高二物理焦耳定律
【教学目标】
(一)知识与技能
1、理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功的公式,能进行有关的计算。
2、理解电功率的概念和公式,能进行有关的计算。
3、知道电功率和热功率的区别和联系。
(二)过程与方法
通过推导电功的计算公式和焦耳定律,培养学生的分析、推理能力。
(三)情感、态度与价值观
通过电能与其他形式能量的转化和守恒,进一步掌握能量守恒定律的普遍性。
【教学重点】
电功、电功率的概念、公式;焦耳定律、电热功率的概念、公式。
【教学难点】
电功率和热功率的区别和联系。
【教学过程】
(一)复习
1.串并联电路的性质。2.电流表的改装。
(二)进行新课
1、电功和电功率
教师:请同学们思考下列问题
(1)电场力的功的定义式是什么?(2)电流的定义式是什么? 学生:(1)电场力的功的定义式W=qU
(2)电流的定义式I=
q t教师:投影教材图2.5-1(如图所示)
如图所示,一段电路两端的电压为U,由于这段电路两端有电势差,电路中就有电场存在,电路中的自由电荷在电场力的作
用下发生定向移动,形成电流I,在时间t内通过这段电路上任一横截面的电荷量q是多少? 学生:在时间t内,通过这段电路上任一横截面的电荷量q=It。
教师:这相当于在时间t内将这些电荷q由这段电路的一端移到另一端。在这个过程中,电场力做了多少功?
学生:在这一过程中,电场力做的功W=qU=IUt
教师:在这段电路中电场力所做的功,也就是通常所说的电流所做的功,简称电功。电功:
(1)定义:在一段电路中电场力所做的功,就是电流所做的功,简称电功.(2)定义式:W=UIT
教师:电功的定义式用语言如何表述?
学生:电流在一段电路上所做的功等于这段电路两端的电压U,电路中的电流I和通电时间t三者的乘积。
教师:请同学们说出电功的单位有哪些?
学生:(1)在国际单位制中,电功的单位是焦耳,简称焦,符号是J.(2)电功的常用单位有:千瓦时,俗称“度”,符号是kW·h.说明:使用电功的定义式计算时,要注意电压U的单位用V,电流I的单位用A,通电时间t的单位用s,求出的电功W的单位就是J。
教师:在相同的时间里,电流通过不同用电器所做的功一般不同。例如,在相同时间里,电流通过电力机车的电动机所做的功要显著大于通过电风扇的电动机所做的功。电流做功不仅有多少,而且还有快慢,为了描述电流做功的快慢,引入电功率的概念。
(1)定义:单位时间内电流所做的功叫做电功率。用P表示电功率。(2)定义式:P=W=IU t(3)单位:瓦(W)、千瓦(kW)
[说明]电流做功的“快慢”与电流做功的“多少”不同。电流做功快,但做功不一定多;电流做功慢,但做功不一定少。
2、焦耳定律
教师:电流做功,消耗的是电能。电能转化为什么形式的能与电路中的电学元件有关。在纯电阻元件中电能完全转化成内能,于是导体发热。.......设在一段电路中只有纯电阻元件,其电阻为R,通过的电流为I,试计算在时间t内电
流通过此电阻产生的热量Q。
学生:求解产生的热量Q。
解:据欧姆定律加在电阻元件两端的电压U=IR 在时间t内电场力对电阻元件所做的功为W=IUt=I2Rt
由于电路中只有纯电阻元件,故电流所做的功W等于电热Q。产生的热量为
Q=I2Rt
教师指出:这个关系最初是物理学家焦耳用实验得到的,叫焦耳定律,同学们在初中已经学过了。
学生活动:总结热功率的定义、定义式及单位。热功率:
(1)定义:单位时间内发热的功率叫做热功率。(2)定义式:P热=
Q
2=IR t(3)单位:瓦(W)
(三)研究电功率与热功率的区别和联系。
学生:分组讨论总结电功率与热功率的区别和联系。师生共同活动:总结:(1)电功率与热功率的区别
电功率是指输入某段电路的全部功率或在这段电路上消耗的全部电功率,决定于这段电路两端电压U和通过的电流I的乘积。
热功率是在某段电路上因发热而消耗的功率,决定于通过这段电路的电流的平方I2和电阻R的乘积。
(2)电功率与热功率的联系
若在电路中只有电阻元件时,电功率与热功率数值相等。即P热=P电 教师指出:
若电路中有电动机或电解槽时,电路消耗的电功率绝大部分转化为机械能或化学能,只有一少部分转化为内能,这时电功率大于热功率,即P电>P热。
课堂练习
例一: 一个电动机,线圈电阻是0.4欧,当它两端所加的电压为220V时,通过的电流是5A。求(1)电功率是否等于热功率?(2)这台电动机的机械功率是多少?
解:本题涉及三个不同的功率:电动机消耗的电功率P电、电动机发热的功率P热、转化为机械能的功率P机
。三者之间遵从能量守恒定律,即
P电=P热+P机 由焦耳定律,电动机发热的功率为
P热=I2R 电动机消耗的功率,即电流做功的功率为
P电=IU 因此可得电能转化为机械的功率,即电动机所做机械功的功率
P机=P电-P热=IU - I2R
=5 ×220 -52 ×0.4
=1090w 课堂小结
电功
W=UIt
电功率
P=UI
焦耳热
Q=I2Rt
热功率
P=I2R 纯电阻电路:
电功=电热
电功率=热功率
非纯电阻电路:
电功=电热+其它形式的能量
教学重点:区别并掌握电功和电热的计算。
教学过程
复习引入:复习提问电功概念。
使学生回答出电功即电流在一段电路上做的功W=UIt。接着向学生指出电流通过导体时,导体总是要发热的,这是电流的热效应。电流通过导体时产生的热量的多少与什么因素有关呢?——我们这节课就来学习这个问题。
新课讲授:
(一)焦耳定律:
英国物理学家焦耳(1818~1889)经过长期的实验研究后指出:
电流通过导体产生的热量,跟电流的二次方,导体的电阻和通电时间成正比——焦耳定律。
Q=I2Rt………………………………………(1)式
说明:a.(1)式表明电流通过导体时要发热,焦耳定律就是研究电流热效应定量规律的。
b.(1)式中各量的单位.
(二)电功和电热的关系:
设问: 电流通过电路时要做功,同时,一般电路都是有电阻的,因此电流通过电路时也要生热.那么,电流做的功跟它产生的热之间,又有什么关系呢?
1.纯电阻电路.
如图所示,电阻R,电路两端电压U,通过的电流强度I.
电功即电流所做的功: W=UIt.
电热即电流通过电阻所产生的热量: Q=I2Rt
由部分电路欧姆定律: U=IR
W=UIt=I2Rt=Q
表明: 在纯电阻电路中,电功等于电热.也就是说电流做功将电能全部转化为电路的内能(热能).
电功表达式: W=UIt=I2Rt=(U2/R)/t
电功率的表达式: P=UI=I2R=U2/R
2.非纯电阻电路.
如图所示,电灯L和电动机M的串联电路中,电能各转化成什么能?
电流通过电灯L时,电能转化为内能再转化为光能.电流通过电动机时,电能转化为机械能和内能.
电流通过电动机M时
电功即电流所做的功(电动消耗的电能): W=UIt
电热即电流通过电动机电阻时所产生的热量: Q=I2Rt
W(=UIt)=机械能+Q(=I2Rt)
表明: 在包含有电动机,电解槽等非纯电阻电路中,电功仍等于UIt,
电热仍等于I2Rt.但电功不再等于电热而是大于电热了. UIt>I2Rt
教材分析
《焦耳定律》是《普通高中物理课程标准》选修模块3—1中第二章“恒定电流”中的内容,其基本内容是“电功和电功率”“焦耳定律”。本节从能量转化的角度理解电功和电热,区分纯电阻电路与非纯电阻电路。教科书没有通过实验归纳引入焦耳定律,而是从能量守恒定律分析得出的。
本节课的教学内容选自人民教育出版普通高中课程标准实验教材教科书版《物理》选修3—1第2章第5节。教材内容由“电功和电功率”“焦耳定律”两部分组成。在“电功和电功率”部分,教科书根据功和能的关系,从电能的转化引入电功的概念,然后根据静电力做功的知识和电流与电荷量的关系得到了电功的计算公式,教学中可以引导学生对用电器中的能量转化进行讨论,这样有利于学生理解电功的物理意义:1.从静电力做功的角度去思考问题。电流通过用电器的过程中,消耗了电能,同时产生了其它形式的能,这个能量转化的过程就是电流做功的过程。实质上,就是静电力做功,电势能减小,增加了其他形式的能的过程。在转化过程中能量守恒。2.功是能量转化的量度,电流做了多少功,就有多少电能转化为其他形式的能,即电功等于电路中电能的减少,这是电路中能量转化与守恒的关键。3.推导电功的公式时,在时间t内,相当于把电荷q由电路的一端移到另一端,移动电荷所做的功可由第一章静电场的知识求得。4.不同的用电器电流做功的快慢不同,引入电功率概念,还可以类比速度等概念进行学习,帮助学生理解,要让学生知道额定电功率的含义,并让学生知道额定电功率的含义,并让学生对常见用电器的额定功率有一个大致的了解。这部分内容的教材安排完全符合学生的认知和理解,因为学生在这之间已学习了静电场和能量守恒定律,在学生看来这样的一部分内容只是已有知识的一个演变过程,这样有利于学生在短时间内理解,对学生接下来的学习完全扫清了障碍。“焦耳定律”中,电路中电流做功,将电能转化为其他形式的能,其中很常见的就是内能。教师可以用电动机电风扇等常见的家用电器作为例子,引导学生进行讨论,电动机消耗的电能转化为机械能和内能两部分。让学生清楚,对于非纯电阻电路,电功和电热不相等。这时可以从能量守恒角度来考虑问题。这部分学生既可以学习新知识亦在生活中学习物理,也是物理联系生活的一个重要环节。
2.学情分析
教学主体是普通高二年纪的学生,已经掌握了功能关系的知识以及简单的静电学的知识,学生具有一定的分析推理能力,对于简单的公式的推导基本已经可以接受,但是本节侧重从能量守恒定律分析问题,较为繁琐,这对学生学习造成了困难,因此本节老师要引导学生对以上问题进行归纳总结。一方面总结电功和电热的关系;另一方面,要让学生体会能量转化和守恒的观点来分析问题的思想方法。经过本节的学习,对于将来学生遇到更复杂的能量守恒问题能轻松自然地解决。
二、教案
课题 焦耳定律 授课时间 学生 普通高中二年级学生
教学目标 知识与技能 理解电功电功率公式的物理意义,了解实际功率和额定功率
了解电功和电热的关系、了解电功和电热等价几个公式的适用条件
知道非纯电阻电路中电能与其他形式能的转化关系,此时电功大于电热
能运用能量转化与守恒的观点解决简单的含电动机的非纯电阻电路问题 过程与方法
通过有关实例让学生理解电流做功的过程就是电能转化为其他形式的能的过程
情感态度与价值观
通过本节课的学习让学生体会能量守恒定律的普遍性
教学重点
区别并掌握电功和电热的计算
教学难点
学生对电路的能量守恒中的能量转化关系缺乏感性认识,接受起来比较难
教学方法策
讲授法、概念转变策略
教学过程 教学流程 主体内容 学生活动 教师活动 新课导入(复习导入)
新课教学
回顾知识:(1)把电荷在电场中某一点移到另一点静电力会对电荷做功:
EMBED Unknown ________________定义式
如果是匀强电场:那么有
EMBED Unknown
_____补充:如果电场力做正功电势能将要减少,如果电场力做负功电势能将增加,这中间有能量的转化。
(2)我们还学过电流,其定义式:
EMBED Unknown
一、电功和电功率
图2.5-1表示很小一段电路。电荷做定向移动,电荷在做从左向右的定向移动,它们从这段电路的左端移到右端所用的时间为t。那么我们将知道,在这段时间内通过这段电路的电荷总量为:
EMBED Unknown
在这段电路中静电力做功:
EMBED Unknown
如果代换q,则有:
EMBED Unknown ________电功的表达式
表示,电流在一段电路中所做的功等于这段电路两端的电压U、
电路中的电流I、通电时间t三者的乘积。
单位时间内电流所做的功叫做电功率。
EMBED Unknown EMBED Unknown
小结:(1)定义:电路中电场力对定向移动的电荷所做的功,简称电功,通常也说成是电流的功。
(2)实质:能量的转化与守恒定律在电路中的体现,电能通过电流做功转化为其他形式的能。
(3)表达式:
(4)物理意义:电流在一段电路中所做的功等于这段电路两
端的电压U、电路中的电流I、通电时间t三者的乘积。
(5)单位:电流单位用安培(A),电压单位用伏(V),时间单位用秒(s),则电功的单位是焦耳(J)。
(6)电功率的表达式:
电功率的物理意义:电流在一段电路上做功的功率P等于电流I与这段电路两端的电压U的乘积。
(7)单位:功的单位用焦耳(J),时间的单位秒(s),功率的单位为瓦特(W)
EMBED Unknown EMBED Unknown EMBED Unknown
(8)额定功率:用电器正常工作是所需的电压叫额定电压,在这个电压下消耗的功率称额定功率。
一般来说,用电器电压不能超过额定电压,但电压低于额定电压时,用电器的输出功率不是额定功率,而是实际功率。
(9)实际功率:
二、焦耳定律
教学目的:进一步深化对电阻概念的认识,掌握电阻率的物理意义。教学过程: 复习引入:(1)欧姆定律是如何表述的?
(2)不同导体的电阻大小不同,那么,导体电阻的大小是由哪些因素决定的呢?
我们这堂课就来研究这个问题。
讲授新课:
演示实验:在如图所示的电路中,保持BC间的电压不变
① BC间接入同种材料制成的粗细相同,但长度不相同的导线。现 象:导线越长,电路中电流越小。
计算表明:对同种材料制成的横截面积相同的导线,电阻大小
跟导线的长度成正比。
② BC间接入同种材料制成的长度相同,但粗细不相同的导线。现 象:导线越粗,电路中的电流越大
计算表明:对同种材料制成的长度相同的导线,电阻大小跟导线的横截面种成反比。即:导体的电阻跟它的长度成正比,跟它的横截面积成反比——这就是电阻定律。
R∝L/S
R=ρL/S„„„„„„(1)
(1)式中的ρ是个比例系数.当我们换用不同材料的导线重做上述实验时会发现:不同材料的ρ值是不相同的,可见, ρ是个与材料本身有关的物理量,它直接反映了材料导电性的好坏,我们把它叫做材料的电阻率.ρ=RS/L„„„„„„(2)
注意: ⑴电阻率ρ的单位由(2)式可知为:欧姆米(Ωm)各种材料的电阻率在数值上等于用该材料制成的长度为1米,横截面积为1平方米的导体的电阻.但电阻率并不由R S和L决定.⑵引导学生阅读P30表格 思考: ①哪些物质电阻率小,哪些物质电阻率大? 纯金属的电阻率小,合金的电阻率较大,橡胶的电阻率最大.②电阻率相差悬殊各有什么用途? 电阻率小用作导电材料,电阻率大的用作绝缘材料.0③表中说明“几种材料在20C时的电阻率”,这意味着什么? 材料的电阻率跟温度有关系.各种材料的电阻率都随温度而变化.a,金属的电阻率随温度的升高而增大,用这一特点可制成电阻温度计(金属铂).b,康铜,锰铜等合金的电阻率随温度变化很小,故常用来制成标准电阻.c,当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫做超导现象,处于这种状态的物体叫做超导体.综上所述可知:电阻率与材料种类和温度有关.(对某种材料而言,只有温度不变时ρ才是定值,故(1)式成立的条件是温度不变)在温度不变时,导线的电阻跟它的长度成正比,跟它的横截面积成反比——这就是电阻定律。巩固新课:
提出问题1:改变导体的电阻可以通过哪些途径?
回 答:改变电阻可以通过改变导体的长度,改变导体横截面积或是更换导体材料等途径。最简 单的方法是通过改变导体的长度来达到改变电阻的目的。(以P31(5)题为例介绍滑线变阻器的构造及工作原理)
提出问题2:有一个长方体的铜块,边长分别为4米,2米,1米(如图所示),求它的电阻是多大?(铜的-8电阻率为1.7×10欧米).通过本例注意: R=ρL/S 中S和L及在长度L中, 导体的粗细应该是均匀的.提出问题3:一个标有“220V,60W”的白炽灯泡,加上的电压U是由0逐渐增大到220V,在此过程中,电压U和电流I的关系可用图线表示,在下图中的四个图线中,肯定不符合实际的是(ACD)
提出问题4:一根粗细均匀的电阻丝,当加2V电压时,通过的电流强度为4A。现把此电阻丝均匀拉长,然后加1V的电压,这时电流强度为0.5A.求此时电阻丝拉长后的长度应原来长度的几倍?(2倍)
-6提出问题5:一立方体金属块,每边长2cm,具有5×10欧的电阻,现在将其拉伸为100米长的均匀导线,求它的电阻?(125欧)
一.熟读学习目标
目标:①
通过实验理解焦耳定律,记住焦耳定律的计算公式;
②
能运用焦耳定律的计算公式解答简单的计算题;
二、了解学习重点
认识电流的热效应,能运用焦耳定律的公式Q=I2
R
t
解题
三、自主学习及检测
1、写出电流做功的计算公式:。
2、电流通过导体会产生热量,将
能转化为
能,这种现象叫电流的。
3、猜猜:电流通过导体产生的热量的多少会与哪些因素有关?
猜想一:电流通过导体产生热量的多少可能与
有关;(口述猜想依据)
猜想二:电流通过导体产生热量的多少可能与
有关;(口述猜想依据)
猜想三:电流通过导体产生热量的多少可能与
有关。(口述猜想依据)
4、若要研究电流通过导体产生的热量与各因素的关系,需用
物理研究方法。
5、若要研究电流的热效应与导体电阻大小的关系,则需保持
电流和通电时间
相同,选用电阻不同的两根电阻丝。因而实验时应组成电路。
6、电流通过导体产生的热量跟
成正比,跟
成正比,跟
成正比。这个规律叫。
7、焦耳定律可用公式表示为:,其中Q表示,单位是
;I表示,单位是
;R表示,单位是
;t表示,单位是。
四、合作学习
10、通过110Ω电阻丝的电流是3A,如果工作过程中电阻不变,则通电10分钟,电流产生了多少热量?
五、挑战自我11、通过110Ω电阻丝的电流是3A,如果工作过程中电阻不变,产生4400J的热量要用多长时间?
12、如图所示电路,电源电压恒定不变,电阻R1=20Ω,R2=60Ω。当S断开时,电流表的示数为0.3
A;
(1)当S闭合时,电流表的示数为多少?
(2)电路1
审稿人:侯智斌
选修3-2第四章第4节《法拉第电磁感应定律》
课前预习学案
一、预习目标
(1).知道什么叫感应电动势。(2).知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、Ent
二、预习内容
1、什么是感应电动势和反电动势
在电磁感应现象中,当_________________,必产生电动势,这种电动势叫做感应电动势。
2、法拉第电磁感应定律的内容是什么
电路中感应电动势的大小跟______________________成正比,这个规律就叫做法拉第电磁感应定律,其表达式为_________________。
3.穿过一个电阻为R=1的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb,则:(A)线圈中的感应电动势每秒钟减少2V(B)线圈中的感应电动势是2V(C)线圈中的感应电流每秒钟减少2A
(D)线圈中的电流是2A 4.下列几种说法中正确的是:
(B)线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大(C)穿过线圈的磁通量越大,线圈中的感应电动势越大(D)线圈放在磁场越强的位置,线圈中的感应电动势越大(E)线圈中的磁通量变化越快,线圈中产生的感应电动势越大
5.有一个n匝线圈面积为S,在t时间内垂直线圈平面的磁感应强度变化了B,则这段时间内穿过n匝线圈的磁通量的变化量为,磁通量的变化率为
,穿过一匝线圈的磁通量的变化量为
,磁通量的变化率为。
6.如图1所示,前后两次将磁铁插入闭合线圈的相同位置,第一次用时0.2S,第二次用时1S;则前后两次线圈中产生的感应电动势之比
7.如图2所示,用外力将单匝矩形线框从匀强磁场的边缘匀速拉出.设线框的面积为S,磁感强度为B,线框电阻为R,那么在拉出过程中,通过导线截面的电量是______. 自主学习答案: 3.BD 4.D 5.SB
三、提出疑惑
SBt SB
SBt 6.5:1 7.SBR
在电磁感应现象中,产生感应电流的条件是什么?
在电磁感应现象中,磁通量发生变化的方式有哪些情况?
恒定电流中学过,电路中存在持续电流的条件是什么?
在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。
课内探究学案
一、学习目标
(1).理解法拉第电磁感应定律内容、数学表达式,知道E=BLvsinθ如何推得。(2).会用Ent和E=BLvsinθ解决问题。
学习重难点:
重点:法拉第电磁感应定律的建立和理解 难点:
(1).磁通量、磁通量的变化量、磁通量的变化率三者的区别。
(2).理解E=nΔφ/Δt是普遍意义的公式,计算结果是感应电动势相对于Δt时间内的平均值,而E=BLv是特殊情况下的计算公式,计算结果一般是感应电动势相对于速度v的瞬时值。
二、学习过程
探究一:感应电动势
在图a与图b中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。
电动势大,电流一定大吗?电流的大小由电动势和电阻共同决定。图b中,哪部分相当于a中的电源?螺线管相当于电源。图b中,哪部分相当于a中电源内阻?线圈自身的电阻。
在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势.有感应电动势是电磁感应现象的本质。
探究二:电磁感应定律
问题1:在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:第一个成功实验中,将条形磁铁从同一高度插入线圈中,快插入和慢插入有什么相同和不同?
探究三:导线切割磁感线时的感应电动势
导体切割磁感线时,感应电动势如何计算呢?用CAI课件展示如图所示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?
三.反思总结
教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
-让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
四 当堂检测
展示如图所示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?(课件展示)
解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为
ΔS=LvΔt 穿过闭合电路磁通量的变化量为
ΔΦ=BΔS=BLvΔt 据法拉第电磁感应定律,得
E=t=BLv 这是导线切割磁感线时的感应电动势计算更简捷公式,需要理解(1)B,L,V两两垂直
(2)导线的长度L应为有效长度
(3)导线运动方向和磁感线平行时,E=0(4)速度V为平均值(瞬时值),E就为平均值(瞬时值)问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗? 教师:让我们进行下面的推导。用CAI课件展示如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。
解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为
E=BLv1=BLvsinθ
[强调]在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。
例题2:下列说法正确的是()
• A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 • B.线圈中的磁通量越大,线圈中产生的感应电动势一定越大
• C.线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 • D.线圈中磁通量变化得越快,线圈中产生的感应电动势越大
例题3:一个匝数为100、面积为10cm2的线圈垂直磁场放置,在0.5s内穿过它的磁场从1T增加到9T。求线圈中的感应电动势。
解:由电磁感应定律可得E=nΔΦ/Δt① ΔΦ= ΔB×S②
由① ②联立可得E=n ΔB×S/Δt 代如数值可得E=16V
课后练习与提高
1.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小()A.跟穿过这一闭合电路的磁通量成正比 B.跟穿过这一闭合电路的磁感应强度成正比 C.跟穿过这一闭合电路的磁通量的变化率成正比 D.跟穿过这一闭合电路的磁通量的变化量成正比 点评:熟记法拉第电磁感应定律的内容
2.将一磁铁缓慢地或迅速地插到闭合线圈中同样位置处,不发生变化的物理量有()
A.磁通量的变化率 B.感应电流的大小 C.消耗的机械功率 D.磁通量的变化量 E.流过导体横截面的电荷量
点评:插到同样位置,磁通量变化量相同,但用时不同
3.恒定的匀强磁场中有一圆形闭合导线圈,线圈平面垂直于磁场方向,当线圈在磁场中做下列哪种运动时,线圈中能产生感应电流()A.线圈沿自身所在平面运动 B.沿磁场方向运动
C.线圈绕任意一直径做匀速转动 D.线圈绕任意一直径做变速转动 点评:判断磁通量是否变化
4.一个矩形线圈,在匀强磁场中绕一个固定轴做匀速运动,当线圈处于如图所示位置时,此线圈()
A.磁通量最大,磁通量变化率最大,感应电动势最小 B.磁通量最大,磁通量变化率最大,感应电动势最大 C.磁通量最小,磁通量变化率最大,感应电动势最大 D.磁通量最小,磁通量变化率最小,感应电动势最小
解析:这时线圈平面与磁场方向平行,磁通量为零,磁通量的变化率最大.5.一个N匝的圆线圈,放在磁感应强度为B的匀强磁场中,线圈平面跟磁感应强度方向成30°角,磁感应强度随时间均匀变化,线圈导线规格不变.下列方法中可使线圈中感应电流增加一倍的是()
A.将线圈匝数增加一倍 B.将线圈面积增加一倍 C.将线圈半径增加一倍 D.适当改变线圈的取向 解析:A、B中的E虽变大一倍,但线圈电阻也相应发生变化.6.如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab以水平初速度v0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将()
A.越来越大
C.保持不变
B.越来越小 D.无法确定
点评:理解E=BLv中v是有效切割速度
7.如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab以后的运动情况可能是
A.减速运动到停止 B.来回往复运动 C.匀速运动 D.加速运动 点评:电容器两端电压不变化则棒中无电流 8.横截面积S=0.2 m2、n=100匝的圆形线圈A处在如图所示的磁场内,磁感应强度变化率为0.02 T/s.开始时S未闭合,R1=4 Ω,R2=6Ω,C=30 μF,线圈内阻不计,求:
(1)闭合S后,通过R2的电流的大小;
(2)闭合S后一段时间又断开,问S断开后通过R2的电荷量是多少? 所以Q=CU2=30×10-6×0.04 C=7.2×10-6 C.答案:1.C,2.DE, 3.CD, 4.C, 5.CD, 6.C, 7.C
B8:解:(1)磁感应强度变化率的大小为t=0.02 T/s,B逐渐减弱,SB所以E=nt=100×0.02×0.2 V=0.4 V E0.446I=R1R2 A=0.04 A,方向从上向下流过R2.R2E646(2)R2两端的电压为U2=
【高二物理焦耳定律】推荐阅读:
高二物理电荷库仑定律07-25
欧姆定律高二物理教案11-11
高二物理动量守恒定律教案12-19
高二物理欧姆定律说课稿07-20
高二物理动量守恒定律说课稿04-16
高二物理选修3-1库仑定律教案设计01-16
高二物理试题05-23
高二上册物理教案06-27
高二物理期中考试10-11
高二物理课题小结01-12