全等三角形 教案(精选10篇)
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:
1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图 能力;
3.让学生通过观察生活中的全等形和动手操作获得全等三角形 的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:
重点:全等三角形的概练和性质;
难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:
1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。
教学流程: 创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。
教学过程设计:
一、创设情境,引入新课。
1、与学生谈话,努力走近学生之中。
2、游戏情景,引入新课 出示课件:大家来找茬游戏
引导:
1、观察两副图形在形状、大小、位置方面的共同点
2、两副图形形状、大小若相同该如何检验?
引导:什么样的图形叫做全等形?
定义:能够完全重合的两个图形叫做全等形; 列举生活中的实例(一百元人民币)感知全等形。
二、合作交流,探索新知。
1、手脑并用,感受新知
用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。
2、观察诱导,探究新知。(1)全等三角形相关概念
引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;
中国人民邮政
能够完全重合的两个三角形叫做全等三角形 引导学生概括对应顶点、对应边、对应角定义;
全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。
(2)全等三角形的表达式
引导学生书写全等三角形的表达式:△ABC≌△DEF,读作 :△ABC全等于△DEF。
温馨提示:
①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。
引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题
(3)全等三角形性质
引导学生观察并概括全等三角形性质
全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质: ∵△ABC≌△DEF(已知)∴AB=DE,AC=DF,BC=EF;
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)
3、合作交流,探究新知(1)手脑并用,体验新知
利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?
通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。
(2)观察交流,探究新知
引导学生观察,交流探索规律。在全等三角形中,一般是: 1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;
3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;
引导学生观察,交流发现规律。
针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。
三、合作交流,应用新知。
例:如图,△ABO≌△DCO,指出所有的对应边和对应角。
解:∵△ABO≌△DCO(已知)∴AB=DC,BO=CO,AO=DO(全等三角形的对应边相等)
∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC(全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。
解: ∵△ABC≌△DCB(已知)∴AB=DC,BC=CB,AC=BD(全等三角形的对应边相等)
∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC(全等三角形的对应角相等)
四、课堂练习,巩固新知。
(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm, 求DE的长.解:∵△ABD≌△EBC,且AB=3cm,BC=5cm(已知)
∴AB=EB=3cm,BC=BD=5cm(全等三角形的对应边相等)∴DE=BD-EB=5-3=2cm
(2)如图,已知△ABC≌△ADE, 想一想: ∠ BAD= ∠ CAE吗?为什么?
解:相等,∵△ABC≌△ADE(已知)∴∠BAC=∠DAE(全等三角形对应角相等)∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE
五、师生互动,小结新知。
学习了这堂课你有哪些收获?并把它与同伴一起分享。
1、全等形的定义:能够完全重合的两个图形,叫做全等形。
2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
4、寻找全等三角形的对应边、对应角得规律。(1)观察图形特点;
(2)观察表达式(对应关系)
六、布置作业。
课本P92习题15.1,第2、4题。
七、教 后 感
······
板书设计:
15.1 全 等 三 角 形
定义:
表示 性质:
A. 1 对 B. 2 对
C. 3 对 D. 4 对
2.(2015·浙江绍兴)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC, 将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有 ∠QAE=∠PAE.则说明这两个三角形全等的依据是().
A. SAS B. ASA
C. AAS D. SSS
3.(2015·江西省)如图,OP平分∠MON, PE⊥OM于E,PF⊥ON于F,OA=OB.则图中有 _______ 对全等三角形.
4.(2015·湖南娄底)已知AB=BC,要使△ABD≌△CBD,还需要加一个条件,你添加的条件是 _______.(只需写一个,不添加辅助线)
5.(2015·湖南永州)如下图,在△ABC中,己知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.
6.(2015·福建福州)如图,∠1 = ∠2, ∠3=∠4,求证:AC=AD.
7. (2015·四川宜宾) 如图,AC=DC, BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
8.(2015·湖南永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E点,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
9.(2015·四川南充)如图,△ABC中, AB=AC,AD⊥BC,CE⊥AB,AE=CE.
求证:(1) △AEF≌△CEB;(2) AF= 2CD.
参考答案
1. D 2. D 3. 3
4. AD=CD 或∠ABD=∠CBD
5. CE=3.
6. 证明:∵∠3=∠4,
∴∠ABC=∠ABD.
在△ABC 和△ABD 中,
∴△ABC≌△ABD(ASA).
∴AC=AD.
8.(1)证明:在四边形ABCD中,
(2)证明:连接AC.
根据ASA有△PBD≌△CBA,在此基础上,就不难得到△PNA≌△CND、△PEM≌△FMB.
点评:本题将几何证明融入到剪纸活动中,让学生在剪、拼等操作中去发现几何结论,较好地体现了新课程下“做数学”的理念.(2)题结论开放,而且结论丰富,学生可以从不同的角度去进行探索,在参与图形的变化过程及探究活动中创造性地激活了思维,令人回味.
八、阅读归纳型
例8:我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等吗?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略)
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)
证明:分别过点B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1,
则∠BDC=∠B1D1C1=90°.
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1 D1.
∴BD=B1D1.
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.
分析:(1)由条件AB= A1B1,∠ADB=∠A1D1B1=90°.
易得△ADB≌△A1D1B1,因此∠A=∠A1,
又由∠C=∠C1,BC=B1C1,
从而得到△ABC≌△A1B1C1.
(2)归纳为:两边及其中一边的对角分别对应相等的两个锐角三角形(或直角三角形或钝角三角形)是全等的.
点评:边边角问题是全等三角形判定中的难点,也是学生易出错的内容,要涉及三角形形状的分类.本题构思新颖,创造性地设计了阅读情境,引领学生跨越障碍,引导学生合情推理并总结概括,考查了学生阅读理解、类比、概括等综合能力,同时也培养了学生灵活、精细、严谨的数学思维品质.
九、作图证明型
例9 :已知Rt△ABC中,∠C=90°.
(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.
(2)在(1)的基础上写出一对全等三角形:△_______≌△_______并加以证明.
分析:(1)按照要求用尺规作∠BAC的平分线AD、作线段AD的垂直平分线,并连接相关线段.
(2)由AD平分∠BAC,
可以得到∠BAD=∠DAC;由EF垂直平分线段AD,
可以得到∠EHA=∠FHA=∠EHD=90°,EA=ED,
从而有∠EAD=∠EDA=∠FAH,再加上公共边,
从而有△AEH≌△AFH≌△DEH.以上三组中任选一组即可.
点评:作角平分线和线段的垂直平分线是新课标中明确提出的基本作图之一,动手作图,使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣,并实现数学的再创造,从而进一步感受数学的无限魅力,促进数学学习.
E-mail:hit790205@163.com
1.了解全等形及全等三角形的概念. 2.理解全等三角形的性质.
重点
探究全等三角形的性质. 难点
掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.
一、情境导入
一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?
二、探究新知 1.动手做
(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?
(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?
得出全等形的概念,进而得出全等三角形的概念.
能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形. 2.观察
观察△ABC与△A′B′C′重合的情况.
总结知识点:
对应顶点、对应角、对应边.
全等的符号:“≌”,读作:“全等于”.
如:△ABC≌△A′B′C′.3.探究
(1)在全等三角形中,有没有相等的角、相等的边呢?
通过以上探索得出结论:全等三角形的性质. 全等三角形的对应边相等,对应角相等.
(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.
得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状. 把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.
三、应用举例
例1 如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.
分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可. 解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).
四、巩固练习教材练习第1题.
教材习题12.1第1题. 补充题:
1.全等三角形是()A.三个角对应相等的三角形 B.周长相等的三角形
C.面积相等的两个三角形 D.能够完全重合的三角形
2.下列说法正确的个数是()①全等三角形的对应边相等; ②全等三角形的对应角相等; ③全等三角形的周长相等; ④全等三角形的面积相等.
A.
1B.
2C.
3D.4 3.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE的度数与DE的长.
补充题答案: 1.D 2.D
3.∠DFE=35°,DE=8
五、小结与作业
1.全等形及全等三角形的概念. 2.全等三角形的性质.
作业:教材习题12.1第2,3,4,5,6题.
本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.
12.2 三角形全等的判定(4课时)
第1课时 “边边边”判定三角形全等
1.掌握“边边边”条件的内容.
2.能初步应用“边边边”条件判定两个三角形全等. 3.会作一个角等于已知角.
重点
“边边边”条件. 难点
探索三角形全等的条件.
一、复习导入
多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?
二、探究新知
根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?
(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.
引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?
让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.
强调在应用时的简写方法:“边边边”或“SSS”. 实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 明确:三角形的稳定性.
三、举例分析
例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件. 让学生独立思考后口头表达理由,由教师板演推理过程.
教师引导学生作图.
已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?
教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.
四、巩固练习
教材第37页练习第1,2题. 学生板演.
教师巡视,给出个别指导.
五、小结与作业
回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.
进一步明确:三边分别相等的两个三角形全等. 布置作业:教材习题12.2第1,9题.
本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.
第2课时 “边角边”判定三角形全等
1.掌握“边角边”条件的内容.
2.能初步应用“边角边”条件判定两个三角形全等.
重点
“边角边”条件的理解和应用. 难点
指导学生分析问题,寻找判定三角形全等的条件.
一、复习引入
1.什么是全等三角形? 2.全等三角形有哪些性质? 3.“SSS”具体内容是什么?
二、新知探究
已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.
操作:
(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?
(2)上面的探究说明什么规律?
总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.
三、举例分析
多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
分析:如果证明△ABC≌△DEC,就可以得出AB=DE.证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS). ∴AB=DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.
四、课堂练习
如图,已知AB=AC,点D,E分别是AB和AC上的点,且DB=EC.求证:∠B=∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程.
五、小结与作业 1.师生小结:
(1)“边角边”判定两个三角形全等的方法.
(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.
本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.
第3课时 “角边角”和“角角边”判定三角形全等
1.掌握“角边角”及“角角边”条件的内容.
2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.
重点
“角边角”条件及“角角边”条件. 难点
分析问题,寻找判定两个三角形全等的条件.
一、复习导入 1.复习旧知:
(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?
2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.
二、探究新知
1.[师]三角形中已知两角一边有几种可能?
[生](1)两角和它们的夹边;(2)两角和其中一角的对边. 做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
学生活动:自己动手操作,然后与同伴交流,发现规律. 教师活动:检查指导,帮助有困难的同学.
活动结果展示:
以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等. 提炼规律:
两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?
[生]能.
学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解. [生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;
(2)画线段A′B′,使A′B′=AB;
(3)分别以A′,B′为顶点,A′B′为一边作∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;
(4)射线A′D与B′E交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等. [师]
于是我们发现规律:
两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°,∠A=∠D,∠B=∠E,∴∠A+∠B=∠D+∠E.∴∠C=∠F.在△ABC和△DEF中,∴△ABC≌△DEF(ASA). 于是得规律:
两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS”)例 如下图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
学生写出证明过程.
证明:在△ADC和△AEB中,∴△ADC≌△AEB(ASA). ∴AD=AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.
学生活动:自我回忆总结,然后小组讨论交流、补充.
三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习
图中的两个三角形全等吗?请说明理由.
四、课堂小结
有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.
五、课后作业
教材习题12.2第5,6,11题.
在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.
第4课时 “斜边、直角边”判定三角形全等
1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.
重点
探究直角三角形全等的条件. 难点
灵活运用直角三角形全等的条件进行证明.
一、情境引入
(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
方法一:测量斜边和一个对应的锐角(AAS);
方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
二、探究新知
多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们全等吗?
画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?
按照下面的步骤作一作:(1)作∠MC′N=90°;
(2)在射线C′M上截取线段B′C′=BC;
(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;
(4)连接A′B′.△A′B′C′就是所求作的三角形吗?
学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.
由探究5可以得到判定两个直角三角形全等的一个方法: 斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”. 多媒体出示教材例5 如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.
在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL). ∴BC=AD.想一想:
你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.
三、巩固练习
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.
学生独立思考完成.教师点评.
四、小结与作业
1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.
12.3 角的平分线的性质
掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.
重点
角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题. 难点
灵活运用角的平分线的性质和判定解题.
一、复习导入
1.提问角的平分线的定义.
2.给定一个角,你能不用量角器作出它的平分线吗?
二、探究新知
(一)角的平分线的画法 教师出示:已知∠AOB.求作:∠AOB的平分线.
然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.
(二)角的平分线的性质
试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;
(4)再换一个新的位置看看情况怎样? 归纳总结得到角的平分线的性质. 分析讨论PD=PE的理由.(三)角平分线的判定
教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程. 巩固应用:
解决教材第49页思考
(四)三角形的三个内角的平分线相交于一点 1.例题:教材第50页例题.
2.针对例题的解答,提出:P点在∠A的平分线上吗? 通过例题明确:三角形的三个内角的平分线相交于一点. 练习:教材第50页练习.
三、归纳总结
引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?
四、布置作业
教材习题12.3第1~4题.
(三)教学目标
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.能运用全等三角形的条件,解决简单的推理证明问题.
教学重点
已知两角一边的三角形全等探究.
教学难点
灵活运用三角形全等条件证明.
教学过程
Ⅰ.提出问题,创设情境
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:①定义;②SSS;③SAS.
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
Ⅱ.导入新课
问题1:三角形中已知两角一边有几种可能?
1.两角和它们的夹边.
2.两角和其中一角的对边.
问题2:
两个三角形中有两个内角分别对应相等,它们的夹边也相等,•观察它们是不是全等,你能得出什么规律?
画一个△A'B'C',使A'B'= AB,∠A'=∠A,∠B'=∠B;
画法:
①画A'B'= AB;
②在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E交于点C'
将所得三角形重叠在一起,发现完全重合,这说明这两个三角形全等.
由此我们可提炼规律:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
探究问题4:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
这也就是说明:两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
Ⅲ.课时小结
至此,我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)
一、三边对应相等
已知△ABC的三边AB=c, BC=a, CA=b, 求作△ABC.
过程:先作线段AB=c, 然后分别以A、B为圆心, b、a为半径画圆, 如果两圆不能相交, 则说明给定的三边不能组成三角形, 这验证“三角形的两边之和大于第三边, 两边之差小于第三边”.如图1, 我们看到, 两圆相交于两点C、D, 连接AC、AD、BC、BD, 则得到△ABC和△ABD, 度量三对角, 发现它们分别相等, 则说明这两个三角形全等.从这里可以看出, 有了三边的长度, 不用考虑角的大小, 就能把三角形唯一确定下来.这说明若三角形的三边相等, 则两三角形全等.
二、两边对应相等
(1) 无角相等:已知△ABC的两边AB=c, CA=b, 求作△ABC.
过程:先作线段AB=c, 再以A点为圆心, b为半径画圆, 在圆上任取一点C与A、B连接, 所形成的三角形均满足两边AB=c, CA=b的条件, 如图2, 拖动点C, 可以看到, 这样的三角形有无数, 这说明两边对应相等的两个三角形不全等.
(2) 两边的夹角相等:已知△ABC的两边AB=c, AC=b和它们的夹角∠BAC=∠α, 求作△ABC.
过程:先作∠BAC=∠α, 然后以点A为圆心, 分别以c, b为半径画圆, 交∠A的两边于B、C两点, 连BC, 则图3中有一个确定的△ABC, 满足条件AB=c, AC=b, ∠BAC=∠α.这说明若三角形的两边及两边的夹角对应相等, 则两三角形全等.
(3) 一边的对角相等:已知△ABC的两边AB=c, BC=a和边BC的对角∠BAC=∠α, 求作△ABC.
过程:先作∠BAC=∠α, 然后以点A为圆心, 以c为半径画圆, 交∠A的一边于B点, 再以B点为圆心, a为半径画圆, 可以看到, 这个圆与∠BAC的另一边有两个交点, 如图4 (也可能是一个交点, 也可能没有交点) , 即满足条件的三角形不能唯一确定, 这说明若三角形的两边及一边的对角对应相等, 则两三角形不一定全等.
由上面的三点讨论知:当已知三角形的两边对应相等时, 必须再知道它们的夹角相等, 才能确定这两个三角形全等, 而SSA不能判定两个三角形全等.
三、有一边相等
一、条件探索型
即给出了问题的结论,但没有给出或没有全部给出应具备的条件,要求通过探索,对条件进行补充完善,或者得出多个能使结论成立的条件。
例1如图1,∠BAC=∠ABD,请你添加一个条件: ,使OC=OD(只添一个即可)。
解析结合图形可知,要使OC=OD,只要得到△AOD≌△BOC或△ABD≌△BAC即可。现已有∠BAC=∠ABD(可推得OA=OB),AB为公共边,故若添加∠ABC=∠BAD,由“ASA”可知△ABD≌△BAC,进而有AC=BD,AC-OA=BD-OB,即有OC=OD;若直接添加AC=BD,显然有OC=OD;
若添加∠C=∠D,结合隐含条件∠AOD=∠BOC(对顶角相等),则可由“AAS”可知△AOD≌△BOC,进而得OC=OD;若添加∠OAD=∠OBC,结合对顶角∠AOD=∠BOC,则可由“ASA”知△AOD≌△BOC,进而得OC=OD。
点评本题是一道条件开放性问题,解题的关键是抓住已知条件∠BAC=∠ABD,AB=BA(公共边),∠AOD=∠BOC(对顶角相等),明确所选用的判定方法中,还需要什么条件。
二、结论开放型
即给出了问题的条件,但没有给出明确的结论或结论不确定,要求从条件出发,通过对各种可能的情况进行探究。
例2如图2,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF。
(1)图中有几对全等的三角形?请一一列出;
(2)选择一对你认为全等的三角形进行证明。
解析 根据已知条件,认真观察图形,找出其中形状和大小一样的三角形,然后想办法证明其全等。
(1)3对。分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF。
(2)证明△BDE≌△CDF。
证明 ∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°。
又∵D是BC的中点,∴BD=CD。
在Rt△BDE和Rt△CDF中,
BD=CD,BE=CF,
∴△BDE≌△CDF。
点评 解答此题首先应准确找出全等三角形,然后再寻找满足全等的条件。敏锐的观察力是识图能力的一个重要方面,丰富的想象力是证明问题的起点。
三、组合型
例3如图3,给出五个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA。请你以其中两个为条件,另三个中的一个为结论,写出一个正确论断(只需写出一种情况),并说明理由。
解析本题提供了五个等量关系,从中选择两个作为条件,另一个作为结论,写一个正确论断,这可以借助全等三角形的知识解决。因为选两个等量关系,所以还需要从图形中寻找隐含的相等关系才能说明三角形全等。如选①AD=BC、②AC=BD,再加上公共边AB=BA,可得到△ABD≌△BAC,所以有④∠D=∠C;如选③CE=DE、④∠D=∠C,再加上对顶角∠DEA= ∠CEB,可得到△DEA≌△CEB,所以有①AD=BC。还可得到其他一些情况,请你试一试。
如图3,已知AD=BC,AC=BD,求证:∠D=∠C。
证明:在△ABD和△BAC中,AD=BC,AC=BD,AB=BA, ∴ △ABD≌△BAC。
∴ ∠D=∠C。
四、实际应用型
例4 如图4,某同学把一块三角形的玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是 ()。
A.带①去B.带②去C.带③去D.带①和②去
解析这里所说的最省事的办法当然是指在破碎的三块玻璃中,能只带其中一块或两块去配就行。通过对三块玻璃①、②、③的观察,根据三角形全等的判定定理“ASA”,可知③中含有原三角形玻璃的两个角和夹边,这样就可确定三角形的形状。因此,只需带③去配就行,即应选C。
点评本题是一道实际生活问题,要灵活运用所学三角形的基本知识,并注意与生产实践相结合。运用数学知识解决一些实际问题,也是近年来中考命题的一个方向。
五、方案设计型
例5如图5,是一个正方形的门窗,在装修房屋时,为了把它设计成美观大方的图案,设计师要求在正方形中设计若干个全等的三角形,使其面积之和等于正方形的面积,请你按要求在正方形中画出你的设计图形。
解析此问题答案不唯一,设计方案多种多样,给解答者留有充分的思考余地和创新空间,下面根据全等三角形性质给出几种设计图形供参考(如图5-1、图5-2、图5-3所示)。有兴趣的同学,还可以另外设计一些其他图形。
■
【教学目标】
1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实 验,发现新知识的能力、【重点难点】
1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2、重点:灵活运用SSS判定两个三角形是否全等、【教学过程 】
一、创设问题情境,引入新课
请问学生,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的、(学生们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等、)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等、满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究、二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?
先请几位学生说说画图思路后,教师指导,学生们动手画,教师演示并叙述书写出步骤、步骤:
(1)画一线段AB使 它的长度等于c(4、8cm)、(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C、(3)连结AC、BC、△ABC即为所求
把你画的三角形与其他学生的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现了什么?
学生们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的、这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S、S、S、)、2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形、)
3、问题
3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
三、小结
下面本人说说自己粗浅的做法。
一、实物展示三角形
让学生观察实物,摆脱了抽象性,克服了难理解的弱点,从而更容易使学生记住该公理、定义或定理,更容易使学生学会灵活运用该公理、定义或定理。在解题时,更容易从已知入手,发现题中角与角、边与边等之间的关系。找到解题的钥匙,进一步解决问题。那么怎样制作实物三角形呢?现在不管有多偏僻的农村学校,硬纸是很容易找到的,彩色粉笔也很容易买到。教师每天把当天所讲的有关三角形都按照图形的原形扩大10倍在硬纸上画出来,然后再剪下来,并把不同的三角形涂上不同的颜色。特别是当两个三角形有一部分重合时,教师更要这么做,否则学生就明白不了。如:本人在讲解下面这个练习题时,事先就按上述方法做了准备工作。
已知:如图,AB=AC,点E、点F分别是AC、AB的中点,求证:BE=CF.从原图上看,这两个三角形重合了, 很多学生明白不了为什么BE与CF分别是两个不同的三角形的边?
要证明这两个三角形全等为什么可以通过“SAS”来证明。因本人做出了两个不同颜色的全等三角形,并把它们按照图形重叠了。在讲解时,本人反复展开与重叠,并边展开边指出相等的两组边,相等的两个角(即重叠的角)。这样学生很快就明白了。从此以后,学生在解题遇到类似的情况就很清楚了。
二、教师每天上课前要细研教材
教师坚持每天上课前细研教材,把教材的内容彻底弄清楚弄明白。本节课所讲的三角形全等的重点在哪?难点在哪?教师在课堂怎么抓重点,对于难点,教师应怎么讲解,学生才懂,教师都应铭记在心,还应写在备课本上。教师在讲解每个定义与定理时,要结合实物进行讲解,同时要求每个学生能背下来。教师经常抽查学生背诵情况。初中阶段,学生所学的三角形全等一共有5个定理,其中普通三角形有4个,直角三角形有一个。
即:①两边及其夹角分别相等的两个三角形全等,通常简写成“边角边”或“SAS”。②两角及其夹边分别相等的两个三角形全等;通常简写成“角边角”或“ASA”。③两角分别相等且其中一组等角的对边相等的两个三角形全等,通常简写成“角角边”或“AAS”。④三边分别相等的两个三角形全等。通常简写成“边边边”或“SSS”。⑤斜边、直角边定理。斜边和一条直角边对应相等的两个直角三角形全等,通常简写成“斜边、直角边”或“HL”。
三、怎样教学生解题
教师在教完普通三角形全等时,归纳得出:无论证明哪两个普通三角形全等,必须要有三个条件成立。其中至少有一个条件是一组对应边相等,否则这两个普通三角形不会全等,同时教师要教会学生在图中用不同的颜色标出相等的条件,这样便于发现已知条件,便于找到缺少的条件,从而证明缺少的条件,当三个条件都有了,然后才写两个三角形全等。教师应引导学生思考,已经知道哪些条件了,还缺少哪些条件就可以运用哪个定理来证明。同时特别指出,所缺的条件必须要通过证明成立才成立,不要说看起来像就成立,不要想当然。在选择哪个定理来证明时,要选择最简单的,不要走弯路。另外应特别强调“HL”定理只适合直角三角形,在运用“HL”定理时,前面必须指出在Rt△什么与Rt△什么中,如:在Rt△ABC与Rt△DEF中,然后,才可以运用“HL”定理来证明。
四、要教会学生识别角与边的所属
有很多学生在证明三角形全等时,随随便便把一组角相等或一组线段相等,当作三角形全等的直接条件,常常犯错。例如:已知:如图,点B,F,C,E在同一条直线上,AC//FD,∠A=∠D,BF=EC,求证:△ABC≌△DEF
题目中的BF不属于△ABC的边,EC也不属于△DEF的边,所以BF=EC不能作为△ABC≌△DEF的直接条件,但很多学生常把它作为直接条件来解题, 那没说的就错了。我们只能由BF=EC得到BF+FC=EC+FC,即BC=EF,然后把BC=EF作为△ABC ≌ △DEF的直接条件才可以。
本人教初中数学20多年,常用上面的方法来教学生三角形全等,效果还可以。
1. 下列说法中正确的是 () .
A.两个周长相等的长方形全等B.两个周长相等的三角形全等
C.两个周长相等的梯形全等D.两个周长相等的圆全等
2. 如图, 已知AB=AC, BD⊥AC于D, CE⊥AB于E, 图中全等三角形的组数是 () .
A.5 B.4 C.3 D.2
3. 如图, △ABC≌△CDA, 并且BC=DA, 那么下列结论错误的是 () .
A.∠1=∠2 B.AB=CD C.AB=AD D.∠B=∠D
4. 如图, △AFC≌△DEB且AF=DE, 下列结论不正确的是 () .
A.∠1=∠2 B.AC=DB C.AB=DC D.∠B=∠C
5. 如图, ∠E=∠F=90°, ∠B=∠C, AE=AF, 下列结论: (1) ∠1=∠2; (2) BE=CF; (3) △ACN≌△ABM; (4) CD=DN.其中正确的结论有 () .
A.1个B.2个C.3个D.4个
6.△ABC是格点三角形 (顶点在网格线的交点) , 则在图中能够作出与△ABC全等且有一条公共边的格点三角形 (不含△ABC) 的个数是 () .
A.1 B.2 C.3 D.4
7. 如图, 给出下列四组条件: (1) AB=DE, BC=EF, AC=DF; (2) AB=DE, ∠B=∠E, BC=EF; (3) ∠B=∠E, BC=EF, ∠C=∠F; (4) AB=DE, AC=DF, ∠B=∠E.其中, 能使△ABC≌△DEF的条件共有 () .
A.1组B.2组C.3组D.4组
8. 下列各组图形中, 一定全等的是 () .
A.两个等边三角形
B.腰长相等的两个等腰三角形
C.两边和一角对应相等的两个三角形
D.两边对应相等的两个直角三角形
9. 如图 (1) , 由已知AB⊥BD, ED⊥BD, AB=CD, BC=DE可得AC⊥CE, 若将CD沿CB方向平移到图 (2) (3) (4) (5) 的情形, 其余条件不变, 则这四种情况下, 结论AC1⊥C2E仍然成立的有 () .
A.1个B.2个C.3个D.4个
二、精心填一填 (每空3分)
1 0. 已知△ABC≌△DEF, △ABC的周长为1 00 cm, DE=30 cm, DF=25 cm, 那么BC=______.
1 1. 如图, Rt△ABC中, ∠BAC=90°, AB=AC, 分别过点B, C, 作过点A的直线的垂线BD, CE, 垂足为D, E, 若BD=3, CE=2, 则DE=______.
1 2. 如图, 已知AB=CD, AD=BC, AC、BD相交于点O, 过点O的直线交AD、BC于点F、E, 则图中全等三角形共有______对.
1 3. 如图, △ADE≌△BCF, AD=6, CD=4, 则BD=______.
1 4. 如图, BE⊥AC于点D, 且AD=CD, BD=ED, 若∠ABC=54°, 则∠E=______.
1 5. 如图, 在△ABC中, ∠B=50°, ∠C=20°, 若以A为定点, 顺时针旋转得到△AC′B′, 当点C′与点B、点A在同一直线上时, AB边旋转了______度.
三、用心解一解 (16~19每题7分, 20~21每题8分, 22题11分)
16.复习“全等三角形”的知识时, 老师布置了一道作业题:“如图 (1) , 已知在△ABC中, AB=AC, P是△ABC内部任意一点, 将AP绕A顺时针旋转至AQ, 使∠QAP=∠BAC, 连接BQ、CP, 则BQ=CP.”小亮是个爱动脑筋的同学, 他通过对图 (1) 的分析, 说明了△ABQ≌△ACP, 从而得到BQ=CP, 之后, 他发现:将点P移到△ABC之外, 原题中的条件不变, “BQ=CP”仍然成立, 请你就图 (2) 给出说明.
17.如图是某城市的部分街道示意图, AB=CD, AD=BC, EF=FC, DF⊥EC.公交车甲从A站出发, 按照A、D、E、F的顺序到达F站;公交车乙从A站出发, 按照A、B、C、F的顺序到达F站.如果甲、乙分别从A站同时出发, 在各自的路径运行中速度及所耽误的时间均相同, 猜想哪一辆公交车先到达F站?为什么?
18.如图, AB//DC, AD//BC.聪明的小老鼠哼哼和唧唧分别从B、D出发, 沿垂直于AC的路径BE、DF去寻找奶酪.假设AC上堆满了奶酪, 哼哼和唧唧的速度相同, 它俩谁最先寻找到奶酪?为什么?
19.如图, 公园里有一条“Z”形的林荫小道ABOD, 其中AB∥OD, 在AB、BO、OD三段路旁各有一条石凳E、G、F, 且G恰好为BO的中点, E、G、F三点在同一条直线上, 点G与F之间有一座假山, 而使得两处不能直接到达.你能想出测量G、F之间距离的方法吗?说明其中的道理.
20.如图, 在△ABC中, ∠ABC=60°, AD、CE分别平分∠BAC、∠ACB.
(1) 求∠AOE的度数;
(2) 试说明:AC=AE+CD.
21.如图, 点E、F分别在正方形ABCD的边DC、BC上, AG⊥EF, 垂足为G, 且AG=AB, 求∠EAF的大小.
22.如图a, △ABC和△CEF是两个大小不等的等边三角形, 且有一个公共顶点C, 连接AF和BE.
(1) 线段AF和BE有怎样的大小关系?请证明你的结论;
(2) 将图a中的△CEF绕点C旋转一定的角度, 得到图b, (1) 中的结论还成立吗?作出判断并说明理由;
(3) 若将图a中的△ABC绕点C旋转一定的角度, 请你画出一个变换后的图形C (草图即可) , (1) 中的结论还成立吗?作出判断不必说明理由;
(4) 根据以上证明、说理、画图, 归纳你的发现.
参考答案
1.D 2.B 3.C 4.D 5.C 6.D 7.C 8.D 9.D 10.45cm 11.5 12.6 13.214.27°15.110
16.由∠QAP=∠BAC可得∠QAB=∠PAC, 由AQ=AP, ∠QAB=∠PAC, AB=AC得△QAB≌△PAC.故BQ=CP.
17.同时到达.理由:由DF⊥EC, 得∠DFE=∠DFC=90°, 由EF=FC, ∠DFE=∠DFC, DF=DF, 得△DFE≌△DFC, 所以DE=DC.又AB=DC得DE=AB, 从而由AD=BC, EF=FC得AD+DE+EF=AB+BC+CF.
18.同时找到奶酪.理由:由“ASA”可知△ACD≌△CAB, 因此AB=CD.又由“AAS”可知△ABE≌△CDF, 因此BE=DF.哼哼和唧唧以相同的速度跑了相同的路程, 因此它俩同时找到奶酪.
19.由AB∥OD得∠B=∠O, 又因为G为BO的中点, 所以BG=GO.
可证△BEG≌△OFG (ASA) 得FG=EG.所以要测量FG的长只要测量出EG的长即可.
(2) 在AC上截取AF=AE, 连接OF, 易证△AOE≌△AOF (SAS) , 有∠AOF=∠AOE=60°, 则∠COD=∠COF=60°, 故有△COD≌△COF (ASA) , 证得CD=CF, 所以有AC=AE+CD.
22. (1) AF=BE.由△ABC和△CEF是等边三角形得AC=BC, CF=CE, ∠ACB=∠FCE=60°, 可证△ACF≌△BCE, 得AF=BE.
(2) 同理“SAS”证△ACF≌△BCE, 得AF=BE.
(3) 此小题图形不唯一, 如下图.第 (1) 中的结论仍成立.
【全等三角形 教案】推荐阅读:
全等三角形的教案06-22
全等三角形专题教案09-11
“全等三角形”公开课教案09-19
全等三角形教学案11-16
全等三角形反思免费01-27
全等三角形评课稿07-18
全等三角形的作业试题09-27
全等三角形复习与小结10-23
全等三角形的判定定理12-11
八上全等三角形课件01-30