纳米材料在化工生产中的应用(共10篇)
纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
2.在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
3.在其它精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境科学领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。
4.在医药方面的应用
21世纪的健康科学,将以出入意料的速度向前发展,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。
微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。
纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。
5.结语
1.1 力学性质
高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。
1.2 磁学性质
当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。
1.3 电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属———绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。
1.4 热学性质
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
2 纳米材料在化工行业中的应用
2.1 在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子———空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
2.2 在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米Ti O2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米Si O2是一种抗紫外线辐射材料。在涂料中加入纳米Si O2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
2.3 在精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Si O2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和Si O2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。
纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
摘要:充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。这里主要介绍纳米材料在化工领域中的几种应用。
关键词:纳米材料,化工领域,应用
参考文献
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
[2]严东生,冯端.材料新星纳米材料科学[M].长沙:湖南科学技术出版社,1998.
[3][德]H.Gleiter.纳米材料[M].崔平,方永,葛庭燧,译.北京:原子能出版社,1994.
关键词:纳米技术;量子技术;隐身材料;红外屏蔽;电磁屏蔽
纳米技术和其他所有技术一样,将在未来战争中发挥着不可估量的作用。例如:纳米机器人、纳米飞机、蚊子导弹等许多无人化设备将在侦察预警、指挥控制和精确打击等方面发挥着越来越重要的作用;纳米卫星组成的卫星监视网,可以实时观察到地球上的每一个角落,使战争变得更加透明;纳米隐身技术可以最大限度地隐藏自己,同时千方百计地寻找和发现敌人,起到武器装备隐身的目的,如用做隐形飞机涂料的纳米ZnO对雷达电磁波具有很强的吸收能力。
纳米武器与传统武器的不同,第一,纳米武器具有非凡的智能化功能。量子器件的工作速度比半导体器件快1000倍,因此,用量子器件取代半导体器件,可以大大提高武器装备控制系统中的信息传输、存储和处理能力。[1]采用纳米技术可使现有雷达在体积缩小数千倍的同时,其信息获取能力提高数百倍;能够将超高分辨力的合成孔径雷达安放在卫星上,进行高精度对地侦察。纳米技术还可以使武器表面变得更“灵巧”,使用纳米材料制造潜艇的蒙皮,甚至可以灵敏地“感觉”水流、水温、水压等极细微的变化,并及时反馈给中央计算机,最大限度地降低噪声、节约能源;能根据水波的变化提前“察觉”来袭的敌方鱼雷,使潜艇及时做规避机动。用纳米材料做军用机器人的“皮肤”可以使之具有比真人的皮肤还要敏感的“触感”,从而能更有效地完成军事任务。
第二,武器装备系统超微型化。纳米技术使武器的体积、重量大大减小。用量子器件取代大规模的集成电路,可使武器控制系统的重量和功耗成千倍的减小。纳米技术可以把现代作战飞机上的全部电子系统集成在一块芯片上,也能使目前需车载的电子战系统缩小至可由单兵携带。用纳米技术制造的微型武器,其体积只有昆虫大小,却能像士兵一样遂行各种军事任务。由于这些微型武器隐蔽性好,它们可以潜在敌方关键设备中长达几十年之久。平时相安无事,战时则可群起而攻之,令人防不胜防。
第三,由于用纳米技术制造的微型武器系统,一般来说几乎没有肉眼看得见的硬件单元的连接,省去了大量线路板和接头,因此与其他的小型武器相比,其成本将低得多,而运用也十分方便。如用一架无人驾驶飞机就可以将数以万计的微机电系统探测器空投到敌军可能部署和地域或散布在天空中,而利用纳米技术生产出的纳米卫星的重量小于0.1千克,一枚“飞马座”级运载火箭一次即可发射数百乃至数千颗卫星,覆盖全球,完成侦察和信息转发任务。正因为如此,美国战略研究所的一位科学家说:“道理很简单,如果美国10艘航空母舰毁了四五艘,可能会重创美国军力。如果以这笔钱来发展袖珍武器,那么我们可以以量取胜,毁了100艘袖珍潜艇或飞机,也无关痛痒。
第四,纳米武器与传统的武器明显不同还表现在,它以神经系统为主要打击目标。信息技术的发展使战争形态发生了根本的变化,一方面,打击手段不断智能化、精确化;另一方面,打击目标也从传统的工业生产设施转向信息系统。纳米武器由于具有超微型和智能化的明显优势,打击敌方的神经系统必然是纳米武器的首选目标,通过纳米武器所焕发出来的巨大战争威力而使敌方宏观作战体系“突然瘫痪”,以致不得不屈服于微型武器所造成的战争压力。以隐身材料为例。
纳米材料由于质轻层薄,具有特殊的光学性能,可实现高吸收、宽频带、红外微波吸收兼顾等要求,是一种非常有发展前途的新型军用雷达波吸收剂,由它制成的材料在很宽的频带范围内可以逃避雷达的侦查,同时也有红外隐身的作用,纳米材料已成为隐身材料重点研究方向之一。纳米材料因为具有很高的对电磁波的吸收特性,纳米材料现已受到各主要国家的高度重视,并把其作为新一代隐身材料进行探索与研究,在国外,涂敷型隐身材料技术已经比较成熟,结构型隐身材料也已经开始使用。
目前国内外研究的纳米雷达波吸收剂有几种类型,其中主要的一种类型是用纳米氧化物吸收剂,包括Fe3O4、ZnO、NiO、MoO2等单一氧化物和LaFeO3等复合氧化物纳米微粉,它们不仅吸波性能优异,而且还建有抑制红外辐射等数种功能。另外Al2O3、Fe2O3、SiO2和TiO2的复合粉体与高分子纤维结合对中红外波段有很强的吸收性能,这种复合体对这个波段的红外探测器有很好的屏蔽作用。纳米微粒用于热红外伪装上主要是为降低被伪装物的红外发射率。有些纳米微粒具有很强的吸收中红频段的特性,普通的纺织材料通过特殊的织物设计和一定的纺织、染整加工,可以成为具有特种性能的伪装材料,通常采用对普通材料进行深层加工和特殊的服装设计来制成红外伪装物,这些织物对人体释放的中红外频段红外线有屏蔽作用。
纳米粒子对红外和电磁波屏蔽的机理主要有两方面:(1)由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多。这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用。(2)纳米微粒材料的比表面积比常规粗粉体大很多,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到屏蔽作用。
海泰纳米生产的纳米氧化物各类粉体,其纳米氧化钛和纳米氧化锌已被军方用来做吸波材料,用于道路、桥梁和军事目标的伪装,纳米氧化锡锑(ATO)被用来屏蔽激光波,ATO对红外线有良好的屏蔽性能,屏蔽率可达近70%以上,和其它红外隐身材料混合使用,可有效的实现对红外探测器的屏蔽,可用作红外隐身服装或红外隐身保护罩。
参考文献:
[1].茅金丽;;武器发展史[J];现代兵器;1981年09期
[2].沈海军,史友进;纳米电子器件与纳米电子技术[J];微纳电子技术;2004年06期
[3].任宏亮,何金田,梁二军,田臻锋;纳米气敏传感器研究进展[J];微纳电子技术;2003年06期
[4].丁一凤;;武器发展[J];现代兵器;1980年02期
[5].林鸿溢;纳米科学技术的新进展[J];液晶与显示;2002年01期
[6].周德俭;纳米技术在电子与军事领域中的应用[J];电子机械工程;2004年06期
[7].杜晋军,李俊,洪海丽,刘振起;纳米电子器件的研究进展与军事应用前景[J];装备指挥技术学院学报;2004年04期
[8].张林.纳米技术将引起人类社会的深远变革[J];中国新技术新产品精选;2001年Z1期
[9].刘飚,官建国,王琦,张清杰;纳米技术在微波吸收材料中的应用[J];材料导报;2003年03期
新纳米水净化技术去除饮用水中微污染物
院(系)
化学学院 专
业
化学教育
课 程
绿色化学 学生姓名
学 号
指导教师
二○一三年六月
新纳米水净化技术去除饮用水中微污染物
摘要:“应用纳米技术去除饮用水中微污染物的基础研究”和纳米试剂盒技术,可快速检测并清除污染物。这套包括新型纳米材料及配套处理程序的技术对控制饮用水源砷、氟等污染具有重要意义。关键词:纳米材料、饮用水、微污染物、检测、净化
在本学期的《绿色化学》课程的学习中,有一次老师专门提到了水污染,并且对饮用水的净化作了强调。我印象最为深刻的是老师的这句话:虽然平常在对水进行净化时,已经做到了除去颗粒,臭味,一些重金属以及有机物或无机物,但是,这远远是不够的,我们所饮用的水中仍然有很多含有大量微生物或者含有氯元素的物质,其在净化过程中并未完全除去,没有达到其标准。这时,我听着感觉毛骨悚然,一想到其中含有大量微生物,就有些后怕,所以在本次论文中,我收集了很多关于除去微生物的技术,主要是纳米技术。
污水中一般都含有细菌病毒、有毒有害的物质、悬浮物质、异味污染物等污染物,并对人们的生活和健康造成不良影响。因此,污水处理就是去除污水中的污染物,使得污水得到净化。
由于传统的污水处理方法不仅效率低,运行费用高,并且还存在二次污染的问题,因此污水处理问题一直没有达到理想的解决效果。
1、饮用水中微污染物的的种类、来源、危害
饮用水中的微污染物包括无机微污染物和有机微污染物。其中,无机微污染物主要有Pb(II)、As(Il1)、Hg(II)、Cu(II)、Cr(V)等金属离子和氟离子。饮用水中的重金属离子来源广泛,包括矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属离子废水,以及天然地质结构中缓慢溶出的重金属离子等。矿山工业产生的废水主要是采矿和选矿废水,其中含有各种矿物质悬浮物和有关重金属离子。有色冶金、加工业排出的废水中,多含有汞、砷、铬等元素。此外,一些轻工业和化学工业排出的废水也含有汞、铅、砷等重金属离子。若上述废水未经处理或处理不完全便流人江河,就对饮用水源造成了污染。饮用水中只要含有微量的重金属离子即可产生毒性效应,且具有持续性和放大作用,经过生物累积可以在人体内逐渐富集,长期危害人体健康。
有机微污染物也被发现在饮用水中广泛存在,可分为两大类:天然有机物(NOM)和人工合成有机物(soc)。NOM 是动植物在自然循环过程 中经腐烂所产生的物质,主要包括腐殖质、微生物分泌物、溶解的动植物组织及动物的废弃物等。SOC大多为有毒有机污染物,其中有些种类是致癌物或诱变剂等,是饮用水致突变活性增强的重要起因,如三氯甲烷、多氯联苯、杀虫剂、卤代脂肪烃、多环芳烃等。长期饮用含有微污染物的水,通过生物累积作用,可对人体产生致癌、致畸致突变等效应
有研究显示,自来水中有机污染物在一定剂量范围内可对细胞产生不同程度的DNA损伤作用。如果动物长期暴露于高剂量氯化消毒副产物中(例如三氯甲烷),可以导致肝癌和肾癌。另外,饮用水氯化消毒产生的呋喃酮也会对人体产生毒害,是强致突变物质之一研究了瑞典婴儿的出生缺陷影响因素,发现饮用水中的三氯甲烷可以增加先天性心脏病的患病几率。另一项针对挪威全国新生儿的流行病学调查也显示,心脏病和呼吸系统的出生缺陷与饮用水中有机微污染物有着重要关联。与有机微污染物类似,无机微污染物(如重金属离子)也对人体健康产生长期的严重危害。一些重金属离子(如铅、砷、氟、镉等)通过饮用水进人人体并在体内积累,可导致机体代谢途径受阻,进而危害人体健康,甚至造成特殊的地方病。其中,砷已被美国疾病控制中心和国际防癌研究机构确定为第一类致癌物。
2、纳米技术在污水处理中的应用
纳米技术在污水处理中的应用主要为光催化氧化技术、纳滤技术和絮凝技术三种。
1)光催化氧化技术。光催化氧化技术可以有效处理氰化物、金属粒子及各种有机酸等物质,使污水中的污染物最终氧化降解生成H2O和CO2,据有关统计,已发现数百种有机污染物质可以通过光催化氧化技术进行处理。而这种技术作用的关键在于其光氧化催化剂,TiO2 被认为是目前最有效的光氧化催化剂。
由于纳米TiO2,光催化氧化技术具有无二次污染的特点,不仅降解效率高、无选择性,而且其氧化反应的条件温和,因此几乎适用所有的污水处理。
2)纳滤技术。纳滤(NF)是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。纳滤技术属于压力推动的膜工艺,这种技术作用的关键在于纳滤膜。纳滤膜可以取代电化学和吸附的方法,对制浆和造纸工业废水中的污染物进行处理,可除去来自木浆漂白过程中产生的氯化物和深色物质。另外,纳滤膜也可用于纤维加工过程中漂白水的处理,以控制污染物的排放量。纳滤膜法水处理技术以其特殊的优势,获得了世界各国的水处理工作者的普遍关注,在水处理技术的研究和开发领域取得了可喜的成绩。纳滤原理: 源水 →源水泵 →机械过滤器 →活性炭过滤器 →精密过滤器 →高压泵 →纳滤主过滤系统
3)纳米絮凝技术。纳米絮凝技术是以纳米絮凝剂(如SiO2)代替传统的絮凝剂,由于纳米颗粒具有强大的吸附能力,因此通过吸附架桥、卷扫网捕等絮凝作用,可以除去传统絮凝法无法除去的污染物质,并且相关的沉淀物质具有易脱水的特点。
3、纳米材料在污水处理中的应用
纳米材料由纳米微粒组成,具有吸附、催化等多种新的特性,目前应用最为普遍的纳米材料为TiO2。在污水处理方面,TiO2 扮演着非常重要的角色。
其中,由于纳米TiO2,具有很强的还原能力,因此在有机污水处理中,能将高氧化态银、铂等贵重金属离子吸附于材料的表面,通过光电子产生的强还原能力,将金属粒子还原为细小的金属晶体,不仅除去了污水的毒性,还利于贵重金属的回收。而在无机污水处理中,纳米TiO2作为光催化剂。在阳光下,它能催化氧化污水中的有机污染物质,使其迅速、完全降解为水、CO2 等无害物质。据相关统计,纳米TiO2,能处理80多种有机有毒物质。
4、纳米技术在污水处理中的新前景
来自英国科学家发明了一种纳米多孔材料制备新方法——共渗透振动法,该方法有望应用于水净化和化学感应器等诸多领域。
通常,制备纳米多孔材料时,多重金属组分是必要的。当移除较小组分时,小的纳米孔就产生了。但是,由于要移除较小组分必须布满材料内外,因此制备纳米多孔材料受到制约。而COS法则更高效灵活,就像如何释放装满盐水的气球里的盐分一样。只需要把它放在清水;里,通过渗透力,让清水不断进入气球直至气球破裂,从而释放出所有盐分。最后将一系列碎片连起来,就得到纳米多孔材料。
5、展望
饮用水的安全卫生是21世纪人类面临的最富有挑战性的问题之一。针对饮用水中微污染物的检测与去除开展研究,具有重要的科学价值和社会意义。
1)饮用水中微污染物的检测与净化,是一个普遍性课题,与每个人自身的健康息息相关。因此,发展新型纳米材料与技术的同时,也应考虑其成本、简易性、便携性与普适性。
2)纳米材料具有高活性的同时,也极易受到各种杂质的影响,甚至引起中毒失活。在纳米材料应用过程中配套以相应的预处理和后处理措 施,是保障纳米材料长期稳定起效的必要环节。3)基于纳米材料与技术较传统的饮用水净化体系的不同之处,建立相应的检测规范与评价标准,是未来一段时间内需要提上议事日程的新
参考文献
[1]马荣萱,李继忠.纳米技术及材料在环境保护中的应用[A].环境科学与技术.2006(7):29(7).
[2]覃爱苗,廖雷.纳米技术及纳米材料在环境治理中的应用[A].中山大学学报.2004(6):43.
[3]丁明洁等.用纳米技术处理造纸工业废水的研究进展[A].中国造纸学报.2007年(3);102—105 [4]张建江,马永红,杨林.饮用水中有机污染物的“三致”作用研究进展[J】.现代预防医学,2007,34(18):3474—3475. [5]向伦辉,鲁文清,吴志刚,等.武汉市饮用水中有机提取物对HepG2细胞DNA 的损伤作用[J].职业与健康,[6]周敏.饮用水氯化消毒副产物对人体健康的影响[J]_职业与健康,2010,26(23):2866—2867.
[7]刘金云,万玉腾,刘锦准,付向前,张晓嫚,黄行九,纳米材料与饮用水中微污染物的检测和去除
综述了纳米催化剂、金属粉和高能氧化剂在推进剂中的.应用研究现状,总结了纳米材料应用中的分散方法和保护方法,展望了纳米材料在推进剂领域的应用前景.
作 者:胥会祥 樊学忠 刘关利 作者单位:胥会祥,樊学忠(西安近代化学研究所,陕西,西安,710065)
刘关利(驻804厂军事代表,陕西,西安,710025)
摘要:随着科技的不断发展与进步,MATLAB软件开始在化学工程与工艺实验数据处理中应用开来。因为传统的数据处理方式十分繁琐,因此MATLAB软件的出现弥补了传统化工实验数据的数据处理缺陷,提高了化工实验数据的处理效率。文章通过研究MATLAB软件在化学工程与工艺实验数据处理中的应用,分析其处理数据的优势与特点。
关键词:化学工艺实验;数据处理;MATLAB软件;化工实验数据;
目录 MATLAB软件......................................4 2 化学工程与工艺实验数据处理......................4 3 化学工程与工艺实验数据处理设计..................5 3.1 数据处理的程序框架..........................5 3.2 数据处理的程序编制..........................6 3.2.1 数据输入...............................6 3.2.2 处理和作图。...........................6 3.2.3 建立数据库.............................7 3.3 程序的运行..................................7 4 结语............................................8 参考文献...........................................9 MATLAB软件
MATLAB软件最早由美国的Mathworks公司提出,其主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。近年来MATLAB软件逐渐被用于化学工程与工艺实验的数据处理中,极大地提高了数据处理的效率。化学工程与工艺实验数据处理
化学工程与工艺实验不同于普通的化学实验只重视一个原理的求证,它的目的是为了解决工业中的化工问题,其特点主要有实验时间长、实验规模大和实验数据处理繁杂等。在整个化学工程与工艺实验里数据处理是必不可少的阶段,也是印证化学实验成果是否行之有效的必要手段,但是由于实验数据过于庞大,实验当中相关的参数关系大多是非线性的,单单依靠传统的手工计算不仅速度慢,还容易出现计失误的情况,根本无法满足实际的需求,因此,将MATLAB软件融入实验数据的处理中刻不容缓,它能有效地将繁琐的计算步骤化解成简单的计算,提高工作效率,让实验数据的准确性达到最高值,避免误差的产生。以下通过研究两个化学工程
与工艺实验,分析MATLAB软件在处理实验数据时与传统的手工计算有什么优势和便利。化学工程与工艺实验数据处理设计
3.1 数据处理的程序框架
因为每一个化学工程与工艺实验的目的都不相同,因此其处理的步骤以及涉及的化学公式也不尽相同,不可能以一个程序来概括,但是经过大量的实验研究和总结,发现不同的化工实验中都会有其相似之处,它们都可以由图1来概述:
图1 3.2 数据处理的程序编制
3.2.1 数据输入
化学工程与工艺实验的数据输入主要依靠提示的函数input实现,比如以温度为例子,则其输入函数为:t=input(‘请输入实验的温度摄氏度):’),其中输入函数大多是以矩阵的输入形式为主。3.2.2 处理和作图。
化学工程与工艺实验中得到的数据时常会存在离散的情况,必须经由多种拟合的方法将它们结合成一条或多条连合的曲线,而其中最常用的拟合方式是最小二乘法,因此本实验设计中的拟合方式也采用最小二乘法的方式。设实验的离散数据(x1,y1)通过最小二乘法将其拟合成因变量y,自变量x,输入的函数关系为y=f(x),函数关系的主要思路是让离散数据中的x1的残差平方以及Σ(f(x1)-y1)2达到最小值。因为在得出化工实验数据中多少会因为外界的因素存在着一些误差,因此最小二乘法可以无需使输入函数y=f(x)必须经过全部的离散数据(x1,y1),但是残差平方和必须达到最小值。根据最小二乘法的拟合方法可知,最小二乘法可以满足化工实验数据处理中的拟合应用需求。在化学工程与工艺实验中会涉及到流体的流动阻力研究,研究主要是通过测试流体的流动阻力,在经过特定的计算之后得出摩擦系数(λ)和雷诺准数(Re)的离散数据,再同理,经过最小二乘法拟合出连续的曲线,并根据其画出相对应的图形。因为摩擦系数(λ)和雷诺准数(Re)属于成双对数函数,则:λ=aReb+c(1)当a,b,c是常数时,则可以设c=0:λ=aReb(2)因为λ与Re属于成双对数函数,则:Logλ=blogRe+loga(3)得出上述式子之后可以将MATLAB里的函数polyfit()进行线性的拟合,以作为化工数据处理的程序原理。3.2.3 建立数据库
因为经过上述的设计,化学工程与工艺实验数据处理只能得知在特定的温度下比如10℃、20℃以及30℃等)实验的物性数据,但是在实际的生产中,工业生产所涉及的温度多变,不单只停留在设计好的温度当中,因此,这就需要我们在数据中选择最相近的数据,假设它们属于线性的关系,再利用内插或者外推的方式计算出实验的物性数据常数。在本文的化工实验中,编写的程序已经将实验温度和密度以及实验的温度与黏度进行多次的实验拟合,建立出了一个相对完的数据库,在工作中只需将温度输入进系统,则程序可以自动跳出在特定温度下的物性数据,提高数据处理效率。
3.3 程序的运行
在编制完成化学工程与工艺实验的数据处理程序,且建立数据库之后,便应该输入数据以验证程序是否能有效地处理实验数据。在化学工程与工艺实验的数据处理中,MATLAB软件的应用是十分重要的,经过实验可知,在化工实验当中会出现大量的离散数据,必须经过拟合的方式进行处理,其处理过程中不仅工作量大,而且十分繁琐,一旦出现差错则必须重新推翻重来,浪费大量的人力物力资源,而且在处理好实验数据之后,在查看实验当中还要将化工实验数据重新计算一次,看结果是否与原先的计算结果相同,工作量十分重,但是如果运用MATLAB软件则大大降低了数据处理难度,只要在MATLAB软件中输入相应的化工实验数据,就可以得到结果,节省了时间,提高了工作效率。结语
在实际的应用中,化学工程与工艺实验所要处理的数据十分庞大,而且涉及的计算公式也十分多,甚至很多时候为了将数据的计算公式导出来还要建立复杂的模型,一旦有一个步骤出现差错则会直接影响到实验的成果,如果使用传统的手工计算方式,为了避免差错则必须对每一个数据处理环节进行反复计算,降低了工作效率,因此MATLAB软件的应用对于化学工程与工艺实验的数据处理十分重要,它不仅将复杂的计算变得简单,也让事后的实验验证效率得到提高,促进了化工实验的 发展。
参考文献
[1] 赵新强,谢英慧,曹吉林,李国玲.化学工程与工艺教学实践[J].河北工业大学成人教育学院学报,2014,6(1).
[2] 韩正.计算机引发化学工程革命[J].发明与创新(综合科技),2013,12(1).
2001年,我国南风化工结合清华大学纳米化工工程中心建立了迄今为止世界上最大的碳纳米管生产线。2007年9月,拜耳材料科技公司在Laufenburg镇建立了纳米管的生产线,大大提高了碳纳米管的产能。由此可见,碳纳米技术在化工产业的应用在我国也同样引起了狂热。它的应用前景非常开阔,几乎涉及化工、物理的各个行业。
一、纳米技术管技术在石油化工领域的应用价值
1、碳纳米管吸附剂在石油化工领域的应用价值
1970年,荷兰飞利浦研究室和美国Brookhaven国家实验室发现了可以储存氢的LaNi5、Fe Ti,揭开了对氢气储存的研究序幕。接着1999年,加州理工大学的Y.Ye和莱斯大学的J.Li u研究出了纳米管储存氢气的功能,但是在同年年底密歇根大学的R.T.Ya ng指出P.Chen的实验并不成功,他所测得的碳纳米管吸收的大部分是水蒸气,后来很多学者综合前人的研究发现了在一定条件下碳纳米管具有吸收氢气和水蒸气的能力,从此揭开了碳纳米管吸附剂的应用价值。据研究在不同的高温下,碳纳米管对氢的吸附能力不同。但是在873K的恒温下,重复用碳纳米管吸氢可连续吸附氢。另外碳纳米管在常压下几乎不吸附水,但是它对正已烷具有很强的吸收能力,而对乙醇的吸收能力虽没有吸收正已烷强但是却大于水。众所周知石油的主要成分是碳氢化合物,碳纳米管对氢、正已烷的吸附能力正好可以用来提炼石油中的氢、正已烷等碳氢化合物。
2、碳纳米管的催化性在石油化工领域的应用价值
由于碳纳米管特殊的结构,它具有储氢性、吸附性和催化作用。人们对碳纳米管在化学中的催化作用也很关注。科学家对碳纳米管的各种催化反应做了深度的研究,特别是碳纳米管在合成氨的化学反应中的催化作用研究。目前,化工界已有很多关于碳纳米管的催化作用的成果,并且它的各种催化作用在石油领域已经得到广泛的应用,具有很高的应用价值。
3、碳纳米管的符合材料的导电相和加强相在石油化工领域的应用价值
2009和2010年间,中国学者李晓波[6]、马如飞等[7]人发现了碳纳米管的复合材料,并作进一步实验研究发现了碳纳米管的导电性能。把碳纳米管加在复合材料中,可以加强复合材料的作用。比如:用碳纳米管制造的隐身材料,可以应用在飞机、导弹、卫星、炮火等领域中。而这些领域均属军事领域,军事领域大多装备都要求隐形,而碳纳米管制成的隐形材料正好可以应用到这些军事领域。以后的军事装备的要求越来越高,其中装备隐形是最重要的条件。所以,碳纳米管技术在军事领域有着巨大的应用价值。
二、碳纳米管技术在精细化工中的应用价值
1、碳纳米管技术在精细化工催化领域中的应用
董鑫[8]等人首次用碳纳米管研究出了制作甲醇的高速催化剂,这种加入碳纳米管的催化剂,甲醇的产率可以达到1064mg每小时,每小时比过去产率提高了300多mg,从此开启了我国碳纳米管在精细化工催化领域的应用价值。接着,P laneix[9]等人首次研究出了用碳纳米管作催化剂的载体,从此碳纳米管多了催化剂载体的功能。后来,中国的蔡云等人发现了用碳纳米管作载体可以提高催化剂活性的功能。碳纳米管吸附氢之后,在一定的温度条件下可以提高氢的选择性和催化活性,加快催化剂的催化速度。
2、碳纳米管技术在化工添加剂领域里的应用价值
随着世界各国科学家对碳纳米管的研究,很多科学家将碳纳米管可以作为一种优质的添加剂应用到高分子材料中,发现了碳纳米管在化工添加剂中新的应用价值。之后,碳纳米管在化工添加剂领域得到了高速发展。因其作为一种高分子材料的添加剂可以增加精细化学品的功能和作用,所以在精细化工领域有着很高的应用价值,应用前景也十分喜人。
3、碳纳米管技术在塑料领域中的应用价值
美国RTP等公司开发出了碳纳米管在塑料领域的一系列应用,表明碳纳米管已在一些国家获得实际应用。因为碳纳米管具有导电性能,而它又属于非金属材料,所以碳纳米管可以添加到树脂中,使树脂具有较强的导电性能。如果塑料具有易加工、成本低和导电性能等多种优点,就可以运用在印刷线路板、电冰箱、电视机、电脑、摄影胶片、防电磁辐射材料等多种领域中。碳纳米管的这些应用价值,给精细化工产业带来了新的生机,注入了新的生命。碳纳米管技术运用在精细化工产业中,既可以降低本简易制作流程,又可增加精细化工产品的功能,这两个因素决定碳纳米技术在精细化工产业中蕴藏了巨大的潜能。
文章结合碳纳米管的吸附性、催化性和导电性等特点,综述了碳纳米管在相关领域的应用。碳纳米管的这些应用价值,吸引着世界各国的学者对其进行研究开发应用。目前,已经有很多关于碳纳米管的研究成果公诸于世。相信,不久的将来碳纳米管的引用研究将更深入,它在化工领域的应用价值也将愈加巨大。
摘要:碳纳米管因其独特的物理化学性能,在90年代一经发现立即引起化工行业的热潮。世界化工行业越来越看好碳纳米管的应用前景,化工行业各路公司纷纷投资生产碳纳米管生产线。文章结合碳纳米管的特点,重点阐述了碳纳米管技术在石油化工领域、精细化工领域和静电自主制备以及导电涂料中的应用价值。
关键词:碳纳米管,技术,化工行业,应用价值
参考文献
[1]周智敏颜学敏赵庆美竣甲基纤维素接枝A M和D M C制备高吸水性树脂研究[J]生物与生物工程2009[5]6 0-62
[2]赵宝秀王鹤郑形微波辐射纤维素基高吸水树脂的合成工艺及性能[J]高分子材料科学与工程2005[4]13-136
[3]孙静碳纳米管填料的静电自组装制备及在导电涂料中的应用[J]涂料工业2011[10]24-29
关键词:磁化学;无机合成;有机化学;环境保护
文章编号:1005-6629(2007)11-0053-04中图分类号:O441 文献标识码:E
磁现象普遍存在于物质世界。20世纪初,电磁学奠基者法拉第就发现磁场与化学之间有着密切的联系,并首先提出了磁化学的概念。经过数十年的努力,磁化学在实验技术上有了很大进步,灵敏度高、分辨率强,大型仪器(核磁、顺磁、磁天平等)的广泛应用,直流、交流、脉动磁场的实施,超高磁场(40T以上)的建立,开辟了控制化学过程的新途径,促进了磁化学的基础理论研究和在化工领域的应用研究。
1磁场的特性及其对化学反应影响机理
1.1 磁场的特性
(1)磁场的能量较低。在化学化工中应用的场强一般都在1T以内,其能量一般只是粒子热运动能量的万分之一到百万分之一,与化学键的键能相比,也差2~3个数量级。
(2)磁场能对任何置于其中的磁极或电流施加作用力。物质的本质是电性的,无论原子、分子,都是由带负电的电子在某种原子核的正的库仑场中运动,所以从微观机理上看,磁场必然要对置于其中的运动的带电微观粒子(电子、质子、各种离子等)产生不同程度的影响,产生影响的作用力是洛仑兹力。洛仑兹力的计算公式见式(1):
F的大小与磁感应强度B成正比,但方向总是与带电粒子运动方向垂直,说明它不能改变带电粒子的运动速率和动能。
1.2 磁场影响化学反应的机理
洛仑兹力本身的特性决定不能赋予体系能量,因而不能直接以能量因素影响化学反应,但它可以改变粒子的运动方向。化学反应是伴随着电子运动状态的改变而发生的化学键的断裂和形成过程,每一旧键的断裂和新键的形成都是轨道间的分裂和叠加的结果,轨道状态及变化趋势直接关系着键交换的可能性和形成的键的稳定性,若变形发生在有利于轨道叠加的方向,则可以加强对反应体系至关重要的离域效果,加速化学反应或降低活化能,若变形不利于反应需要的叠加方向,也可能对化学反应起负作用。磁场除了对前线轨道伸展状态施加影响外,还可能由于变形产生极化效应,影响其解离的快慢和程度,从而影响化学反应速度。
参加化学反应的物质,根据组成物质分子在分子轨道中的电子配对或未配对,它在磁场中产生的效应不同,可把物质分为顺磁性、反磁性和铁磁性三类物质。
具有磁矩的分子表现为顺磁性,外磁场会影响磁性分子的取向,亦即影响反应体系的熵。对于磁矩为零的分子或原子,其反磁性总是存在的,磁场亦可在一定程度上影响其取向;另一方面,类似于非极性分子的“瞬时偶极矩”一样,磁矩为零的分子也有可能存在“瞬时磁矩”,从而使磁场对其取向施加影响。根据化学反应的过渡状态理论,反应速率常数k的大小见式(2):
可见,除了浓度、温度影响反应速率外,还有两个结构因素:活化焓(在液、固态反应时,约等于活化能)和活化熵能影响化学反应,即一个能量因素、一个熵因素。由于磁场对反应体系能量的影响一般较小,主要是影响分子、原子及电子的自旋方式和自旋取向,即影响反应体系的熵,从而影响反应速率。
除了上述基于量子化学基础上的影响反应速率的过渡态机理外,磁场影响化学反应的机理还有多种,如自由基对机理,三重态-三重态机理,三重态-偶极子对机理和三重态机理等。
2 磁场在化学化工中的应用
磁化学分为无机磁化学、有机磁化学、生物磁化学和医疗磁化学等。本文仅介绍应用磁效应较多的一些具体的化工过程。
2.1无机磁化学合成
2.1.1合成氨
朱传征等进行了常压下磁场对合成氨催化反应的影响研究,结果发现,当控制N2与H2流速比为1∶3,预还原合成氨催化剂A体积为3.538mL,磁场能提高合成氨反应的反应速率和转化率,这种关系并非线性,在低磁场下有一个最佳的磁场强度范围(150~300mT),最大转化率可达0.356%。上述效应的产生,主要是在磁场影响下,还原态的α-Fe晶体Weiss磁畴最小,导致顺磁性的FeO超饱和,磁滞损失增大,饱和磁化减小,致使催化剂活性增加,从而提高转化率。
2.1.2 合成无机功能材料
人工晶体是非常重要的电子、光子材料,而生长大尺寸及高质量的晶体材料一直是各类晶体材料制备的关键技术。1966年Chedzey 和Vecch各自独立地通过磁场阻抑湍流实验表明,外加磁场可提高晶体的微观均匀性。上世纪70年代末,人们发现磁场对Si单晶生长中引入晶体的氧浓度影响很大。1982年,Hoshikawa在0.1T的磁场下,从熔体中生长的硅单晶的溶质条纹减少,同时Suzuk与其合作者也报道了在侧向磁场下生长出无位错5cm直径的掺硼Si单晶。梁歆桉、金蔚青等通过实时观察的方法研究了磁场对KNbO3晶体的生长边界层及形貌的影响,发现磁场可部分抑制KNbO3熔体中的浮力与运动对流效应,使得随磁场强度的增大熔体中温度梯度减小,有利于氧化物晶体的生长。
2.1.3 合成性能优异的金属材料
磁场能显著影响铁基合金的相变过程,冯光宏等进行的磁场处理对微合金钢的相变过程研究表明,磁场处理对微合金钢由奥氏体向铁素体的转变过程产生影响,一是增加了铁素体的形核率,二是提高了晶粒的长大速度。由于磁场对铁素体形核率的影响效果显著,缩短了相变时间,最终得到细晶组织。稳恒磁场还可使低碳钢的晶粒细化,使材料组织的均匀度提高。脉冲磁场处理则是一种新的非热处理型降低焊接结构中残余应力的方法。低频磁处理能大大提高各种刀具和汽车轮机的使用寿命,这也是由于磁处理降低了工具中残余应力所带来的结果。
2.2 有机磁化学
2.2.1 酯化反应
外磁场对乙酸乙酯的合成有催化作用:
CH3COOH+CH3CH2OH→CH3COOCH2CH3+H2O (3)
酯化反应③经0.35T的磁场处理后,乙醇的NMR化学位移发生了变化,乙酸的电导率增加了0.201μs·cm-1,酯净增率超过50%,反应速度加快。
根据此原理,可用磁场催化白酒的老熟。酒在磁场作用下,酒中的极性分子键受磁场影响,加速了极性分子的定向排列,使得各成分之间的化学反应容易进行,促进了酒中的酯化、氧化和缔合,使酒中的高级醇、醛类的含量降低,酸、酯的含量增加,减少了自由乙醇分子数,使酒迅速达到稳定状态,变得醇和香且杂味减小,从而达到催陈老熟的效果。经过一次磁化处理的酒,其自然老熟期可缩短3~4个月,使酿酒费用大为降低。当然,磁化老熟与自然老熟效果还是有一定的区别。
2.2.2 蔗糖转化
蔗糖转化为D-葡萄糖和D-果糖的反应一般需要在酸或酶的催化下进行。金增瑗等研究了磁场对蔗糖转化的影响。结果发现,不同浓度HCl催化,未经磁化与经过磁化(B=0.30T)的蔗糖在转化反应中旋光度到达零的时间不同,其中以2mol·L-1的HCl效果最好,磁化后到达旋光度为零的时间比未经磁化时间缩短18.25%。B=0.30T以下,随场强增加,反应速率常数增加,说明磁场从动力学上影响了反应的进程,但高于0.30T以后反应速率常数趋于一定值。
蔗糖分子的构象见图1:
图1 蔗糖分子的构象
蔗糖转化反应的速率常数在适当的磁感应强度下有所增加,原因是1个半缩醛氧原子在磁场的作用下接受H+的能力变强,变强的原因应归结于洛沦兹力改变了电子的运动状态,促使分子磁矩发生旋进,造成1个半缩醛醚氧的轨道伸展状态发生了有利于接受H+变形,促进过渡态半椅式糖苷阳离子的形成,从而加快了反应的进行。
2.2.3基本有机合成
磁场主要用来控制反应的路径,从而有选择地获取所需的产物。如丁基锂与苄基氯在溶液中进行的热化学反应,可按式(4)进行:
式(4)中, A,B分别代表丁基和苄基;M为碱金属原子;X为卤素原子;A·、B·为两个自由基,两个自由基上方的横线代表笼,表示两个自由基处于笼中。此反应进一步进行有两种可能:若发生笼内的重合,则产生化学结构不对称的产物AB,若从笼中逸出,进行笼外反应,则会生成对称产物AA,BB并按一定比例生成AB,在上述反应中施加磁场,就可用磁场来控制笼内与笼外产物的比例。
2.2.4 合成有机高分子材料
磁场对聚合反应的作用主要表现在影响聚合物的平均分子量、聚合产率、反应速率和立体构型等方面。黄骏廉等研究了磁场作用下异戊二烯在四氟乙烯-丙烯共聚物表面的光引发接枝反应。四丙共聚物是一种具有良好的化学稳定性和热稳定性的含氟聚合物。将异戊二烯接枝于四丙共聚物表面,可将四丙共聚物的优良性能与含双键聚合物的可反应性结合起来,开发出具有特殊功能的含氟高分子材料,但常规方法接枝,接枝率低,当相同体系的反应在外磁场中进行时,异戊二烯的接枝率提高得很快,且接枝链中3,4-聚合的产物大大增加。
蔡林涛等研究了外加磁场对苯胺电聚合过程的影响,发现当磁场方向垂直电极表面时,在0.58T处聚合速度约为无磁场时的2倍,当磁场方向平行电极表面时,随磁场强度增大至0.7T时,聚合速度约为无磁场影响下的2.4倍。此外一些液晶型聚合物通过磁场取向拉伸法能使一种聚合物在某一方向上的电导率增加约100倍,且能改变聚合物的光学和机械性能。
2.3 环境磁化学
2.3.1 防垢与除垢
磁场对水的表面张力和活性、对水溶液中阳离子和阴离子、对水溶液体系中的各种微粒以及溶解结晶平衡等均有不同的影响。Grutsch J F等研究发现,利用磁处理能成功地控制CaCO3和CaSO4垢的沉积,将磁技术用于供暖系统等许多装置的冷凝器,发现不再形成污垢,早先形成的锅垢,则会溶解而被排出。
Dcren的研究表明,磁处理后的晶核增长受到抑制,成核速率却大大增加,从而能生成更多的不规则的晶体。Donadson J D等的研究表明,在CaCO3溶液蒸发沉淀过程中,磁处理能使方解石和文石的比例由无磁场作用时的80:20变为20:80,文石结晶较疏松,不易结垢。
2.3.2磁分离技术
磁分离技术是利用水中杂质颗粒的磁性进行分离的,对于水中非磁性或弱磁性的颗粒,则可利用磁性接种技术使它们具有磁性而将其分离除去。如含Cr6+、Ni2+、Zn2+、Co2+、Cu2+、Sn4+、Hg2+、Mn2+、V4+、Ti3+等重金属离子的工业废水,不易分解和自然氧化,可用磁凝聚分离法去除。先加硫化物使重金属离子与S2-反应生成沉淀,加Fe3+,调节溶液pH,再添加磁种,通过Fe(OH)3胶体的桥连作用与磁种结合,使磁种间静电作用力减少,易于絮凝而形成较大的絮团,最后通过磁滤让重金属组分随磁种滤出。
高梯度磁分离器则以高饱和磁密不锈钢聚磁钢毛或带锐背的薄钢板作为聚磁介质,当水中污染物对钢毛的磁力作用大于其粘性阻力和重力作用时,污染物被截留在钢毛介质上,在切断磁路后,磁力消失,被钢毛介质捕集到的污染物用水或气水反冲洗下来,从而达到从废水中去除污染物的目的。
2.3.3防治大气污染
汽车尾气中有害气体排放物对环境的污染日益严重。俞明等进行了燃油磁化对发动机排放与节能影响的试验研究,对装夹于化油器入口处和悬浮于油箱中两种类型的燃油磁化方式与无磁化状况分别进行了对比试验,结果表明:两种磁化方法均使CO减少,悬浮油液的磁化方式对HC的排放效果没有明显影响,燃油经济性随状况的变化而变化;而将磁化器装夹于化油器入口处时,HC排放量和燃油经济性均有一定的改善,可见,燃油磁化作用可以通过改变燃油特性,影响燃烧过程,进而降低发动机有害气体的排放量。
3结语
磁化学作为一门新兴的学科,有着广泛的应用前景。目前,磁化学作用机理研究的较深入的领域主要在有机磁化学方面,如建立在自由基对理论之上的磁动力学理论。而有关磁场对水溶液体系的无机化学反应或结晶化学平衡等影响的机理,争议较多且不够深入。磁化学的应用研究还较多停留在实验室阶段和经验性阶段,应加强其基础理论和开发应用的研究,以便设计出特殊的反应途径,开拓新的反应通道,合成出用其他手段难以奏效的功能产物,从而使磁化学在化工领域发挥更大的作用。
参考文献:
[1]朱传征.磁化学及其进展[J].化学教育,1995,(4):4-7.
[2]陆模文,胡文祥.有机磁合成化学研究进展[J].有机化学,1997,17(4):289-294.
[3] 朱传征,戴立益,杨宝林等.常压下磁场对合成氨催化反应影响的研究[J].华东师范大学学报(自然科学版),1998,(2):51-54.
[4]张高科,陈虹.材料制备及加工中的磁化学研究及应用[J].硅酸盐通报,2002,(1):34-37.
[5]冯光宏,谢建新.磁场处理对微合金钢相变过程的影响[J].北京科技大学学报,2001,23(3):261-264.
[6]金增瑗,王玉贤.磁场对蔗糖转化影响的研究[J].化学研究与应用,1998,10(6):628-631.
计算机与通信工程学院
通信1304
徐 阳
41356115 人类社会的发展历程,是以不同材料的使用为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用能力,决定着社会的形态和人类生活的质量。而金属材料进入人类的视野是公元前6000年以前,到公元前4000年以后,人类开始制造并大量使用青铜器,青铜器在人们的生产、生活中占据重要地位,青铜时代成为人类利用金属材料的第一个时代。
逐步出现并日益频繁的战争迫使当时的人们制作武器。而最早应用于军事装备的金属材料同样是铜,如在埃及发现的公元前3500年前后的铜刀、斧以及匕首还有在塞尔维亚的普罗库普列发现的铜斧,都是将铜应用于军事装备的早期范例。在我国,青铜兵器最早出现在夏王朝。到了商代,随着青铜冶铸技术的提高,青铜兵器得到了进一步的发展,制品有长杆格斗兵器戈、矛、斧,近身格斗兵器短柄刀、剑,远程攻击的复合兵器弓箭,防护装具青铜胄、皮甲、盾等。商代以后,铜的采掘和青铜冶铸业得到比较大的发展。春秋战国时期还出现了青铜复合剑,这种剑的脊部和刃部分别用含锡量不同的青铜铸成,既有比较高的刺杀力,又经久耐用,是青铜兵器制造技术提高的一个重要标志。
我国虽然在春秋晚期才进入铁器时代,但是河北藁城出土的铁刃铜钺说明,我们的祖先在商代,已经能够使用陨铁制成比较锋利的钺刃,以后再在浇铸青铜钺身时合在一起,制成铁刃铜钺。到战国晚期,已经比较好地掌握了块炼铁固态渗碳炼钢技术,炼成质地比较好的钢,为制造钢铁兵器提供了原材料。到了西汉,由于淬火技术的普遍推广,钢铁兵器的使用越来越普遍,军队装备钢铁兵器的比例不断上升。钢铁兵器正式装备部队后,因为硬度和韧度都明显地优于青铜,在西汉末年时,钢铁兵器几乎已完全取代了青铜,进入了一个全新的时代。
宋代以后,钢铁兵器虽然仍在发展,但是它们的战斗作用同逐渐发展的火器相比,便退居次要地位。南宋后期,由于火药的性能已有很大提高,人们可在大竹筒内以火药为能源发射弹丸,并掌握了铜铁管铸造技术,具有现代枪械意义雏形的新式兵器——火铳出现。中国的火铳成型于元代,火铳的制作和应用原理,是将火药装填在管形金属器具内,利用火药点燃后产生的气体爆炸力射击弹丸。它具有比以往任何兵器大得多的杀伤力,是后代枪械的最初形态。十六世纪中叶,法国工匠马汉在转轮火枪的基础上改进发明了燧发枪,大大简化了射击过程,提高了发火率和射击精度,使用方便,而且成本较低,便于大量生产。近现代陆续出现的后装枪、转管枪、自动步枪、冲锋枪等,金属材料都是其制作过程中不可或缺的原材料。质地较轻强度较大的工程塑料近些年来在枪械制造方面应用越来越广泛,但仍无法取代金属材料的地位,机匣内主要的发射部件一般都是金属制成,另外枪管也必须由金属制造。
在单兵保护的军事装备上,金属材料同样大放异彩。原始人用椰子壳等纤维质来保护自己的头部以阻挡袭击,并且随着冶金技术的发展和战争的需要,发明了金属头盔。安阳殷墟出土的商朝铜盔,距今大约已有3000多年的历史。17~18世纪,随着手枪、步枪等热兵器的出现,铜盔基本上失去了防护作用,人们不得不寻求新的头盔材料。第一次世界大战时期,法军首先研制出了能防炮弹破片的头盔,这就是用哈特非钢制造的“亚得里安”头盔,也叫钢盔。在第一次世界大战中,美军和英军也都装备了这种重约0.5~1.8kg的头盔。第二次世界大战中,美国又研制出M1等锰钢头盔,防护能力又有较大提高。美国人认为在二战中,钢盔至少保护了7万名美国士兵的生命。但不能否认的是这种头盔较重,防弹和隔热性能差,佩戴不舒适,还有二次破片伤人的危险。近几年凯夫拉的应用一定程度上弥补了以金属头盔的弊端。
19世纪70年代初使用的部分硬质材料防弹衣是以特种钢、铝合金等金属作防弹材料,其防弹机理主要是在受弹击时材料发生破碎、裂纹、冲塞以及多层复合板出现分层等现象,从而吸收射击弹大量的冲击能。当材料的硬度超过射击物的冲击能时,即可发生射击弹弹回现象而不贯穿。这类防弹衣的不足之处是:服装厚重,通常约有20千克,穿着不舒适,对人体活动限制较大,具有一定的防弹性能,但易产生二次破片。
索姆河战役中,坦克作为所向披靡的攻坚利器一鸣惊人。作为现代陆上作战的主要武器,坦克有“陆战之王”之美称。金属材料制作的装甲是坦克内部人员安全的保障,而在坦克发展历程中为了加强坦克装甲的防护性能研究人员也是煞费苦心。坦克的防弹能力不仅和装甲厚度有关,同时也与装甲的抗弹能力有关。不断增加装甲的厚度固然可以提高坦克的防护力,但同时势必增加重量,影响机动性。于是人们想出用不同的材料制成多层装甲,就是所谓的复合装甲。复合装甲有许多种,有的内外两用金属,中间夹一层非金属材料;有的由四五层金属、非金属材料叠合而成;有的复合装甲各层之间留有空隙,称为间隙式装甲。苏联首先在其T-64主战坦克上创造性地使用钢板中夹带玻璃纤维板的复合装甲。它在重量只增加4吨的情况下,前主装甲抗穿甲弹能力增加约50%,大大增加了战场生存几率。以金属为主体复合装甲的出现是坦克防护技术史上的一次革命,它的诞生使得坦克走向了靠新的材料技术而不是单纯增厚装甲提高防护的道路,某种程度上也使得坦克从反坦克武器的致命威胁下走出来,重新夺回了陆战之王的宝座,可以毫不夸张的说,复合装甲拯救了坦克这一兵器,使得坦克能够在反坦克炮弹、导弹和火箭弹的穿透力不断增大的今天依然能够驰骋沙场。
现代战争中,军用飞机在侦察敌情、夺取制空权、防空作战、支援地面部队和舰艇部队作战等方面,发挥着重要的作用。钛及其合金在军用飞机的制造方面大显神通。由于飞机和导弹的速度已经远远超过音速,以前使用铝合金的地方已经无法满足耐热性的需求。钛的密度小,又具有高的热强性和持久强度,对振动载荷及冲击载荷作用下裂纹扩展的敏感性低,并且有良好的腐蚀性,因此在发动机及壳体结构中优先采用了高强度的钛及钛合金。80年代后,欧美设计的各种先进军用战斗机和轰炸机中,钛合金用量已经稳定在20%以上,如第三代战斗机F-15钛合金用量占27%,第四代战斗机F-22钛合金用量占41%。未来的航空航天飞行器及其推力系统要求钛合金的强度、工作温度和弹性模量更高,密度更小,成本更低。因此,近年来新型钛合金的研发集中在高温钛合金、钛铝化合物为基的钛合金以及阻燃钛合金等。
核武器主要原料是铀同样是金属材料在军事装备上的应用。原子弹的爆炸机理主要有两种:使用常规炸药有规律地安放在铀的周围,然后使用电子雷管使这些炸药精确的同时爆炸,产生的巨大压力将铀压到一起,并被压缩,达到临界条件,发生爆炸;将两块总质量超过临界质量的铀块合到一起,也会发生猛烈的爆炸。投掷在广岛的“小男孩”原子弹就是把一小块的铀透过枪管射向另一大块铀上,达到足够的质量。核武器爆炸,不仅释放的能量巨大,而且核反应过程非常迅速,微秒级的时间内即可完成。因此,在核武器爆炸周围不大的范围内能形成极高的温度,加热并压缩周围空气使之急速膨胀,产生高压冲击波。地面和空中核爆炸,还会在周围空气中形成火球,发出很强的光辐射。核反应还产生各种射线和放射性物质碎片,向外辐射的强脉冲射线与周围物质相互作用,造成电流的增长和消失过程,其结果又产生电磁脉冲。这些不同于化学炸药爆炸的特征,使核武器具备特有的强冲击波、光辐射、早期核辐射、放射性沾染和核电磁脉冲等杀伤破坏作用。核武器的出现,对现代战争的战略战术产生了重大影响。
随着新军事变革深入发展,推进军事转型,构建信息化军队,打赢信息化战争,已经成为世界各国发展武器装备的目标牵引。各个军事大国正加紧调整军事战略,以信息技术推动信息化武器装备发展。相信金属材料以及一些新型合金在军事装备制造领域仍然会大有用武之地。不过我们坚信,战争终有一天会被消灭,军事装备也会被铸剑为犁。因为那无数的硝烟与鲜血告诉我们,战争带给人来的是动荡与苦难,唯有死者方能看到战争的终结,和平才是人类唯一智慧的选择。
摘要:连杆机构能够实现各种各样功能的运动,因此在生产实践中应用广泛。本文就一些具体的连杆机构,简单介绍了其在生产实践中的应用。
关键词: 连杆机构
生产实践
应用
1、连杆机构简述
连杆机构能够实现多种运动轨迹曲线和运动规律。在平面连杆机构中,所有的运动副均为低副。因此,连杆机构又称为低副机构。
由于组成低副的两个构件之间是面接触,在承受相同的荷载时,其承载能力较大,耐磨损;再加上构件的形状简单,制造简便,易于获得较高的制造精度。因此,连杆机构广泛地用于各种机械和仪器中。但是,由于连杆机构的运动链较长,构件数和运动副数较多,而且在低副中存在间隙,所以会引起较大的运动积累误差,从而影响其运动精度。而且平面连杆机构的设计比较复杂,通常难以精确地实现复杂的运动规律与运动轨迹。连杆机构在生产实践中应用广泛,下面仅做一些简单的介绍。
2、连杆机构在生产实践中的应用
2.1 平面四杆机构的应用
在平面四杆机构中,若两个连架杆之一为曲柄,另一个为摇杆,则称为曲柄摇杆机构。如图1所示的雷达天线调整机构,当曲柄AB为主动件并作匀速转动时,通过连杆BC,带动摇杆CD在一定角度范围内作往复摆动,从而达到调整天线俯仰角度的目的。当摇杆CD为主动件并作往复摆动时,通过连杆BC驱使曲柄AB(从动件)作整周转动,如图2所示的缝纫机踏板机构。
图1 雷达天线调整机构
图2 缝纫机踏板机构
另外,当曲柄作整周转动时,若利用连杆与摇杆之间的相对运动对外做功,如图3所示,则可设计出飞剪剪切机;若利用连杆上一点的水平轨迹作运动输出,如图4所示,则可设计出物料传送机构。如图5是矿石破碎机的简图,与大带轮固接在一起的曲柄AB为主动件,曲柄摇杆机构ABCD是该机器的主体。如图6是机构是利用连杆曲线设计的和面机的简图,曲柄摇杆机构ABCD是该机器的主体。
图3 飞剪剪切机构
图4 物料传送机构
图5
矿石破碎机的简图
图6 和面机的简图
如果两个连架杆均为曲柄,都能作整周转动,该铰链四杆机构称为双曲柄机构。当相对两杆平行并且相等时,该机构称为平行四边形机构。在这种机构运动中,两个曲柄以相同的角速度作同向转动,而连杆作平动。当曲柄与机架共线时,机构处于运动不确定的状态为了解决这个问题,在工程上可以利用从动件的质量或在从动件上加装飞轮以增大惯性;也可以在机构中通过添加构件带来虚约束使机构始终保持平行四边形。如图7所示的机车车轮联动的平行四边形机构,构件EF带来了一个虚约束,使得机车的各个车轮具有相同的速度,保证了机车的平稳运行。
图7 机车车轮联动机构
在双曲柄机构中,若其对边长度相等但不平行时,则称为逆平行(反平行)四边形机构。这种机构运动中,机构运动时主、从动曲柄转向相反,连杆作平动。图8所示的汽车车门开闭机构就是它的应用实例,主曲柄AB转动时,通过连杆使从动曲柄CD作反向转动,从而保证两扇车门同时打开或关闭,并分别位于预定的两个工作位置上。
图8 汽车车门开闭机构
另外,图9所示为双曲柄机构在惯性筛机构中的应用,图10所示为平行四边形机构在户外摄影平台的应用。
图9
惯性筛机的简图
图10 户外摄影平台的简图
两个连架杆均为摇杆的铰链四杆机构称为双摇杆机构。如图11所示的飞机起落架机构就是双摇杆机构的应用实例,当飞机着陆前,需要将着陆轮从飞机机腹的下方推放出来;当飞机起飞离开跑道之后,又需要将着陆轮收回到机腹下方,以减少飞行过程中空气的阻力。在双摇杆机构中,如果两个摇杆的长度相等,则称为等腰梯形机构。图12所示汽车前轮的转向机构就是等腰梯形机构的应用实例。在该机构中,与前轮轴固连的两个摇杆AB和CD在摆动时,其摆角β和δ的大小是不相等的。当汽车转弯时,汽车的两个前轮轴线相交,且其交点近似落在后轮轴线延长线上的某一点P,P点即为汽车转弯时的瞬时转动中心,它使得汽车的四个车轮都能在地面上近似于纯滚动,以保证汽车转弯平稳,减少轮胎因滑动造成的磨损。
图11
飞机起落架机构
图10 汽车前轮的转向机构
另外,对于双摇杆机构,它的两个连架杆相对于机架均作摆动,当连杆为转动主动件时,如图13所示,则可以实现电扇的摇头;当一个摇杆为摆动主件,如果14所示,则可以实现砂箱的翻箱;当一个摇杆为摇动主动件、利用连杆上一点的水平轨迹作为运动输出时,如图15所示,则可以实现码头货物的平移。
图13
电扇摇头机构
图14
砂箱翻箱机构
图15
码头起重机机构
此外,曲柄滑块机构在单缸四冲程内燃机中的应用,如图16所示。摆动导杆机构在牛头刨床中的应用,如图17所示。
图16 单缸四冲程内燃机
图17
摆动导杆机构
曲柄摇块机构在摆动式油泵上的应用,如图18(a)所示;在自动卸料汽车中的应用,如图18(b)所示;在插齿机床中让刀机构中的应用如图18(c)所示。
(a)
(b)
(c)
图18
曲柄摇块机构的应用
2.2 其他连杆杆机构的应用
平面八杆机构在物料传送上的应用,如图19所示。
图19平面八杆机构在物料传送上的应用 铸造造型机的翻转机构,如图20所示。某型洗衣机搅拌机构,图21所示。
图20 翻转机构
图21 洗衣机搅拌机构 犁悬挂机构在农用拖拉机中的应用,如图22所示。
图22
犁悬挂机构
总之,通过上面的应用实例可知:由于连杆机构能够实现各种各样功能的运动,连杆机构在生产实践中有着广泛的应用,在此就不再一一赘述。
参考文献
【纳米材料在化工生产中的应用】推荐阅读:
纳米材料在化工生产中的应用材料工程学论文07-12
环保纳米材料05-30
高分子材料纳米材料12-16
纳米材料研究现状10-20
关于纳米材料的论文11-15
金属纳米材料制备技术的研究进展07-18
纳米陶瓷10-31
sic材料应用09-07
纳米的说明文09-27
汽车新材料的应用06-01