中有很多的毒气, 因为规模宽, 结构繁琐, 群众和疏散口的距离非常远, 被困的群众可能会因为吸入烟尘中毒而死亡, 疏散有难度。在开展救火工作的时候, 因为它的跨度非常大, 工作者无法进入到里面救助, 火灾在扑救时由于水枪射流的冲击冷却作用, 此时弯曲的钢件的强度变弱, 此时更加的容易导致其塌陷, 进而引发更大灾情。
2 轰燃的发生条件及应对措施。
一般来讲, 建筑体首先是可燃物质出现阴燃现象, 然后在特定的气温中, 遇到风力干扰阴燃就会变为明烧, 此时速率提升了, 在火源的上方形成了烟羽流, 在其上升时不断吸收周围的气体, 如果其受到建筑体的阻挡的话, 就会朝着下方扩散, 此时它在下落后会再次浮起, 并在室内形成逐渐增厚的热烟气层, 此时气温不断升高, 烟尘浓度也增加了, 这时候假如发生火情的建筑体外在传热性较低的话, 其气温会显著的提升, 由于火焰热气层和壁面将大量热量反馈给可燃物, 易燃物会快速燃烧, 进而导致火情瞬间加大, 出现轰燃现象, 如果出现了这种现象, 建筑中的所有易燃品都会燃烧。目前一般认为要使室内发生轰燃, 地面可燃物接受到的热通量应不小于20k W/m2, 或顶棚下的温度应接近6000℃, 此外在轰燃发生前, 燃烧速率一般要超过40g/s。影响轰燃的因素应包括:可燃物的性能和存放数量;向燃烧区供应空气量, 如有的建筑, 空间很大具备了足够的空气供给, 顶棚温升慢, 热量散失快, 故较难发生轰燃;有些建筑, 空间在有效的喷淋控火和降温作用下, 轰燃也较难形成;有些建筑, 空间较小, 通风条件不理想, 空间内无控制初期火灾设施, 一旦通风突破限制极易形成轰燃。要达到防止火灾扩散和蔓延的目的其措施应不只设置防火分区一条, 如控制可燃物的数量限制, 氧气的供给等措施都可以防止火灾大规模的蔓延, 这些具体措施必须针对具体建筑通过科学的计算分析, 严格的理论或实验证明可以达到阻止火灾蔓延的目的。
3 防火分区的设计方法
由于经济高速前进, 各种建筑大量建造。身为消防机构, 要切实的结合国情状态以及自然环境等的差异性来分析, 不应该单纯的按照一种规定开展工作, 要具体问题具体分析, 对危险性因素要积极的开展量化分析, 而且要对火情状态和其他干扰因素等开展恰当的分析, 而且要分析设定的消防安全目的是不是可以实现, 进而结合具体的状态对方案调整, 全面的论述各项要素对于火情的干扰, 探索怎样确保建筑的总体稳定性, 获取最为优秀的规划内容。具体的措施有如下的一些:
3.1 强化自动消防措施设置。
设立动态防火分区按照传统的理解, 意味着采用防火墙防火门窗等实物对建筑空间进行分隔, 从而将火势限定在分区范围内。它强调的是对“火势发展范围”的控制, 因此是一种静态的被动火灾控制手段;防火分区同时还有另一层含义, 即勿需对空间进行实体分隔, 而是通过设置高密度快速反应的水喷淋装置, 建筑材料的阻燃及可燃界面的非连续化等措施将火势限定在最小范围内, 它突出的是对“着火源”的控制, 因而是一种动态的积极防火手段, 也是一种动态的防火分区, 可有效的将火势控制在一定范围内。
动态防火分区的确定必须要考虑建筑的功能性质规模等基本情况, 同时还应根据建筑人流物流时间空间内部外部静态动态等具体场景的不同, 结合建筑的其它防火设计予以考虑。通过火灾动力学原理以及各种消防措施的综合分析加以选择, 目前我国还没有比较权威的综合设计分析方法, 一般而言, 当建筑内设有灵活可靠的消防设施 (如快速反应水喷淋系统) , 起火源及火灾负荷得到有效控制, 可燃物质的非连续化、相互间距合理、有安全疏散体系, 则可以考虑采用动态防火分区的方法。
3.2 布局隔离带。
以会展类建筑为例, 此类区域中有非常宽阔的存烟区域, 有效的布局烟气控制体系能够延缓烟气扩散, 而且范围广, 便于人员疏散, 如果再考虑能够有效防止火势在整个展厅内蔓延的消防措施, 则可以保障展厅内人员在安全疏散期间不会受到烟气的威胁。会展类建筑的展厅内部虽然不能采取严格的防火分隔措施将其划分为多个防火分区, 但是如果借用森林火灾和草原火灾中常用的“防火隔离带”概念, 利用“防火隔离带”将展厅划分为多个面积小于10000m2的防火单元, 也可发挥出防止火情扩散的作用。该项设置活动要合乎如下的两项规定。第一, 这个区域之中禁止设置展位。确保没有易燃品。第二, 确保其宽度, 确保在隔离区域的一处出现火情的时候, 不会影响到另外的区域。第一个要素能够经由相关的警戒标示以及有序的管控来实现。而第二项要素要经由有关的辐射知识来论述。
摘要:本文主要对建筑防火对策进行了技术分析。具体分析了钢结构建筑的火灾隐患以及防火措施, 阐述了轰燃的发生条件以及应对措施, 探讨了防火分区的设计方法, 重点分析了强化自动消防措施和布局隔离带的设置。
关键词:大跨度大空间建筑,防火分区,设计
参考文献
[1]大跨度大空间建筑防火的对策浅析[Z].
[2]浅谈大跨度、大空间建筑防火分区的划分[Z].
关键词:大跨度大空间建筑;火灾扑救;处置对策
近年来,随着经济社会的快速发展和城市建设步伐的不断加快,大跨度大空间结构成了大型企业厂房的主要结构形式。由于这种建筑形式具有结构简单、施工方便、内部空间大,特别是投资少且投资周期短等许多优点,越来越受到投资者的青睐。但这种建筑在消防方面,特别是在火灾扑救方面存在许多难点,一旦发生火灾,极易造成大面积燃烧和重大财产损失。
一、大跨度大空间建筑的定义与分类
(1)定义。大跨度大空间建筑是指主要由柱、梁、板、外墙四部分组成,梁和柱是建筑物的主要承重构件,所有承重墙(柱)之间单跨宽度60米以上或单个防火分区5000平方米以上且净空高度8米以上的建筑。(2)分类。大跨度大空间建筑,根据建筑物的用途可分为民用建筑和工业建筑;根据建筑物的材料可分为钢筋混凝土结构、钢结构和混合结构。
二、大跨度大空间建筑火灾特点
(1)可燃物多,火灾荷载大。目前,大跨度大空间建筑已广泛应用于工业厂房、体育场馆、大型商(市)场、仓储等,此类建筑内可燃物品多,空间大,一旦发生火灾,火势猛烈,温度高,烟雾浓,火灾荷载大,蔓延速度快,扑救难度比较大。(2)建筑规模大,火势蔓延快。大跨度大空间建筑单体建筑面积小的数千平方米,大的数万平方米,内部具有较大的空间,空气流通好。发生火灾时,火势可迅速向四周蔓延,燃烧猛烈,极易产生强大的热气流形成大面积燃烧。(3)作战纵深长,内攻困难。由于建筑空间大,内部障碍物多,通道多狭长、错位布置,由两侧进入内部实施堵截难以形成合力;加上火场烟雾浓重,通常火场内能见度小于3米,强光手电等照明工具难以发挥作用,深入内部的作战人员只能摸索前行,内攻战斗难以长时间坚守。(4)燃烧时间长,建筑易塌坍。大跨度大空间建筑多采用钢结构,火灾中,当温度升至350摄氏度、500摄氏度、600摄氏度时,钢结构的强度分别下降1/3、1/2、2/3。在全负荷情况下,钢结构失稳的临界温度为500摄氏度。此外,钢构件受高温作用后,受火场用水影响,钢结构冷热聚变,受热膨胀,遇冷水后会急剧收缩。
三、大跨度大空间建筑火灾扑救对策
(1)仔细侦察火情,判明火场信息。初到场力量应迅速组织人员进行火情侦察,首先通过询问报警人、单位内部人员及其他知情人员了解火场情况,主要了解起火部位、起火时间、内部燃烧物、储存物品等情况;进入火场内部进行侦察时,必须全身防护,佩戴空气呼吸器,携带强光手电、破拆工具,并铺设发光照明线作为引导,应规定好进出联络信号。进入火场内部侦察时,必须要用水枪进行掩护,可以边进攻边侦察。(2)全面搜救人员,安全疏散受困群众。在扑救大跨度大空间建筑火灾时,如有人员被困,必须贯彻“救人第一、科学施救”的指导思想,一切灭火战术措施要围绕救人展开。根据现场实际情况,及时成立多个搜救疏散小组,要做好人员防护,携带好救助、照明等相关器材,要以最快时间疏散、抢救遇险人员。(3)积极扑救火灾,控制火势蔓延。先期力量到场后,前方指挥员要根据火场侦察情况,首先准确确定火场主攻方向,要强化内攻意识,坚决贯彻强攻近战措施,积极实施内攻。重点对建筑承重钢梁柱、屋架等构件进行冷却保护,防止结构变形倒塌。(4)强化排烟措施。加强排烟散热是保证内攻有效性和安全性的重要措施,因此,应将排烟散热作为大跨度大空间建筑火灾扑救的首要任务。及时在下风方向开辟排烟散热通道,打开下风及侧下风方向所有出入口的大门和窗户,充分利用建筑的开口部位进行自然排烟散热,充分利用移动装备排烟,为灭火进攻创造条件。(5)确保火场供水不间断。建筑处于大面积燃烧阶段时,扑救火灾需要较大的用水量,现场指挥员要根据火场作战区域划分及用水量,进行科学的火场用水量估算,确定火场供水方案并安排专人负责落实。一般以参战中队为作战单元进行车辆作战编组,分别形成各自的供水作战区域,合理分配使用水源,并采取符合火场实际的供水方法,组成多条稳定有效的供水干线,尤其要保障好主攻方向的用水量。(6)及时启动应急联动机制,加强联动保障。消防支(大)队要主动与当地的政府应急部门联系,及时快速启动应急联动方案,使相应的应急部门第一时间赶到现场,协助灭火救援。当火灾现场所处地区属于消防水源不足地区,要及时与政府应急部门联系,迅速调动环卫等相关部门的应急供水车辆及时到达现场,为灭火救援现场提供可靠的灭火水源保障。当建筑发生大面积燃烧,需要破拆来进一步进行灭火时,要提前通过应急联动机制调集挖掘车、叉车、铲车、凿岩车等大型工程机械设备进行现场破拆,为灭火救援创造条件。当建筑为生产、储存易燃易爆、有毒害的危险化学品厂房或库房时,要及时通过应急机制调动安监、环保、医疗等相关部门到达现场,进行现场指导和救治人员。当火灾发生在人员密集区,应根据现场的实际情况,适时调动公安、交通、供电、医疗、市政等城市应急部门到达救援现场,协助维护现场秩序,提供应急供电、交通运输、医疗救护等方面的保障。
参考文献:
[1] 《消防战训工作的改革与发展》?伍和员?东南大学出版社2008.10
摘 要: 大跨度桥梁形式多样,有斜拉桥、悬索桥、拱桥、悬臂桁架桥及其他的一些新型的桥式,如全索桥、索托桥、斜拉—悬吊混合体系桥、索桁桥等等。其中,悬索桥和斜拉桥是大跨径桥梁发展的主流。本文针对大跨度桥梁结构选型和设计这一问题做了综合性的总结和归纳。
关键词: 大跨度桥梁;斜拉桥;悬索桥;桥梁造型设计;1 引 言 世纪90 年代以来, 随着世界经济和科学技术的高速发展, 大跨度桥梁的建设出现了前所未有的高潮。目前, 悬索桥的最大跨径已经达到1 991m , 斜拉桥的最大跨径达到890 m。随着桥梁跨径的逐步增大, 桥梁结构的柔性化趋势日趋明显, 桥梁结构的安全性、行车舒适性、架设方便性等一系列问题开始变得愈来愈突出。如何更好地解决伴随着桥梁跨径长大化而出现的这些问题, 成为21世纪世界桥梁工作者共同面对的挑战。本文简要回顾了大跨度桥梁的发展历史, 对现有大跨度桥梁建设的成就与问题进行了系统的分析, 在此基础上, 提出了有关大跨度桥梁设计的一些新构想, 希望对未来桥梁设计的发展有所帮助。2 现代斜拉桥的发展与演变 2.1 早期的斜拉桥
斜拉桥由索塔、拉索、主梁三部分组成。从历史上看, 影响斜拉桥发展的技术因素主要有三个第一, 力学分析手段的进步。第二, 材料性能的改进。第三, 施工技术的发展。从力学分析的角度讲, 斜拉桥属于多次超静定体系, 在没有电子计算机帮助的条件下, 手工进行力学分析相当复杂。现存的早期斜拉桥中, 较有代表性的是1867 年建造的新加坡Cavenagh 桥和1874 年建造的伦敦Albert桥。二十世纪五、六十年代, 斜拉桥获得了较快的发展。1955 年, 瑞典建成了主跨183m 的Stromsund桥;1959 年, 联邦德国建成了主跨302 m 的Severin桥。早期建造的斜拉桥有两个比较显著的特点: 一是单柱式索塔比较多;二是斜拉索很少2.2 密束斜拉体系的出现
随着有限元技术的发展和计算机技术的普及, 高次超静定结构的力学分析开始变得简单易行。1967 年, 联邦德国建成了主跨280m 的Friedrich2E2bert 桥, 从此拉开了密束体系斜拉桥建设的序幕。通过将导入拉索的预应力分布式地传递给主梁, 可显著减小梁中的弯矩, 并且易于采用悬臂法进行施工。因此, 密束体系斜拉桥的出现加速了斜拉桥跨度, 特别是预应力混凝土斜拉桥跨度的迅速增长。1986 年, 加拿大建成了主跨465 m 的An2nacis 桥;1991 年, 挪威建成了主跨530 m 的Skaron2sundet 桥。
二十世纪九十年代, 世界斜拉桥的建设进入了一个鼎盛时期。1993 年, 中国建成了跨度位居当时世界第一的主跨602 m 的上海杨浦大桥;1995 年,法国建成了主跨856 m 的Normandy 大桥;1999 年, 日本建成了跨度位居世界第一的主跨890m 的多多罗大桥。九十年代的大跨度斜拉桥建设有两个特点: 一是大部分出现在中国;二是倒Y 型和分离式倒Y型(有文献称之为钻石型)索塔被广泛采用。倒Y型和分离式倒Y型索塔的广泛使用, 既有技术方面的原因, 也有审美习惯和技术传统的影响, 下文将对此做具体的分析。2.3 斜拉桥索塔的造型与选择
索塔的形态可以多种多样, 需要指出的是, 索塔的形态通常和斜拉索的配置密切相关。如果采用单索面, 则通常会选用单柱塔或倒Y型塔。单柱塔可能存在的问题主要有两点: 一是从人体工程学的角度看, 如果桥面不是太宽的话, 单柱塔相对宽大的塔柱会对汽车驾驶员的运动视线产生一些阻断,给人某种程度的压迫感。二是从建筑美学的角度看, 由于单柱塔上塔柱和下桥墩的剖面尺寸有时相差悬殊, 给人以整体不协调的感觉.单索面的使用通常有两个前提条件: 一是主梁(桥身)要有固定拉索的中央分割带;二是主梁本身要有比较大的抗扭刚度。虽然采用单索面的日本鹤见翼大桥, 其主梁跨度达到了510 m , 但对于大多数桥梁设计师来说, 在设计大跨度斜拉桥时, 处于技术和心理感受两方面的考虑, 他们通常更倾向于选择双索面布置。和单索面桥构造上最接近的是双侧单索面桥, 即在桥面的两侧各布置一根互不相连的塔柱, 每根塔柱独立张拉出一面索。象荷兰的Waal 大桥这样采用双根单柱桥塔的斜拉桥实际上并不多见, 原因有技术方面的, 也有心理感受方面的。从技术的角度看, 由于垂直索面的结构刚度相对比较弱, 风载作用下存在发生振动发散的可能。从心理学的角度看, 设计师通常更倾向于结构在横桥向存在某种形式上的连接。一方面是出于结构受力方面的考虑, 另一方面是出于寻找视觉上的支撑, 两种因素汇合起来的结果, 使设计师们更倾向于用横梁将两根独立的单柱联接在一起, 以形成垂直于桥面纵轴的框架型桥塔支撑体系。当横梁在塔顶将两根独立的单柱联接在一起时, 便形成了门型桥塔。而当横梁在塔的中部将两根独立的单柱联接在一起时, 便形成了H 型桥塔。将门型桥塔的塔柱向内侧倾斜至极限,可形成倒V 型桥塔;将H 型桥塔的塔柱向内侧倾斜至极限, 则形成了倒A 桥塔。究竟是什么原因促使设计师纷纷将塔柱向内倾斜? 塔柱向内倾斜的直接好处是什么? 不利之处在哪里? 有什么办法能够平衡兼顾, 扬长避短。加斜拉索的最初目的是给主梁提供一个竖向支撑, 从而减小主梁由于重力荷载而产生的竖向弯矩和变形, 使主梁在跨度增加的同时, 并不显著增加梁的内力和变形。仅从抵抗重力荷载的角度考虑, 索平面应尽可能地和主梁平面垂直, 以保证斜拉索在沿桥向(纵向)铅垂面上的投影, 和水平面的夹角最大。因此, 单柱塔、双根单柱塔、门型塔和H 型塔是该条件下比较合适的塔型选择。但实际面对的问题是, 主梁除了要承受竖向重力荷载外, 还必须承受横向风荷载等其它方向的荷载, 并且横向风荷载的影响程度随主梁跨度的增加迅速增长。从力学分析的角度看, 要有效地抵抗横向风荷载, 索平面应和主梁平面保持比较适当(注意, 不是最大)的夹角, 以保证索力在横桥方向上的投影, 有比较合适的大小。因此, 此时的最优塔型,应当是适度扁平的倒V 型或倒A 型桥塔。随着桥面宽度的增大, 相对扁平的倒V 型和倒A 型桥塔, 会使桥墩基础的占用空间增大。比较简单的解决办法有两种: 一是在增大塔柱陡度的同时增大索力;二是将柱塔在主梁以下向内收缩间距, 形成所谓的钻石型塔身。显然, 抵抗竖向重力荷载和抵抗横向风荷载对最优塔型的要求存在一些矛盾。另外, 大跨度斜拉桥还需要考虑抗扭曲的问题。综合几个方面的因素, 人们发明了一种最简单和最直接的解决办法, 即在倒V 型(包括钻石型)桥塔的顶部向上增加一根垂直立柱, 并将斜拉索锚固在新增加的垂直立柱上。倒V 型桥塔加垂直立柱形成的新塔型, 就是目前在大跨度斜拉桥建设中广
泛采用的倒Y型桥塔
当桥梁跨度比较大的时候(500 m~600 m 以上), 倒Y型桥塔中的垂直立柱会变得比较粗, 结果使桥塔沿桥向和横桥向的风阻大大增加。降低桥塔风阻的最简单、也是最实用的办法之一, 是将倒Y型桥塔中的垂直立柱横桥向压扁、沿桥向镂空,也就是将立柱变成横桥向的比较细长的H 型或日型框架, 由此形成的桥梁塔型, 本文称之为分离式倒Y型桥塔。事实上, 倒A 型桥塔也可以归类为分离式倒Y型桥塔。
当桥梁跨度低于500 m 时, 同样可以采用分离式倒Y型桥塔。分离式倒Y型桥塔近年来得到广泛采用的原因主要有以下几点: 一是桥塔本身的造型比较美观;二是对桥面宽度变化的适应能力比较强;三是垂直立柱分离使正桥向原先存在的索面空间闭合状态被打破, 由此形成的开放式视觉空间,可以有效降低倾斜索面对行车人视觉可能产生的压迫感。
从拓扑关系看, 分离式倒Y型桥塔可根据变形路径的不同, 退化演变为倒Y型、H 型和门型桥塔中的任何一种。换句话说, 从分离式倒Y型塔型出发进行结构拓扑优化, 可以发现目前已知常用塔型中的最优塔型。
斜拉桥的跨度最大能够达到多少是人们非常关心的一个话题。在正面回答这个问题之前, 我们先分析一下影响斜拉桥跨度急速增大的因素主要有哪些。显然, 有技术方面的因素, 也有经济和美学方面的因素。事实上, 正是多因素的复合限制了斜拉桥跨度的急速增大。从力学的角度看, 斜拉桥跨度急速增大带来的主要问题是: 第一, 由于斜拉索索力的水平分量需由主梁中的内力来平衡, 随着斜拉桥跨度的增加, 塔处主梁根部的压应力急剧增大,因此, 主梁的抗压稳定性将成为制约斜拉桥跨度急速增大的一个主要因素。第二, 长柔的拉索比较容易发生独立索振动, 加稳定索和抗风阻尼器虽在一定程度上可以缓解这一问题, 但因此付出的经济代价是否值得则有待商榷。从经济学和美学的角度看, 限制斜拉桥跨度急速增大的主要因素是: 第一, 斜拉索的最小倾斜角有一个合理的下限, 这个下限值大致在20 度左右。第二, 斜拉桥索塔的高度有一个合理的上限, 这个上限值大致在300 m~350 m左右。综合这两个因素, 我们估计斜拉桥最大可以接受的跨度应当在1 250 m~1 500 m 左右。3 现代悬索桥的发展与演变 3.1大跨度悬索桥的出现与流行
悬索桥通常由主塔、主缆、吊索、加劲梁、锚碇五部分组成。悬索桥自古就有, 但近代意义上的大跨度悬索桥则出现在十九世纪中叶。1855 年, J1A1 Roebling 建成了世界首座跨度为250 m 的铁路悬索桥。1883 年, 美国布鲁克林桥的跨度达到了486m。1931 年, 乔治·华盛顿大桥的跨度首次超过1000 m。1937 年, 跨度1 280 m 的金门大桥在美国建成。1981 年, 英国建造了跨度1 410 m 的亨伯桥。1998 年, 日本明石海峡大桥的跨度接近2 千米, 达到1 991 m。
悬索桥跨度的不断增大一方面来源于材料科技和建造技术的进步, 但最主要的原因恐怕直接来源于设计思想的根本性转变。
在近代悬索桥的发展历史上, 曾经出现过3 次比较大的设计思想变革。第一次变革出现在二十世纪初。1888 年, Me2len 提出了考虑载荷引起的变形对结构内力计算影响的挠度理论, 奠定了近代悬索桥设计的理论基础。挠度理论发现, 悬索桥的整体刚度主要由主缆的重力刚度构成, 加劲梁自身的刚度对结构整体刚度的贡献不大。因此, 随着桥梁跨度的增加, 加劲梁的高度可基本维持不变。1909 年, 采用挠度理论设计的曼哈顿桥在美国建成。
第二次变革出现在二十世纪四十年代。1940年, 美国建成了塔科玛桥。4 个月之后, 在19m·s-1的风速下, 发生剧烈弯扭振动而坍塌。塔科玛桥坍塌的事故导致了两个积极的结果: 第一, 人们开始重新审视挠度理论, 发现加劲梁保持必要的刚度, 特别是抗扭刚度十分必要。第二, 桥梁的抗风设计, 或者说桥梁的抗风稳定性问题开始引起人们的高度重视。试验发现, 风引起的扭转或弯扭耦合模态的发散性振动是导致塔科玛桥坍塌的主要原因。为加强结构的抗扭刚度, 加劲梁的高度开始出现大幅反弹, 普遍达到7 m~12 m。桁架式加劲梁几乎成了大跨桥加劲梁的固定做法。
第三次变革出现在二十世纪六十年代。塔科玛旧桥坍塌事件对桥梁设计思想的影响, 在北美和在欧洲是完全不同的。美国人的做法是采用桁架式加劲梁解决减小风阻的问题, 并将加劲梁的高度大幅增加以提高断面的抗扭刚度。英国人则认为, 改善桥梁气动稳定性的合理方式, 应当是采用合理的加劲梁剖面形式, 主要通过降低风阻和控制气流分离的办法减小扭矩, 通过将横剖面闭合的办法增加箱梁的抗扭刚度。1966 年, 英国人的设计思想在塞文桥中得以实现。当时, 塞文桥988 m的跨度虽然并不起眼, 但它首次采用的流线型扁平钢箱梁设计却使整个桥梁界产生了强烈的震撼。塔科玛旧桥垮桥事件后, 对于大跨悬索桥, 桁架式加劲梁曾被认为是最有效的加劲梁形式, 这一看法由于塞文桥的出现而开始受到人们的质疑。塞文桥的设计思想, 在土耳其的博斯普鲁斯I 桥上得以再次展现。1981 年, 英国人建造了跨度1 410 m的亨伯桥。亨伯桥不仅从美国的维拉扎诺海峡桥(, 跨度1 298 m , 建于1964 年)那里夺走了跨径世界第一的宝座, 而且在造型上的特征异常鲜明: 一是桥塔很矮, 只有155 m。二是边跨比很小, 且左右不对称(分别为0120 和0138)。
塞文桥的著名并不在于它的跨度是否曾经达到过世界第一, 而在于它首创了一个全新的设计理念。唯其如此, 著名德国桥梁设计师F1 Leonhardt认为, 塞文桥的出现标志着现代悬索桥设计风格的开始[4 ]。3.2索桥主塔的造型与选择
现代悬索桥的主塔形式主要有三种: 第一种是使用水平杆件将两根塔柱相连的刚架式;第二种是使用水平横杆和交叉斜杆将两根塔柱相连的桁架式;第三种是路面以上为刚架, 加劲梁下用交叉斜杆连接的混合式。在悬索桥(同样适用于斜拉桥)桥塔的设计中, 有几点是需要仔细处理的: 第一, 要合理安排下、中、上三个塔段的高度分割比例。依据美学原则, 类似甘蔗的节, 按由短到长顺序设置的塔段高度给人以稳重、流畅的感觉。如果做到下短上长有困难, 则应逐步减小上层塔柱的截面尺寸。第二, 如果桥面以上塔柱的高度低于桥面以下塔柱高度的2 倍,则桥面以上的塔柱间应使用单横梁。强度不够时可将顶部横梁的高度加大, 横梁下缘做成拱型曲面。第三, 桥上、桥下的塔段设计风格应当尽可能地和谐。适度的变化是允许的,只要构造上蕴涵的内在节奏和韵律不遭到破坏。第四, 需要仔细安排塔柱剖面尺寸、横梁剖面尺寸和塔高间的相对比例关系, 不要使塔柱和横梁显得过于笨重, 给人以不舒服的沉重感。
塔型设计是一门综合性的艺术, 是结构工程学和建筑美学的有机结合。塔型设计同时又是一门个性化的艺术, 她的身上不可避免地镌刻着建筑传统和设计师个人风格的烙印。前者要求塔型构造除了本身各部分之间应相互协调之外, 还必须和加劲梁的设计风格相协调。而两者的综合则可以解释一些令人费解的现象。
伊藤学发现了一个有趣的现象: 日本的大跨悬索桥比较多地采用了桁架式的塔型设计, 而欧美的同类桥梁则比较多地采用了刚架式的塔型设计。比较典型的有桁架式的日本明石海峡大桥和刚架式的美国金门大桥等。伊藤学认为,造成这一现象的主要原因是, 日本的地震和强风等横向荷载比较大, 采用桁架式的塔型设计比较经济。我们认为, 日本明石海峡大桥和美国金门大桥设计风格上的差异更多地源于设计传统和设计师的个人风格, 而不是源于地理上的差异。日本人的确喜欢使用交叉桁架式的塔型, 如日本的关门桥、南、北备赞濑户大桥、因岛大桥等, 但未必源于地理环境上的差异。第一, 金门大桥的桥位位于著名的加利福尼亚强地震带上, 并且和明石海峡大桥一样, 曾经遭受过强地震的洗礼。第二, 欧洲和美国也都有一些桁架式塔型的大跨度悬索桥, 如葡萄牙里斯本的塔古斯河桥、美国的奥克兰海湾桥、英国苏格兰福斯湾公路大桥(图15)等。第三, 日本人采用刚架式塔型的大跨度悬索桥也不少, 如日本的来岛大桥、大岛大桥、东京港彩虹桥、下津井濑户大桥等。还有一个有趣的现象: 美国人设计的桥塔比较刚劲, 而英国人设计的桥塔则比较纤柔。我们对这一现象的解释是: 美国人设计的这些桥梁采用了高度7m~12 m 的高大的桁架式加劲梁, 无论从美学还是从力学的角度看, 桥塔都应该设计得比较刚劲。而英国人设计的这些桥梁采用了高度为310 m~415 m的扁平的钢箱梁, 无论从美学还是从力学的角度看, 桥塔都应该设计得比较纤柔。事实上, 由英国人设计的香港青马大桥, 由于加劲梁的高度为717m , 其桥塔同样设计得刚劲有力(图17)。因此,对桥梁设计而言, 体现设计师的个人风格和魅力固然重要, 但桥型设计和桥梁的内在功能及与周边环境的关系保持协调则更为重要。我们的看法是, 如果采用扁平的钢箱梁为加劲梁, 则桥塔造型以采用刚架式为宜.4 结语
人类已开始向跨海工程挑战。世界上宽度在100km以内的海峡有20多处。独立于大陆之外,具有开发价值的近海岛屿无数。它们将是21世纪人类用桥梁去征服的目标。
21世纪桥梁将实现大跨、轻质、灵敏的国际桥梁发展新目标,意大利与西西里岛之间墨的西拿海峡大桥,主跨3300米悬索桥,其使用寿命200年。高强度铝合金、玻璃钢、碳纤维等太空材料将取代当代的桥梁钢、混凝土,成为桥梁建筑的主体材料,从而实现轻质目标;不同类型轻质材料组合拼装的各类新型斜拉桥、悬索桥、轻质拱桥将一跨而过大川巨流或小海湾,实现1500米以上大跨目标;桥梁上装配的计算机系统、传感器系统将可以感知风力、气温等天气状况,同时可以随时得到并反映出大桥的承载情况、交通状况。综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。
参考文献
提要:本文针对普通大跨度实腹式门式刚架随着跨度的增大经济性指标下降的问题,提出了索支承实腹式门式刚架结构体系。索支承实腹式门式刚架只须通过伸长撑竿施加预应力,比较于其他需要张拉钢索的预应力钢结构它是一种节点构造简单、施工简便,预应力效果明显的结构。本文详细分析了这种结构的受力性能,施工工艺和主要结点构造。通过对某72m跨度的粮食仓库采用索支承门式刚架的实例计算,得出了一些有实用意义的结论和建议,为工程设计和施工提供了参考。
关键词:大跨度 索支承实腹式门式刚架
一、概述
我国有多例跨度60~72米的实腹式轻钢门式刚架工程,包括湛江港从美国引进的60米跨的保税仓库、北京西郊机场从美国引进的一座跨度72米的飞机库,和国内自行设计大连72米门式刚架粮仓储备库,跨度再大的就非常少见。这是因为随着跨度的增大,刚架梁的挠度和梁柱节点弯矩显著增加,对刚架起控制作用的往往是刚架梁的跨中挠度,这时候采用较高强度的钢材不能解决问题,须要加大刚架截面。此时,增大截面是为了控制变形,没有充分利用钢材的强度。
因此普通大跨度实腹式门式刚架用钢量大幅度增加,经济性指标大大下降,削弱了轻钢结构自重轻这一优势。国内自行设计的大连72米门式刚架粮仓储备库,最大截面已达到1800Ⅹ300Ⅹ12Ⅹ14,用钢量(仅刚架部分,不包括围护结构)达到49.7kg/m2[9]。
针对上述问题,目前有几种解决方法,例如采用预应力格构式门式刚架、在普通实腹式门式刚架柱顶布置直线式预应力钢索。但是预应力格构式刚架对部分杆件施加预应力,预应力钢索的布置比较复杂,节点构造繁琐给施工带来不便。门式刚架柱顶布置直线式钢索须待刚架整体安装完毕后张拉钢索施加预应力,无法避免高空作业。而且刚架中直线式预应力索的效率往往不能充分发挥作用,而且预应力对梁的平面内稳定非常不利。
为了增加斜梁刚度,并降低结构用钢量,本文提出了索支承实腹式门式刚架这种新型预应力钢结构形式。
二、索支承实腹式门式刚架的结构形式和施工工艺
索支承门式刚架梁下的拉索通过三根竖撑杆与刚架梁发生作用,此时的拉索不仅仅是给结构施加预应力的手段,而且成为刚架横梁的下弦杆,较传统采用的紧贴刚架梁下弦布置预应力索的方式具有更大的结构刚度。钢拉索两端锚固在刚架柱顶,梁跨中屋脊位置设置一道撑竿,视刚架跨度和所需预应力大小可在半跨内再各设一道,其中拉索采用高强度钢绞线,撑竿采用双层的套丝钢套管,通过旋动钢套管的外管使撑竿伸长(图1和图2)。
索支承实腹式门式刚架的特点在于施加预应力的方法有两种:可以直接张拉钢索施加预应力,也可以通过伸长撑竿施加预应力。后一种预应力施加方法是靠旋长撑杆来实现的,给索支承刚架施加预应力就是通过人为伸长撑竿来张紧和拉长钢索使钢索中产生预应力的过程。拉索预先锚固在柱顶的连接牛腿中(图5),旋长撑竿必然撑紧拉索,也就给拉索施加了预拉力。由于撑竿所受的力是拉索预应力的竖向分力,而拉索于竖直方向夹角接近90度,所以此分力相比于拉索预应力非常小。而旋转撑竿本身又是利用杠杆原理,这样施加预应力是便不需要张拉设备,采用电动扳手甚至于人工便可完成。
由于预应力的大小随钢索的伸长量变化,而钢索的伸长量可以通过撑竿的伸长来控制,因此预应力水平易于控制,同时改变撑竿的数目和位置就可以控制加在刚架梁上的向上的顶力。
索支承刚架的梁柱节点构造与普通刚架相同,但是撑竿和钢索、撑竿和梁以及钢索和刚架的连接节点需要作特殊处理。两端带有反向螺纹的钢管撑杆一端通过焊接与钢梁相连(图4),另一端焊接在槽形夹片上通过螺栓与拉索相连(图3)。钢索通过多孔夹片锚具锚固在柱牛腿上(图5)。撑竿和梁下翼缘以及槽形夹片的焊接都应采用工厂焊接以保证质量。
三、索支承大跨度门式刚架的力学性能,与一般预应力结构一样预应力调整了刚架梁、柱受力状态,降低了外荷载作用下的内力峰值和刚架梁的跨中挠度,从而使预应力刚架比普通刚架的内力和变形有大幅度下降,提高了刚架的承载力、增大了结构刚度。从刚架梁柱节点和梁跨中弯矩在受力全过程三个阶段的变化
(图7)不难看出索支承刚架三个阶段的受力就是加载——卸载——再加载的过程。
自身的特点:
(1)较传统预应力门式刚架预应力效果更明显、具有更大的承载能力
施加预应力后,不难从刚架内力图(图3)上看出,不仅钢拉索对柱顶产生向内的拉力,同时与传统预应力结构比较撑竿还对刚架产生向上的顶力。向上的顶力能够抵消很大一部分竖向外荷载,因此施加了预应力后的索支撑门式刚架承受外荷载后,梁柱中最终弯矩减小甚至反号。
预应力钢索和撑竿的内力随着外荷载的施加而变化(图8和图9),在起控制作用的竖向荷载作用下钢索和撑竿的内力有显著增加,对整个刚架承受更大的外荷载起到很大作用。
(2)较传统预应力门式刚架结构具有更大的结构刚度
拉索不仅仅给结构施加了预应力,而且成为刚架横梁的下弦杆,无疑较传统采用的紧贴刚架梁下弦布置预应力索的方式具有更大的结构刚度。
此外,在竖向荷载作用下,索支承刚架的撑竿和钢拉索分别对刚架梁和柱起到弹性支撑的作用,增强了刚架特别是梁的刚度。
(3)避免刚架梁在平面内失稳
对于一般屋面坡度较小的实腹刚架来说,刚架横梁的轴向力较小,所以设计时不需验算横梁的平面内稳定承载力,而横梁的平面外的稳定性则靠檩条和隅撑来保证。预应力门式刚架中的横梁面外稳定性同样靠檩条和隅撑来保证,但其面内的力学性能与一般刚架不同。因为拉索中的预拉力在使刚架梁产生上拱变形的同时,还给斜梁施加了一个较大的轴向压力,这样斜梁就成为一个典型的压弯构件,其稳定问题不容忽视。而索支承门式刚架结构则很好的解决了这一问题:索支承结构中的拉索通过竖撑竿杆不仅给刚架施加了预应力,而且竖杆端部也成为了刚架梁在刚架平面内的一个弹性支承点,这样刚架横梁在平面内的稳定计算长度便可大为折减。布置若干个这样的竖杆便可保证了刚架梁平面内的稳定性[2]。
四、实例分析
为分析索支撑实腹式门式刚架的受力性能,本文对跨度72m,檐口高度24m,柱距9m,屋面坡度1:20的某粮食仓库采用索支撑门式刚架进行了计算。
考虑到撑竿在施加预应力过程中伸长量很大,计算时应考虑大变形。本文采用几何非线性方法进行计算,以一榀刚架为单元,按平面结构处理。
施工过程中刚架的实际受荷过程分三个阶段:
第一阶段——刚架在现场拼装完成后,此时刚架只承受自重。
第二阶段——刚架拼装后,安装钢拉索和撑竿,然后旋撑竿施加预应力,此时刚架同时承受自重和预应力。
第三阶段——刚架在正常使用阶段承受全部使用荷载。
因此,刚架受力性能分析计算按照以上三个阶段进行。
刚架在正常使用阶段的荷载最不利组合考虑以下几种计算工况:
(1)1.2恒荷载+1.4活荷载
(2)1.0恒荷载+1.4风荷载(向右)
(3)1.2恒荷载+1.4风荷载(向右)
(4)1.2恒荷载+1.4×0.85(活荷载+风荷载(向右))
通过仔细分析表1中数据和不同阶段刚架内力变化图可以看出,施加了预应力后的梁柱节点弯矩由自重作用下的-503.67KNm增至217.03KNm,梁跨中弯矩由313.78KNm减至-365.96KNm(图7)。此时刚架梁柱的内(应)力几乎与竖向荷载作用下的内(应)力反号,预应力对刚架起到了很好的卸载作用,而且刚架梁柱的应力均不大(表1)。刚架承受外荷载作用时,虽然2、3两种荷载组合作用下由于风荷载对屋盖向上的吸力作用,刚架的内力在施加预应力后的内力基础上略有增加,但结果表明这两种工况引起的最终内力都不起控制作用。在竖向荷载作用下,刚架梁柱节点和跨中内力分别由第二阶段的217.03KNm和-365.96KNm逐渐变到-1273.12KNm和116.05KNm(图7)。
施加预应力后刚架梁的跨中挠度由自重作用下的180.2mm(向下)变为263.2mm(向上),柱顶侧移由7.2mm
(向外)变为18.8mm(向内)(表1)。
前言:
根据《公路桥梁设计规范》规定:单跨跨径大于40m即为大桥,一般认为单跨跨径大于100m的桥梁即为大跨度桥梁。随着世界经济的快速发展,大跨径桥梁的建设在20世纪末进入了一个高潮时期。众所周知,大跨径桥梁建设反映了一个国家的综合实力和科学技术的发展水平。近百年来。特别是本世纪30年代以来,世界上大跨径桥梁建设发展十分迅速。不同桥型大跨径桥梁的发展,日益被各国桥梁界人士所关注。我国进入90年代以来,出现了建造大跨径桥梁的高潮。进入21世纪的中国必将迎来更大规模的大跨径桥梁建设时期。随着我国城市建设和高等级公路、道路建设的发展,修建大跨径城市桥梁也将成为必然的趋势。城市大跨径桥梁,除考虑运输、航运、地理、地质、水文、环境等因素外,还有区别于跨越一般江河大跨径桥梁的特殊因素。因此应研究城市大跨径桥梁的特点和发展趋势,积极探索我国城市大跨径桥梁发展的有效途径,以推动桥梁建设事业的更大发展。
关键词:大跨度桥梁 结构形式 跨度 历史 现状 发展
1.大跨度桥梁类型
大跨度桥梁在现今世界发展十分迅速。桥梁的发展史就是桥梁跨度不断增长的历史,也是桥型不断丰富的历史。大跨度桥梁可分为:斜拉桥、悬索桥、连续钢构、连续梁桥和拱桥。
1.1板式桥
板式桥(如图1.1)是公路桥梁中量大、面广的常用桥型,它构造简单、受力明确,可以采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。尤其是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而可以减低路堤填土高度,少占耕地和节省土方工程量。
实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其他材料。
钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径可做到25m,目前有建成35~40m跨径的桥梁。在我看来跨径太大,用材料不省,板高矮、刚度小,预应力度偏大,上拱高,预应力度偏小,可能出现下挠;若采用预制安装,横向连接不强,使用时容易出现桥面纵向开裂等问题。由于吊装能力增大,预制空心板幅宽有加大趋势,1.5m左右板宽是合适的。
图1.1 板式桥 1.2梁式桥
1.2.1简支T型梁桥
80年代以来,我国公路上修建了几座具有代表性的预应力混凝上简支T型梁桥(如图1.2.1),如河南的郑州、开封黄河公路桥,浙江省的飞云江大桥等,其跨径达到62m,吊装重220t。
T形梁采用钢筋混凝土结构的已经很少了,从16m到5Om跨径,都是采用预制拼装后张法预应力混凝土T形梁。预应力体系采用钢绞线群锚,在工地预制,吊装架设。其发展趋势为:采用高强、低松弛钢绞线群锚:混凝土标号40~60号;T形梁的翼缘板加宽,25m是合适的;吊装重量增加;为了减少接缝,改善行车,采用工型梁,现浇梁端横梁湿接头和桥面,在桥面现浇混凝土中布置负弯矩钢束,形成比桥面连续更进一步的“准连续“结构。预应力混凝土T形梁有结构简单,受力明确、节省材料、架设安装方便,跨越能力较大等优点。其最大跨径以不超过50m为宜,再加大跨径不论从受力、构造、经济上都不合理了。大于50m跨径以选择箱形截面为宜。
图1.2.1 简支T型梁桥
1.2.2连续箱形梁桥
箱形截面(如图1.2.2)能适应各种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥。因为嵌固在箱梁上的悬臂板,其长度可以较大幅度变化,并且腹板间距也能放大;箱梁有较大的抗扭刚度,因此,箱梁能在独柱支墩上建成弯斜桥;箱梁容许有最大细长度;应力值σg+p较低,重心轴不偏一边,同T形梁相比徐变变形较小。
箱梁截面有单箱单室、单箱双室(或多室),早期为矩形箱,逐渐发展成斜腰板的梯形箱。箱梁桥可以是变高度,也可以是等高度。从美观上看,有较大主孔和边孔的三跨箱梁桥,用变高度箱梁是较美观的;多跨桥(三跨以上)用等高箱梁具有较好的外观效果。
由于连续箱梁在构造、施工和使用上的优点,近年来建成预应力混凝土连续箱梁桥较多。其发展趋势为:减轻结构自重,采用高标号混凝土40~60号;随着建筑材料和预应力技术发展,其跨径增大,葡萄牙已建成250m的连续箱梁桥,超过这一跨径,也不是太经济的。
图1.2.2 箱形截面
1.2.3连续刚构桥
连续刚构可以多跨相连,也可以将边跨松开,采用支座,形成刚构一连续梁体系(如图1.2.3)。一联内无缝,改善了行车条件;梁、墩固结,不设支座;合理选择梁与墩的刚度,可以减小梁跨中弯矩,从而可以减小梁的建筑高度。所以,连续刚构保持了T形刚构和连续梁的优点。连续刚构桥适合于大跨径、高墩。高墩采用柔性薄壁,如同摆柱,对主梁嵌固作用减小,梁的受力接近于连续梁。柔性墩需要考虑主梁纵向变形和转动的影响以及墩身偏压柱的稳定性;墩壁较厚,则作为刚性墩连续梁,如同框架,桥墩要承受较大弯矩。由于连续刚构受力和使用上的特点,在设计大跨径预应力混凝土桥时,优先考虑这种桥形。当然,桥墩较矮时,这种桥型受到限制。
图1.2.3 连续刚构桥
1.3钢筋混凝土拱桥
拱桥(如图1.3)在我国有悠久历史,属我国传统项目,也是大跨径桥梁形式之一。石拱桥由于自重大,在料加工费时费工,大跨石拱桥修建少了。山区道路上的中、小桥涵,因地制宜,采用石拱桥(涵)还是合适的。大跨径拱桥多采用钢筋混凝土箱拱、劲性骨架拱和钢管混凝土拱。
钢筋混凝土拱桥的跨径,一直落后于国外,主要原因是受施工方法的限制。我国桥梁工作者都一直在探索,寻求安全、经济、适用的方法。根据近年的实践,常用的拱桥施工方法有:(1)主支架现浇;(2)预制梁段缆索吊装;(3)预制块件悬臂安装;(4)半拱转体法;(5)刚性或半刚性骨架法。
钢筋混凝土拱桥自重较大,跨越能力比不上钢拱桥,但是,因为钢筋混凝土拱桥造价低,养护工作量小,抗风性能好等优点,仍被广泛采用,特别是崇山峻岭的我国西南地区。
图1.3 钢筋混凝土拱桥
1.4 斜拉桥
斜拉桥(如图1.4)是我国大跨径桥梁最流行的桥型之一。我国斜拉桥的主梁形式:混凝土以箱式、板式、边箱中板式;钢梁以正交异性极钢箱为主,也有边箱中板式。现在已建成的斜拉桥有独塔、双塔和三塔式。以钢筋混凝土塔为主。塔型有H形、倒Y形、A形、钻石形等。
斜拉桥的钢索一般采用自锚体系。近年来,开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。钢箱与钢箱的连接,一是螺栓,二是全焊,三是栓焊结合。斜拉桥发展趋势:跨径会超过10O0m;结构类型多样化、轻型化;加强斜拉索防腐保护的研究;注意索力调整、施工观测与控制及斜拉桥动力问题的研究。
图1.4 斜拉桥 1.5 悬索桥
悬索桥(如图1.5)是特大跨径桥梁的主要形式之一,可以说是跨千米以上桥梁的唯一桥型(从目前已建成桥梁来看说是唯一桥型)。但从发展趋势上看,斜拉桥具有明显优势。但根据地形、地质条件,若能采用隧道式锚碇,悬索桥在千米以内,也可以同斜拉桥竞争。根据理论分析,就目前的建材水平,悬索桥的最大跨径可达到3500m左右。已建成的日本明石海峡大桥,主跨已达1990m。正在计划中的意大利墨西拿海峡大桥,设计方案之一是悬索桥,其主跨3500m。当然还有规划中更大跨径的悬索桥。
图1.5 悬索桥
2.大跨度桥梁历史现状及发展趋势
2.1 梁桥历史起源
世界上的第一座桥究竟出自何处、谁人之手,已无法考证。因为自从有了道路之后,当人们遇到河流、沟壑阻碍时,就会想到要采用某种方式跨越障碍。最初的桥可能只是架在小河沟两岸或河中礁石上的一根树干、一块石板。后来在此基础上出现了最早的木桥和石桥。石拱桥──我国河北省赵县城南5里有一座拱形大石桥,这就是举世闻名的赵州桥,它也是世界上现存最古老的石拱桥之一。这座桥是隋朝工匠李春、李通等建造的,距今已近1400年。它造型美观,结构别致。像这样的桥,欧洲19世纪中叶才发现,比我国晚1200余年。
铁桥──1779年,英国的亚伯拉罕─达比在英格兰中部科布鲁克代尔建造了世界上第一座铁桥。这座横跨塞汶河的铁桥,使用5列铸铁肋构成30米长的单跨半圆拱。桥的铸件有不少精巧的构想。
悬索桥──原始悬索桥柔软易弯,不利于车辆行走。现代悬索以钢缆悬挂加肋的桥板,已解决了这个问题。西文第一座水平桥面的悬索桥设计,见于1595年奥地利主教瓦兰佐奥的著作中。该设计把铁杆连在一起构成悬索。1801年芬利首先在美国宾夕法尼亚州的雅各溪上建造了悬索桥,桥长21米。
1803年,法国率先建造钢丝缆索桥。塞昆建造了几座跨度长达90多米的桥。维克发明了在桥上用一根根钢丝构成缆索。而不必把沉重的钢丝缆索吊到桥塔项上。
钢筋混凝土桥──世界上第一座钢筋混凝土桥是1899年建于苏格兰连芬南的混凝土高架桥,每拱跨度为15米。21个桥拱顶上各有一铰链,使墩基可以移动。工程师梅拉特最早懂得三铰链作用,他于1901年在瑞士建成首座三铰拱桥,是细长的钢筋混凝土桥。预应力混凝土桥──第二次世界大战后,制出高强度钢材,佛莱辛奈将其应用于桥梁设计中。他于1948年至1950年间在法国马恩河上先后建造了5座预应力混凝土桥,分别位于爱斯勃利、安奈、特里巴度士、查吉斯和尤西。各桥采用平拱,远较过去的桥拱平坦得多。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架设在长江上的第一座浮桥。建于1706年的沪定铁索桥跨长约100米,宽约2.8米,由13条锚固于两岸的铁链组成,1935年中国工农红军长征途中经渡此桥,由此更加闻名。
灌县的安澜竹索桥建于1803年,是世界上最著名的竹索桥,全长34O余米,分8孔,最大跨径约61m,全桥由细竹蔑编粗五寸的24根竹索组成,其中桥面索和扶挡索各半。
在秦汉时期,我国已广泛修建石粱桥。世界上现在是保存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。
1240年建造的福建潭州虎渡桥,也是最令人惊奇的一座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建设的,足见我国古代加工和安装桥梁的技术何等高超。
2.2 大跨桥梁的现状
在世界经济全球化的推动下,沟通洲际之间,国家之间和本土与岛之间以及跨海湾工程显得越来越迫切在20世纪桥梁工程取得了大发展的基础上,人们更能畅想21世纪的宏伟蓝图。就中国来说,国道主干线同江至三亚就有5个跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。此外,还有舟山大陆连岛工程、青岛至黄岛、以及长江、珠江、黄河等众多的桥梁工程。在世界上,正在建设的著名大桥有土耳其伊兹米特海湾大桥(悬索桥,主跨1668米)、希腊里海安蒂雷翁桥(多跨斜拉桥,主跨286+3×560+286米);已获批准修建的意大利与西西里岛之间墨西拿海峡大桥,主跨3300米悬索桥,其使用寿命均按200年标准设计,主塔高376米,桥面宽60米,主缆直径1.24米,估计造价45亿美元。在西班牙与摩洛哥之间,跨直布罗陀海峡也提出了一个修建大跨度悬索桥的方案,其中包含2个5000米的连续中跨及2个2000米的边跨,基础深度约300米。另一个方案是修建三跨3100米+8400米+4700米的巨型斜拉桥,其基础深度约300米,较高的一个塔高达1250米,较低的一个塔高达850米。2.2.1悬索桥
悬索桥一般在特大跨径桥梁范围占统治地位。人们将不断研究悬索桥主索的取材、制作架设、锚固和防护、选择主索跨比、初始拉力、荷载分布以及如何调整和解决施工各阶段索形和桥面预拱度等设计和施工中诸多问题,以使建桥技术达到新的水平。悬索桥的新形式仍在不断探索中,如美国式(采用竖直吊杆及桁架加劲梁)、英国式(采用矮扁平翼状钢箱加劲梁及三角形的斜吊杆)、丹麦式(亦称混合式,即用竖吊杆和钢箱加劲梁)及其他形式的悬索桥(如带斜拉索桥)等,以期丰富悬索桥的内容和形关。着力研究高强、轻质新型材料。倘若人类在新型材料的研究上取得突破,不仅连接欧洲和非洲间的直布罗陀特大桥(L=5000m,水深450m)将成为现实,而且权威专家预言建造主跨L=8000m的跨海峡悬索桥的理想也是可以实现的。2.2.2斜拉桥
今后斜拉桥在结构体系上仍以飘浮式或半飘浮式为主,主要的目的是为了抵抗温度及地震。主梁采用的材料上,混凝土斜拉桥仍将是斜拉桥的主要形式;对超大跨径的斜拉桥,叠合梁和复合桥面系统显示出极大的优越性。塔和索的形式也随着斜拉桥跨径的增加而取得新的进展。譬如将不断采用双塔对称、单塔不对称、多塔多跨等形式以满足桥梁的功能,取得与环境的协调的效果;为解决随着斜拉桥跨径增大、索的钢束的重度也愈大、刚度在降低的矛盾,将采取增加辅助索等方式。在结构分析方面将考虑结构的初始内力等,并对动静力的分析也将更加深入;权威专家认为,随着世界建桥技术的理论水平、材料水平和工艺水平的不断发展,21世纪建造跨度在1600m的斜拉桥将成为现实。
2.2.3拱桥
随着拱桥的无支架施工方法的应用和发展,拱桥在跨径200~500m是有竞争力的,我国的云南、贵州和四川3省及重庆直辖市等,将因地制宜地建造更多的拱桥,我国建造拱桥的前景将是极为广阔的。拱圈将向着轻型化的方向发展,且一些大跨径拱桥在施工阶段采用钢-混凝土组合杆件,或钢管混凝土合龙后再浇筑拱圈,可大大减轻吊装重量。因此,带有钢管的半刚性骨架很可能成为特大跨径拱桥最有前途的施工方法。多孔连拱的长拱桥,作为经济桥型之一,将会得到极大的发展。因为拱圈的轻型化,减少了对下部构造的要求,使连拱结合采用桩基柔性墩成为可能。中承拱、系杆拱有更多采用的趋势。在平原地区通航河流上,往往考虑采用中承拱桥,可达到降低桥高的效果。这种桥型矢跨比大,可减少推力;且造型美观,造价也较低,将为城镇起到增添景色的作用。
2.2.4预应力混凝土梁式桥
连续梁桥结构在40~60m范围,将继续占绝对优势。顶推法、移动模架法、逐孔架设法等施工方法将更加成熟。预应力混凝土连续梁将更广泛地应用于城市桥梁,而且,为充分利用城市空间,并改善城市桥梁交通的分道行驶,将不断采用双层桥面的形式以及钢筋混凝土结合梁的形式。在预应力钢筋布置方面,国内外将趋于使用大吨位钢束和张拉锚固体系;将更广泛地应用部分预应力筋、预弯预应力筋、双预应力筋、体外布筋等预应力新技术。在一切适宜的桥址,更多地设计和修建连续刚桥这种结构体系。通过墩梁的固结,以尽可能不采用养护和调换不易的大吨位支座。不断加强高强轻质材料的研究和应用,以达到减小结构尺寸和自重,加大桥跨、降低建筑高度和造价等功能;同时充分发挥三向预应力的优点,采用长悬臂顶板的单箱截面等,既可节约材料减轻结构自重,又可充分利用悬臂施工方法的特点加快施工进度。随着高速公路和城市立交桥的发展,越来越要求路线顺畅、行车舒适,必然会出现斜桥、弯桥、坡桥和异型桥,在需要大幅度降低梁高、增大净空时,将更广泛采用双预应力和预弯预应力梁。
2.3 大跨桥梁的发展趋势
2.3.1向更长、更大、更柔的方向发展
研究大跨度桥梁在气动、地震和行车动力作用下其结构的安全和稳定性,拟将截面做成适应气动要求的各种流线型加劲梁,以增大特大跨度桥梁的刚度;采用以斜缆为主的空间网状承重体系;采用悬索加斜拉的混合体系;采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。2.3.2新材料的开发和应用
新材料应具有高强、高弹模、轻质的特点,研究超高强硅粉和聚合物混凝土、高强双相钢丝纤维增强混凝土、纤维塑料等一系列材料取代目前桥梁用的钢和混凝土。
2.3.3在设计阶段采用高度发展的计算机
计算机作为辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。
2.3.4桥梁建成交付费用
使用后将通过自动监测和管理系统保证桥梁的安全和正常运行,一旦发生故障或损伤,将自动报告损伤部位和养护对策。
2.3.5重视桥梁美学及环境保护
桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥等这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。宏伟壮观的澳大利亚悉尼港桥与现代化别具一格的悉尼歌剧院融为一体,成为今日悉尼的象征。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。
3.大跨度桥梁实例
3.1杭州湾跨海大桥
杭州湾跨海大桥(如图3.1)全长36公里,其中桥长35.7公里,双向六车道高速公路,设计时速100km。总投资约107亿元,设计使用寿命100年以上。大桥设北、南两个通航孔。北通航孔桥为主跨448m的双塔双索面钢箱梁斜拉桥,通航标准35000吨;南通航孔桥为单塔单索面钢箱梁斜拉桥,通航标准3000吨。大桥两岸连接线工程总长84.4公里,投资52.1亿元。其中北连接线29.1公里,投资额17.8亿元;南岸接线55.3公里,投资额34.3亿元。大桥和两岸连接线总投资约140亿元,实际建设工期43个月。
大桥的结构为双塔钢筋混凝土斜拉桥,双向6车道,设计时速100公里,设计使用寿命100年,建设期限5年。建成后,宁波杭州湾大桥将成为世界上最长、工程
图3.1 杭州湾跨海大桥
量最大的世界第一跨海大桥。大桥设南、北两个航道,其中北航道桥为主跨448米的钻石型双塔双索面钢箱梁斜拉桥,通航标准为3.5万吨级轮船;南航道桥为主跨318米的A型单塔双索面钢箱梁斜拉桥,通航标准为3000吨级轮船。其余引桥采用30米至80米不等的预应力混凝土连续箱梁结构。非通航孔分北、中、南引桥3大块,其中海上部分桥梁长32公里。
大桥36公里的长度,使之超过了美国切萨皮克海湾桥和巴林道堤桥等世界名桥,而成为目前世界上已建成或在建中的最长的跨海大桥。据初步核定,大桥共需要钢材76.9万吨,水泥129.1万吨,石油沥青1.16万吨,木材1.91万立方米,混凝土240万立方米,各类桩基7000余根,为国内特大型桥梁之最。南滩涂50米*16米箱梁采用整孔预制,大型平板车梁上运梁的工艺,开创了国内外重型梁运架的新纪录。水中区引桥70米*16米箱梁采用整孔制、运、架一体化方案,单片梁重达2180吨,为国内第一。水中区引桥打入钢管桩直径1.5-1.6米,桩长约80米,总数超过4000根,其钢管桩工程规模全国建桥史上第一。
3.2金门大桥
早在1872年就讨论过要在金门海峡修建一座大桥的想法,但是直到1937年才在海峡上修了一座悬索桥。金门大桥(如图3.2)横跨南北,将旧金山市与Marin县连结起来。花费四年多时间修建的这座桥是世界上最漂亮的结构之一。它已不是世界上最长的悬索桥,但它却是最著名的。金门大桥的巨大桥塔高227米,每根钢索重6412公吨,由27000根钢丝绞成。1933年1月始建,1937年5月首次建成通车。
金门大桥桥身的颜色为国际橘,因建筑师艾尔文·莫罗认为此色既和周边环境协调,又可使大桥在金门海峡常见的大雾中显得更醒目。由于这座大桥新颖的结构和超凡脱俗的外观,所以它被国际桥梁工程界广泛认为是美的典范,更被美国建筑工程师协会评为现代的世界奇迹之一。它也是世界上最上镜的大桥之一。
图3.2 金门大桥
4.结语
桥梁建筑对于具有卓越才能和自信心的工程师来说是一项既吸引人又富有挑战性的艰巨任务。桥梁建筑的重要意义不仅仅是满足于交通,还在于桥梁一旦胜利建成,它将会使人们感到无限的快乐和极大的满足。桥梁建筑能使人产生一种激情,在建桥人的一生中总是那样的清新绮丽,那样的朝气蓬勃,那样富有激励性。回顾20世纪桥梁工程的成就,技术发展起了决定性作用,特别是20世纪末期发展速度更快,必然对21世纪的发展打下了良好的基础。中国在建设特大桥梁上有广阔的市场,在无数设计师的共同努力下,一定会创造更辉煌的成就。
参考文献
[1]刘夏平《桥梁工程》 2005年科学出版社
[2]周念先 《21世纪斜张桥的展望》 1998年江苏交通工程第四期
[3]项海帆 《21世纪世界桥梁工程的展望》 2000年土木工程学报第33卷第3期 [4]陈秉玲 《国内外大跨径桥梁发展概况.城市道路与防洪》 1997.2第2期 [5]穆祥纯
关键词:大跨度网架结构,分块拼装,整体提升
1 项目简介
本项目研究对象网架结构形式为正放四角锥网架, 网架总投影面积20 953.35 m2, 其中悬空投影面积228.25 m×66 m=15 064.5 m2。根据总体施工安排本项目的应用为分段施工分段运营, 最大分块拼装整体提升面积约1 452 m2, 重量87 t。
网架结构支座高度0.750 m, 上下弦节点均在不同半径的弧线上, 上弦弧半径为126.035 m, 下弦弧半径为101.75 m, 下弦拱高为5.464 m, 跨中最小结构矢高为3.036 m, 下弦中心最高点距楼面19.314 m。
2 网架结构安装
2.1 机械设备选择、使用
用塔吊将杆件吊至楼面, 构件上楼面后采用滑车将构件转运至安装就位区域附近。
2.2 主要施工方法
为确保本工程安全、质量, 满足工期, 施工作业区多工种同时交叉施工, 施工队伍之间相互影响, 为减少网架安装与其他队伍之间的影响, 决定采用分块拼装整体提升法。
首先根据现场实际情况在楼面上拼装单个网架提升单元, 然后利用6个钢格构式拔杆、24个手动倒链整体提升至安装位, 连接节点并检测合格后拆除提升装置。
2.3 分块拼装整体吊装法的优点
1) 分块拼装占用面积不大, 各工种之间影响较小;2) 第一次提升在跨中部分进行, 后续安装可逐步向两边, 其他材料可以放到已经升起网架的下部;3) 由于网架是从中心向两边施工, 所有内应力能够很好的分散开来, 保证了网架产品质量;4) 本施工方法在安装过程中网架受力与网架结构完成后的实际受力方向相反, 在安装过程中若有螺丝预拧不到位的情况, 在重力作用下会自动闪缝, 逐个发现解决;5) 网架98%的工作量都在地面完成, 便于质检。
2.4 安装前的准备工作
1) 安装前要复测网架支座的标高、轴线, 对有偏差的埋件进行处理, 保证标高及轴线尺寸的正确性;2) 对所有的杆件要进行尺寸复检;3) 给所有杆件的螺栓上油, 上无纹螺母;4) 球杆按安装图分类。
2.5 网架的分块拼装
按照网架的中心位, 先从中心开始往两边施工。由于网架的中心两网格为水平, 地面拼装后往两侧施工, 拱度逐步增大, 这时用临时拔杆提升安装。当安装完1跨网格后, 开始立拔杆, 拔杆共设6组, 每侧3组。
拔杆为ϕ140×4.5的焊管, 每节3 m, 两头用ϕ140的法兰焊接, 上、中、下分别用D14×140×120两块焊成90°, 每四节用角钢相连, 构成2 m×2 m的方体为一组, 每组之间用螺栓相连, 下端用HW250×125×6×9长6 m的型钢平行相连, 每端挂10 t倒链各一只。利用ANSYS分析软件建立网架和拔杆整体模型。经分析计算整体提升结构是稳定、安全的。
拔杆位置布置如图1所示。
2.6 网架的整体提升
所有杆件连接、拔杆安装、倒链安装完成后, 开始提升。每个拔杆上的操作人员均听从楼面指挥员的统一指令, 一起操作。网架提升至离地10 mm时, 暂停提升, 检查所有杆件连接是否正常, 检查倒链工作状态是否良好, 否则放下重新整改。指挥员口哨响一声, 大家同时拉一下, 每提升约1 m高度时, 暂停提升, 用水准仪测量结构提升过程中的同步性, 发现提升缓慢的, 单独提升至水平, 然后重新提升, 直至安装到位。
提升过程如图1所示。
2.7 网架的固定及拔杆的拆除
将网架提升至设计位置, 调节各支座、连接点对接位置。焊接完成, 检测合格后, 拆除倒链, 先放松左右共4个拔杆位置倒链, 根据指挥员口令同步、逐步放松, 完全放松后, 不立即拆除倒链, 检查所有焊缝质量及未放松倒链的工作状态, 确定无异常状况后放松剩余2个拔杆倒链。再次检查情况后, 拆除所有倒链及拔杆。
3 结语
本项目在ANSYS软件分析计算的基础上, 2008年~2010年通过在汉口站改造工程高架候车室屋面网架结构的现场实际施工中证明, 在对大面积大跨度网架结构采用地面分段拼装、拔杆整体提升的方法是可行的。较传统的胎架整体滑移方案大大节约了成本, 满足了项目的节点工期要求。由于此方法采用地面拼装的方式, 最大限度的减小了空中作业量, 很好的保证了拼装质量和作业人员的安全。能适用于目前高速铁路上大型站房的分段改造工程, 保证了车站的正常运营, 能以最快的速度使车站重新投入使用。
参考文献
[1]JGJ 7-91, 网架结构设计与施工规程[S].
[2]GY 507-1996, 钢网架结构安装工艺标准[S].
【关键词】大跨度;钢结构;施工
一、大跨度空间钢结构的发展现状
近年来,随着人们需求的不断增加,各类大型建筑的功能也逐渐丰富,以北京鸟巢为例,不仅要建设各种类型的比赛场地,还要设置相应的观众席、运动员休息室以及大空间的后勤基地。因此,建筑物的规模不断扩大,功能日益丰富。从国内大型建筑的发展现状看,跨度达 120mm 以上的超大规模建筑不在少数,并且大都采用了新材料和新设计技术,出现了诸如空间网格结构、张力结构等富有特色的现代化大跨度建筑。从行业发展角度看,大跨度空间钢结构已经成为近代以来发展速度最快的建筑形式之一,并且随着建筑施工技术的不断优化,在未来相当一段时间内还有着更为广泛的应用,发展潜力巨大。大跨度空间钢结构施工技术的优劣,在很大程度上成为衡量一个国家建筑技术水平高低的重要因素。
对于国内大跨度空间钢结构施工来说,虽然经过多年的研究积累了较为丰富的理论基础,但是实践经验相对缺乏:硬件方面,无论是在前期钢结构的规划设计还是中期的施工操作,都存在部分的瑕疵和疏漏;软件方面,专业水平强、综合能力高的高素质人才数量不足,难以弥补大跨度空间钢结构施工人才的缺口,理论和知识创新能力稍弱,对国外施工技术的依赖性较强。目前,国外空间钢结构的最大跨度已达 200m 左右,给国内建筑单位和科研机构带来了更大的压力,因此,我们必须结合国内建筑基础,由“中国制造”向“中国创造”转变,研发独具中国特色的大跨度空间钢结构施工技术。
二、施工中应重点考虑的问题
(一)设计与制造技术的应用
随着科学技术在各个领域的应用,建筑工程设计通常也采用计算机制图工具,提高设计的科学性和精准度。如 CAD 技术和 CAM技术在钢结构施工建设中起辅助作用,它的运用为建筑提供三维空间和立体感,实现了图文之间的转换,减少设计的误差,提高工作效率。
(二)厚板及管结构的全位置焊接技术
在大跨度空间钢结构施工中,保证钢材间的高质量焊接对于提升整体结构稳定程度有关键性影响,直接决定了空间钢结构的使用年限。现代大跨度空间钢结构设计时,为了尽可能体现结构的多样化,往往采用不同类型、不同尺寸的钢材,这就给焊接带来了较高的难度。除此之外,在大跨度空间钢结构施工时,需要面临来自外界环境的多重因素影响,例如温度变化、风速、湿度等,都会给焊接质量产生影响。为了解决上述问题,必须有针对性的采用焊接工艺,确保每个焊头的施焊均匀和母材的充分融合。
(三)结构形式多样化
传统大跨度空间钢结构功能单一,因此结构形式就会受到固化。随着建筑理论的不断发展,大跨度空间钢结构形式也多样化发展。如以生物仿生学为设计基础奥运会鸟巢建筑、以泡沫理论为基础水立方等。将大跨度空间钢结构设计理念与现代技术结合起来,不仅使结构外观丰富多样,给人以眼前一亮,也满足了现代人的审美情趣,而且结构形式更加科学、合理。
(四)空间钢结构的跨度大,钢材等级要求高
在科技进步和经济发展的不断推动下,建筑行业建筑理论不断更新,为了满足人们对于建筑的需求,建筑空间钢结构跨度向更大范围扩展开来。虽然建筑空间横向扩展会使建筑内部功能丰富,但由此带来建筑压力也会不断增加,在这样的情况下,保证建筑空间框架安全、提高钢结构荷载能力成了保证建筑质量的关键所在。因此,相关审查委员会制定严格建筑安全审查标准,要求大跨度建筑要选择高强度、高质量的优质钢材,并且定期要对钢结构进行检验,确保及时发现钢结构问题及时解决,起到防患于未然的作用。
三、大跨度空间钢结构的应用
(一)张拉整体结构
张拉整体结构大致为三棱柱或四棱柱构成的基本单元,如果把所有基本单元的节点进行联接,则能够构成双层张拉整体结构,这一自应力网格体系大多是通过被连接的棱柱体单元具备的单独受压刚性杆以及持续张拉的柔性索而构成,其中敷设的膜材可选用遮光挡雨的类别,总体刚度以单元间的自平衡预应力为根本。
(二)弦支弯顶结构
把以上张拉整体结构上层柔性索变成具备刚性的单层球面网壳,在弹性的支撑方面能够提升单层网壳的稳定性以及结构刚度,因为上层属于刚性,能够把膜材取消运用常规的夹芯板进行取代,在提升建筑物室内保温性能以及隔热性能的状态下,可以大面积节约工程造价的成本。
(三)预应力网格结构
在工作中,透过技术人员把当前预应力技术与空间网格结构相融合,则能够打造出预应力网格结构。通常状态下,在空间网格结构内施加预应力的方式有以下两类:首先,在空间网格结构四周设定相关的预应力索或在下弦平面中设定预应力索,如此则可以结合为预应力网格结构;其次,在空间网格结构创建当中施加预应力,透过适宜的协调而变为预应力网格结构。
(四)预应力张弦梁与弦析架结构
张弦梁结构属于上弦抗弯受压构件与下弦受拉钢索而构成,在工程内体现出受压撑杆相互衔接的自平衡结构体。弦析架结构属于受压撑杆持续上端抗弯受压拱式析架与下端构成,在工程内体现为受拉钢索而构成的自平衡结构体。这两类结构的用钢量有所增加,施工难度有所提升。
(五)对角线布索体外预应力平板型网架
对角线布索体外预应力平板型网架最初使用在前苏联,通过前苏联的建筑举例,在1977年的福尔日思科的某一商业中心,建筑面积在72mx17m。我国某空间结构厂在1993年运用同等原理以及布索形式创建对角线布索体外预应力平板型网架,以此展现出对角线布索体外预应力平板型网架的优势,而不足之处则为预应力结构体系并不完善,构造十分艰难。
四、预应力大跨度空间钢结构的展望
(l)最大的跨度可以为400一500m,跨度在200一300m之间尤为普遍;(2)当前应当持续完善并提升应用斜拉网格结构、预应力乃至弓式预应力钢结构以及张弦梁结构;(3)应当结合承建单位的力量,一同研发并推广索弯顶结构,在短时间内尤其应当争取创建我国首幢索弯顶;(4)探索预应力空间钢结构全新的材质、工艺、结构、节点,极力进行创新;(5)处理并未解决的预应力空间钢结构抗震、抗风、结构优化、结构控制等方面的问题;(6)由于普遍运用在公共性窗口建筑的预应力大跨度空间钢结构,能体现出一个地区乃至国家的建筑水平。
五、结语
综上所述,工程师与建筑师对于工程项目的创建当中,需要有效结合,将各类先进技术运用其中,如此才可打造出全新的预应力空间钢结构,以便符合当前社会的发展所需,加快建筑行业的健康化发展,使社会经济能够可持续运行。
参考文献:
[1]薛宇轩,胡燕昊.大跨度空间及其钢结构工程实现问题探讨[J].科技资讯,2011(10):131-133.
[2]叶杭锋,刘北辰.关于现代大跨度空间钢结构施工技术的研究[J].中国水运(下半月),2013(4):164-165.
【大跨度空间结构复习题】推荐阅读:
大跨度连续刚构桥施工过程控制分析06-12
种群的空间特征的练习题09-18
空间向量求空间角.教案10-08
空间经典签名06-14
空间说说心情07-10
空间搞笑留言07-20
向量空间总结07-24
空间动态签名11-07
喜庆的空间留言05-31
众创空间认定06-20