问卷评分标准详细说明(精选3篇)
1)作文评分标准
本题满分为15分,成绩分为六个档次:13-15分、10-12分、7-9分、4-6分、1-3分和0分。各档次的评分标准见下表:
2)翻译评分标准
本题满分为15分,成绩分为六个档次:13-15分、10-12分、7-9分、4-6分、1-3分和0分。各档次的评分标准见下表:
2.试卷构成
四级和六级的试卷构成相同,由写作、听力理解、阅读理解和翻译四个部分组成,分值比例为:写作15%,听力35%,阅读35%,翻译15%。考试时间为130分钟。四级和六级的试卷结构、测试内容、测试题型、分值比例和考试时间如下表所示:
3.题型描述
1)写作
写作部分测试学生用英语进行书面表达的能力,所占分值比例为15%,考试时间30分钟。写作测试选用考生所熟悉的题材,要求考生根据所提供的信息及提示(如:提纲、情景、图片或图表等)写出一篇短文,四级120-180词,六级150-200词。
2)听力理解
听力理解部分测试学生获取口头信息的能力。录音材料用标准的英式或美式英语朗读,语速四级约每分钟130词,六级约每分钟150词。听力部分分值比例为35%,其中对话占15%,短文占20%。考试时间30分钟。
对话部分包括短对话和长对话,采用多项选择题的形式进行考核。短对话有8段,每段提一个问题;长对话有2段,每段提3-4个问题;对话部分共15题。每段对话均朗读一遍,每个问题后留有13-15秒的答题时间。
短文部分包括短文理解及单词和词组听写。短文理解有3篇,采用多项选择题的形式进行考核。四级每篇长度为220-250词,六级为240-270词。每篇短文朗读一遍,提3-4个问题,每个问题后留有13-15秒的答题时间,共10题。单词及词组听写采用1篇短文,四级的长度为220-250词,六级为240-270词。要求考生在听懂短文的基础上用所听到的原文填写空缺的单词或词组,共10题。短文播放三遍。
3)阅读理解
阅读理解部分包括1篇长篇阅读和3篇仔细阅读,测试学生在不同层面上的阅读理解能力,包括理解篇章或段落的主旨大意和重要细节、综合分析、推测判断以及根据上下文推测词义等能力。该部分所占分值比例为35%,其中长篇阅读占10%,仔细阅读占25%。考试时间40分钟。
长篇阅读部分采用1篇较长篇幅的文章,总长度四级约1000词,六级约1200词。阅读速度四级约每分钟100词;六级约每分钟120词。篇章后附有10个句子,每句一题。每句所含的信息出自篇章的某一段落,要求考生找出与每句所含信息相匹配的段落。有的段落可能对应两题,有的段落可能不对应任何一题。
仔细阅读部分要求考生阅读3篇短文。2篇为多项选择题型的短文理解测试,每篇长度四级为300-350词,六级为400-450词;1篇为选词填空,篇章长度四级为200-250词,六级为250-300词。短文理解每篇后有若干个问题,要求考生根据对文章的理解,从每题的四个选项中选择最佳答案。选词填空要求考生阅读一篇删去若干词汇的短文,然后从所给的选项中选择正确的词汇填空,使短文复原。
4)翻译
翻译部分测试学生把汉语所承载的信息用英语表达出来的能力,所占分值比例为15%,考试时间30分钟。翻译题型为段落汉译英。翻译内容涉及中国的历史、文化、经济、社会发展等。四级长度为140-160个汉字,六级长度为180-200个汉字。
4.分数解释
大学英语四、六级考试是标准相关-常模参照的标准化考试。标准相关体现在:1)试卷各部分的设计和命题参照大学英语的教学要求规定的技能和标准;2)写作和翻译部分的阅卷依据评分标准。常模参照体现在考后各部分的原始分转换成报道分时,分别参照各部分的常模。因此,考试既是标准相关又具有常模参照的性质。
大学英语四、六级考试不设及格线。经过等值处理后的原始总分参照总分常模转换成常模正态分,均值为500、标准差为70,报道总分在220分至710分之间。在将原始分转换成报道分时,各部分采用不同的分数量表,从而使各部分报道分的简单相加之和等于报道总分。
采用常模参照旨在保证考试分数解释的稳定性。考生的任何一次四、六级考试成绩均可在四级或六级常模中找到其百分位位置,即考生成绩在相应级别的常模群体中所处的相对位置。考试委员会网站上(http://)已公布了总分和各部分的百分位对照表,以供考试成绩使用者了解考生的相对能力水平。
5.成绩报道
出题学校:
评分总体原则
各题均不限制方法。若方法与本文不同,只要结果和主要步骤正确,即给全分;若方法不同而结果不正确,各地自行统一酌情给分。本文中多处用图形解释,若试卷中未出现相应图形但已表达了同样的意思,则同样给分。计算结果用分数或小数表达均可。
本文中用浅黄色标识的公式和文字是给分的关键点,其后圆圈内的数字仅为本处的所得分值。
第1题(30分)
某工厂利用传送带运输边长为b的均质正方体货箱。已知货箱质量为m,绕自身中心轴的转动传送带A倾角为?(??45o),惯量为J,并且 6J?mb2,速度为v0,传送带C水平放置,B处为刚性支承。考虑货箱与传送带之间的摩擦,设两者之间的静摩擦因数为
fs,动摩擦因数为f,并且 0?f?1。
(1) 若货箱在O处由静止轻轻放在传送带A上,如图 (A) 所示,试判断货箱在到达刚性支承B之前是否会翻倒,并论证你的结论。
(2) 当货箱运动到传送带A底部时,其角部恰好与刚性支承B的顶端发生撞击,假设撞击过程为完全非弹性碰撞,货箱能顺利翻过刚性支承B到达传送带C,如图 (B) 所示,则释放点O到传送带A底部的位置s应该满足什么条件?(忽略两个传送带之间的距离)
解答及评分标准
(1) (本小题12分)首先分析货箱在传送带上的运动。
(A)
(B)
题 1 图
由于货箱静止放置在传送带上,而传送带具有速度v0,所以初始运动阶段,货箱相对于传送带产生滑动。该阶段货箱受力如图1-a(A) 所示,图中G为货箱重力,F为摩擦力,FN为传送带给货箱的法向反力,a1为货箱在初始加速阶段的加速度。
由质心运动定理,
ma1?Gsin??F, (1-1a)
图 1-a
FN?Gcos??0 。 (1-1b)
式中,F?fFN。由式 (1-1) 得货箱质心的加速度
(A)(B)
a1?g?sin??fcos?? 。 ① (1-2)
当货箱与传送带同速的瞬间,二者相对静止,无滑动摩擦。货箱的最大静摩擦力
Fmax?fsFN?fsGcos?。 (1-3)
此后,若货箱重力沿斜面向下的分量 Gsin? 大于该静摩擦力,货箱还将继续向下做加速运动,并且受力如图1-b(A) 所示,此时满足
Gsin??fsGcos?。 (1-4) 由上式解得
??arctanfs。 (1-5) 按照上述方法求解得该阶段货箱的加速度
(B)
a2?g?sin??fcos?? 。 ② (1-6) 当 ??arctanfs,货箱与传送带同速后将一起以速度
(A)
图 1-b
v0作匀速运动。
再分析货箱是否会倾倒。货箱相对于传送带滑动过程中,可能存在两种倾倒情况:初始加速阶段绕右下角M点倾倒,或同速后再次加速阶段绕左下角N点倾倒 ②。在货箱上考虑惯性力,记货箱在上述两种情况下的惯性力分别为 F11 和 F12,利用达朗贝尔原理求解。如果考生只考虑了一种货箱可能翻倒的情况,此处只给 ① 分。
首先分析货箱绕右下角M点倾倒情况。设 FN 距M点距离为 x1,如图1-a(B) 所示,根据达朗贝尔原理,
?M?F??
① (1-7a)
?F?0, F?Gcos??0。 (1-7b)
M
yN
式中, FI1?ma1?G?sin??fcos?? 。 (1-8)
① (1-9)
再分析货箱绕左下角N点倾倒情况。设
,如图1-b(B)所示,同样有
MN?F??0, ② (1-10a)
?
?F
y
FN?Gcos??0, (1-10b) ?0,
式中, FI2?ma2?G?sin??fcos??。
(1-11)
利用式 (1-10)、(1-11) 得 ② (1-12)
由于 0?f?1,所以式 (1-9) 和式 (1-12) 满足
b?x2?0 。 (1-13) b?x1?0,
即货箱在传送带A上运动时不会翻倒。① 如果考生只分析了一种货箱可能翻倒的情况,但仍然得出“不会翻倒”这一结论,则此处不给分。
(2) (本小题18分)设货箱运动到底部与钢支承B撞击之前质心速度为v1。货箱从O
点开始运动,直到到达传送带C整个运动过程分三个阶段。第一阶段:从O点运动到传送带底部并获得速度
v1;第二阶段:撞击刚性支承B;第三阶段:撞击后货箱运动到传送带C。
先分析撞击过程。由于货箱和支承B碰撞过程为完全非弹性,所以撞击后货箱不会弹起,而是绕着碰撞点B作转动 ①,碰撞前后质心速度方向发生突变。设碰撞后货箱质心速度为v2,角速度为?2,碰撞前后的速度方向及碰撞冲量如图1-c所示。
vv(A)
图 1-c
(C)
由图1-c(B),碰撞冲量满足
MB?I??0 , (1-14)
?
所以撞击前后货箱对B点的动量矩守恒,即
② (1-15)
式中,碰撞后速度 v2?
② (1-16)
再分析撞击后货箱的运动。由于碰撞结束后货箱运动过程中只有重力做功。故可利用机械能守
② (1-17) 21
b?2,J?mb2为货箱相对于质心的转动惯量。将两式代入式 (1-15) 可
26
选取B点为零势能点,则在该位置货箱势能
V2?Gh2。 (1-18)
只有货箱跨过图1-d(B)位置,才能到达传送带C,设该位置货箱的动能为 T3,撞击后,货箱能翻到传送带
vv
C的条件是T3?0 ①。货箱的势能为
V3?Gh3 。 (1-19) 根据机械能守恒定律
(A)
图 1-d
(B)
(1-20) T2?V2?T3?V3 。
将式 (1-17)~ (1-19) 代入上式得
① (1-21)
由上式解得
1
(1-22) T3?mb2?22?G?h2?h3? 。
3
因此,要满足 T3?0,需有
①
(1-23)
22bsin(45???),h3?b。将以上各式连同式 (1-16) 代入式 (1-23),得货22
箱能够达到传送带C的条件是
82
v12? (1-24) gb1?sin(45???),
3从图1-d中易求得 h2?
??
即货箱滑到底部,与刚支承B碰撞前至少具有如下速度
。 ③ (1-25)
最后分析撞击前货箱能达到该最小速度的条件。
由问题 (1) 可知,当 ??arctanfs,货箱与传送带同速后,将以速度v0作匀速运动,此时若
v?
v1min,则货箱释放点位置应满足 0
。 ①
(1-26)
若 v0?v1min,s不管取何值,均无法满足要求。①
当 ??arctanfs,货箱与传送带同速后还将继续向下作加速运动,此时若 v0?v1min,则货箱速度未与传送带同步之前已经达到 v1min,s的表达式同式 (1-26) ①;若 v0?v1min,则货箱与传送带同速之后还需继续向下运动直至速度达到 v1min,并且
22
v0v12min?v0
s?s1?s2? 。 (1-27) ?
2a12a2
将式 (1-2)、式 (1-6) 和式 (1-25) 代入得
。② (1-28)
第2题(25分)
动物园要进行猴子杂技表演,训猴师设计了如下装置:在铅垂面内固定一个带有光滑滑槽,半径为 R 的圆环,取一根重为 P,长为 l?3R 的均质刚性杆AB放置在圆环滑槽内,以便重为Q的猴子沿杆行走,已知 P?2Q。
(1) 如图 (A) 所示,试求猴子处于距杆AB端点A距离为d时,杆的平衡位置?(用杆AB与水平线的夹角θ表示)
题 2 图
(2) 设两只重量均为Q的猴子同时进行训练。训猴师首先让猴甲静坐在杆AB的A端,并且使猴甲-杆系统处于平衡,然后让猴乙从杆的B端无初速的沿杆向猴甲运动,如图 (B) 所示。试问猴乙应该如何走法才能不破坏原猴甲-杆系统的平衡状态?
解答及评分标准
(1) (本小题10分)解法一:采用分析静力学方法,利 用虚位移原理寻求猴-杆系统的平衡位置。建立坐标系如图2-a所示,用K表示猴子的位置。由于A、B处为理想约束,约束力NA和NB在相应的虚位移不做功,系统只有重力做功。设
AB杆的质心为C,则圆心O到杆AB质心C的距离
OC?OA?AC?OA?AC
2
2
2
2
??1
?R2??R??R。
?2?2??
2
显然,在ΔOAC中,?OAC?30?,所以质心C坐标
图 2-a
yC?R?Rsin??30??猴K的坐标
??
Rsin?。 ① (2-1) 2
yK?R?Rsin??30??dsin?。 ① (2-2)
??
将式 (2-1) 和 (2-2) 分别取变分得
② (2-3a)
(2-3b) 根据虚位移原理,猴-杆系统平衡时有
① (2-4) P?y
C?Q?yK?0。
将式 (2-3) 代入得
③ (2-5)
2d?R
或 tan??。
3R
解法二:采用刚体静力学方法,直接列平衡方程求解。系统受力如图2-b所示,建立图示坐标系,垂直于杆方向为x轴, 沿AB轴方向为y轴。用K表示猴子的位置。对系统列平衡方程,
Fx?0,
(NA?NB)cos60o?(P?Q)cos??0,
Fy?0,
(NA?NB)cos30o?(P?Q)sin??0,
N
??
图 2-b
?M
A
(F)?0,
l
NBlcos60o?P?cos??Qdcos??0,
2
???。 ?
由上面第一式和第二式得
?sin?cos? NB?3Q???
?代入第三式得
tan??
2d?R
。 3R
(2) (本小题15分)根据第 (1) 题的.结论,当猴甲静坐在杆A端时,d?0,代入式 (2-5) 可得猴甲-杆系统平衡时杆的初始位置角 ?0?30o。取B点为原点,s轴沿BA方向,
?,则作用在猴乙上的惯性力大小为 s设猴乙的加速度为?
。 ①
(2-6)
当猴乙运动到杆上任意位置时其惯性力方向及系统受力如图2-c所示。对猴-杆系统运用达朗贝尔原理,
MO(F)?0,
图 2-c
。⑤ (2-7) 将式 ③ (2-8) 。
上式即为保持原猴甲-杆系统平衡状态不变的情况下,猴乙的运动应满足的微分方程。上式对应的齐次方程的通解为
g
?BsinR
g
t , (2-9) R
s1?Acos
易知微分方程 (2-8) 的一个特解可取为 s2?C,代入式 (2-8) 可得
s2?C?
2R
。
(2-10) 3
。 ③ (2-11) 故微分方程 (2-8) 的通解为
式中,A和B为积分常数,可由初始条件确定。当t ? 0时,猴乙在杆的B端,而且初速度为0,所以初始条件为:当t ? 0时,
??0。 (2-12) s?0,s
利用上述条件,可求得积分常数
2R
, B?0。 (2-13) 3
将式 (2-13) 代入式 (2-11) 可得猴B的行走规律
A??
③ (2-14) 。
即猴乙按照上述规律运动时,不会破坏原猴甲-杆系统的平衡状态。
第3题(30分)
如图传送装置中,AB是一段横截面为矩形的梁,A端自由,B端固定。截面宽度为b,高度为
h(h?2b)。弹性模量为 E,泊松比为 ?。设传送带连同带上分布均匀的散装物在单位长度上的重
量为q,传送带给予AB梁单位长度的切向作用力为t。建立图示的坐标系,考虑离A端为已知长度
L (L?5h) 的C截面,假定该截面中水平直线上的切应力均匀分布。
(1) 若q和t为已知,试确定C截面的上边缘P点和下边缘Q点的应力状态,画出单元体示意图,并写出各应力分量的表达式。
(2) 若q和t为已知,试求C截面上切应力的表达式。
(3) 事实上,q和t的数值不易直接得到。为了用电测法测定q和t的具体数值,拟在C截面所在区域且垂直于C截面的外表面上贴应变片。暂不考虑温度补偿片及组桥连接等事宜,先设计一个贴片最少的方案,并说明如何利用这些应变片的读数来求得q和t的数值。
解答及评分标准
题 3 图
(1) (本小题6分) AB部分可简化为上表面承受均布的竖向荷载q和切向荷载t的悬臂梁,如图3-a所示。在梁中截取坐标为x的截面,如图3-b所示。由平衡条件可导出,该截面上各内力分量
FN?tx, FS??qx, (3-1)
截面上的正应力由拉伸应力 ?N 和弯曲应力 ?M 构成。对于坐标为x的截面上坐标为y的点, FNtxMy6(qx2?htx)y?, ?
M??, ?N??
bh3AbhI
?x??N??M
(3-2)
图 3-a
图 3-b
特别地,在C截面,x?L。其上边沿P点处,y?
h
,故 2
tL
?x? ①
(3-3)
bh ① ① 此处的第二式若无负号,但单元体图正确,也给 ① 分。
P点处于双向应力状态,其单元体示意图如图3-c所示。
h
在C截面下边沿Q点,y?
?,故
2
2
tL3(qL?htL)? ?x? 2
① (3-4)
由于梁的下表面是自由表面,故 ?y?0,?xy?0。Q点 处于单向应力状态,其单元体示意图如图3-d所示。
图 3-d ①
(2) (本小题10分)为了导出截面上任意处的切应力 ?的一般表达式,在C截面附近截取梁中的一个微段 dx,再截取其坐标为y的水平面以上直到上边沿的部分,如图3-e所示。其左截面(图中灰色区域)正应力的合力按照实际的方向(即图中所标识的方向)应为
FNM
F??dA??ydA?dA。
IAA
AA
故有 ②
(3-5) ?
?
?
?
?
?
式中,S?A?是该区域的面积,即 ② (3-6)
图 3-e
图4- e中右截面上的正应力的合力可记为 (F?dF)。
记微元区段左截面上坐标为y处的切应力为 ?(y),方向向上。根据切应力互等定理可知图3-e所示区域中,下截面上的切应力数值也为 ?,且方向向右。由这个区域在x方向上的力平衡可得
?F?tdx??bdx?(F?dF)?0。②
S?dMA?dFN
t1dFt
??。 故有 ?????
bdxbbIdxbAdxb将式 (3-1) 代入上式便可得
S??ht?t?A??
?1?????qx?????。 2?b?bI?A??
将式 (3-6) 代入上式便可整理得
?3qx?4y2?t?4y12y2??
? ?(x,y)????1?h2???4b??1?h?h2???。 (3-7a)
2bh?????? ④ (3-7b) 这就是所求的切应力的表达式。负号说明切应力的实际方向与图3-e所,单元体的切应力方向如图3-f示方向相反。例如,形心轴处(y?0)所示(图中未标出正应力)。
计算方向
实际方向
如果考生在图3- e中,假设切应力?的方向是向左的,那么式 (3-7) 中就没有负号。
图 3-f
(3) (本小题14分)在C截面所在区域的各外表面中,上表面有传送带覆盖,贴应变片不大现实。故只有侧面和下表面比较合适。同时,太靠近棱边的区域贴片,可能导致数据不够真实,也是应该避免的。
由于各应力分量沿y方向连续分布,因此可以预料,在截面上存在着应力分量 ?x,?y 和 ?xy。其中 ?xy 对沿坐标轴方向的线应变没有影响,但对其他方向的线应变有影响,因此,如果所贴应变片是沿坐标轴方向的,一枚沿轴向,记为 ?(1)??x,另一枚垂直于轴向,记为 ?(2)??y,那么,由平面问题的广义胡克定律,
11
?x?(?x???y), ?y?
(?y???x),
EE
可得 ② (3-8)
上式涉及正应力分量 ?y,这个分量可按下述方法进行分析。
在图4-e中,根据式 (4-7a),微段左截面上坐标为y的水平线以上的部分切应力的合力为
hh2
FQ????bdy??
y
?
y
?3qx?4y2?t?4y12y2??
????2?1?2?1??dy ?????h?4?hh???2h?
⑤ 由y方向上的力平衡,如图4-e,有
FQ?qdx?(FQ?dFQ)??ybdx?0,①
q1dFQqq?3y4y3?
???
??3?1?即得 ?y???, ??bbdxb2b?hh?
即 ② (3-9) 这样,?x 和 ?y
的一般表达式分别由式 (3-2)
和式 (3-9) 给出。
可在C截面区域的侧面的不同位置粘贴应变片,从而构成不同的贴片方案。 第一种方案:可选择在侧面中线的K处贴片,如图3-g所示。在该处,
② 故有
① (3-10a)
①
(3-10b)
h
第二种方案:可选择在侧面中线上方的S处贴片,S处距中线 ,如
4
图3-h所示。在该处,
② 由式 (3-8) 可知,
5htL?3qL2E
?(?(1)???(2)), 2
2bh1
??
E27q?(?(2)???(1)), ?
32b1??2
由式 (3-8) 可知,
EtL
?(?(1)???(2)),
bh1??2
Eq
??(?(2)???(1)), 2b1??2
图 3-g
C
图 3-h
故有 ① (3-11a)
注意:如果考生没有求出 ?y 的表达式,直接考虑贴片,那么,应变片可用3片。以下的三种
方案,若算式都正确,则本小题统一给 ⑥ 分。
第三种方案:可选择在侧面中线的K处贴片,并贴成如图3-i所示的直角应变花。由于在中线上,与式 (3-10a) 相同,
Ebh
(?(1)???(2))。 t?
L(1??2
)
由式 (3-7) 可知,在K处的切应力按照其实际方向,可写为
?xy
?故有 ?xy?
6qL?ht
, 4bh
图 3-i
?xy
G
?
(1??)(6qL?ht)
。
2Ebh
在K处沿45°方向上的线应变
?(3)?
故有 q??
111(1??)(6qL?ht)?, ?(1)??(2)???xy???(1)??(2)??2224Ebh
?Ebh?h
????????????2(1)(2)(3)(1)(2)?。 ?3L(1??)?2L(1)???
第四种方案:除了在中线K处沿坐标轴方向贴片之外,再在底面沿轴向贴片,如图3-j所示。应变片共计仍用3片。
与第一、第二种方案类似,由 ?(1) 和 ?(2) 可得式 (3-10a):
t?
Ebh
(?(1)???(2))。
L(1??)
在C截面所在底面处沿轴向贴一枚应变片?(3),该处处于单向应力状态,由式 (3-4) 可知,
E?(3)??
2htL?3qL
,
bh2
2
图 3-j
将式 (3-10a) 代入上式即可得
2(?(1)???(2))?Ebh2?
?? q???(3)?。
3L?1???
第五种方案:在第四种方案中,应变片?(1) 和 ?(2)不一定要选择在侧面的中线K处,也可选择在侧面的S处贴片,该处的纵坐标为y0,如图3-k所示。由式 (3-2) 可知,
2
tL6(qL?htL)y0
?, ?x?3
bhbh
2
EtL6(qL?htL)y0
?即 ?(?(1)???(2))。 3
bhbh1??2
另外,在C截面所在底面处沿轴向贴一枚应变片?(3),与第四种方案相同,
E?(3)
2htL?3qL2
??。
bh2
?1
图 3-k
上两式构成关于t和q的线性方程组,联立求解可得 Ebh??(1)???(2)2y0?(3)??2y0?
t???, ???1?
L?1??2h??h?
2Ebh2??(1)???(2)?13y0???2y0?
q??????。 ??(3)??1??
3L2?1??22hh?????
?1
显然,侧面的两枚应变片也可以贴在中线的下方。
第4题(35分)
如图横梁的长度为 1600mm,横截面是底边 b?40mm,高度h?60mm的矩形。梁的左端A
为固支端,右端B自由。材料性能常数 E?95GPa,屈服极限 ?s 和比例极限 ?p 均为250MPa。 今有一批质地均匀、每块重量为 3.2kN、长度也为 1600mm的软金属板需要整齐地叠放在梁上,如 图 (A) 所示。现拟用一根长度为 1800mm、直径 d?36mm、材料与横梁相同的圆杆来提高横梁的承载能力。限于条件,只有梁下方1000mm处的地基可以对圆杆提供支撑;而且圆杆两端都只能用球铰与横梁和地基相连接。两个铰支座的水平位置可以根据需要分别随意调整,圆杆的长度也可以
- 11 -
随之而任意截取,如题图 (B) 所示。
(1) 定性分析:如何使用这根圆杆,使之与横梁形成合理的结构,才能尽可能多地放置金属板? (2) 不计横梁和圆杆的重量,根据问题 (1) 的要求,设横梁和圆杆的安全因数均为 [n]?2,设计和定量地计算这一结构。结果中长度精确到 0.1mm。
(3) 根据你的设计,加上支撑后的横梁最多可以堆放多少块金属板?
(A)
题 4 图
解答及评分标准
(1) (本小题7分)横梁的右部增加一个斜撑,实际上增加了一个向上的力和向右的力。向上的力可以改善横梁的弯曲强度,故不可缺少。但向右的力使横梁产生拉弯组合变形,加大了横梁横截面上的最大正应力,故该项作用力对强度不利。若要完全消除向右的作用力,则圆杆应处于铅垂位置。另一方面,对斜撑而言,由于是受压杆,可能存在稳定问题。圆杆越长,稳定性越差。因此,圆杆处于铅垂位置具有最好的稳定性。所以,使圆杆处于铅垂位置是应该采用的方案。(关键词:铅垂放置③)
在圆杆处于铅垂的情况下,圆杆的左右位置的调整也是一个可以提高横梁强度的措施。(关键词:左右调整②)
同时,还可以将圆杆的长度取得比 1000mm 略长,利用装配应力(即预应力)来提高横梁的强度。(关键词:装配应力②)
(2) (本小题26分)金属板的重量可简化为作用在悬臂梁上的均布荷载q。记竖杆安置在距右端B为a的C处,把竖杆的支撑简化为向上的作用力R,其力学模型和弯矩图如图4-a所示。在这种情况下,弯矩存在着三个峰值,即位于AC之间的 MK,A截面的 MA ,以及C截面的 MC。要使横梁的强度得到充分利用,应有
① (4-1) MK??MA??MC。
以B端为原点,x坐标向左。C截面的弯矩
① (4-2a) 在C截面左面,弯矩为
M(x)?R(x?a)?
12
qx (x?a), 2
R
其极值点 xK?,该截面的弯矩
q
① (4-2b)
固定端A处的弯矩
- 12 -
M
图 4-a
① (4-2c) 和 ② (4-3b)
11
故有 Mmax?qa2?(
9?42)qL2。
298
1
由于横梁的抗弯截面系数 W?bh2,故强度条件是
6
式 (4-2) 的三式联立,即可解得
, ② (4-3a)
?max
Mmax?3qL2
(9?42)?s, ??2
W49bh[n]
由此可得许用荷载
49?40?602?250
?34.35N/mm。 ② (4-4) 3?(9?4)?2?16002相应地,C处的支承反力
R?34659.90N。 (4-5)
记横梁横截面惯性矩为 I1,下面用不同的方法计算在R和q的共同作用下C处的挠度 wC。
方法一(叠加法):C处的挠度 wC可按图4-b所示的简化模型计算,即(向上为正)
(R?qa)(L?a)3q(L?a)4?12?(L?a)2
wC? ??qa??
3EI18EI1?2?2EI1
q?(L2?2La?5a2)(L?a)2 ⑥ (4-6a) 24EI1
上式中代入 a?417.926mm,q?[q]?34.35N/mm等数据,可得
wC?10.214mm。 ① (4-6b)
或者:wC 可以直接用q来表达。
(R?qa)(L?a)3q(L?a)4?12?(L?a)2
wC? ???qa?
3EI18EI122EI??1
2(113?722)qL424(113?72)qL4??
7203EI17203Ebh3
44
?2qL?3qL?3.7240?10。 ?3.1033?10
Ebh3EI1在上式中代入 q?[q]?34.35N/mm 等数据,即有
0.03724?34
第十届全国周培源大学生力学竞赛详细参考解答及评分标准.35?16004
wC??10.214mm。
95?103?40?603
或者:wC 还可以直接代入数值计算。
11
EI
1?Ebh3??95?103?40?603?6.84?1010N?mm2,
1212
(R?qa)(L?a)3
?163.4267mm,
3EI1
- 13 -
图 4-b
q(L?a)4
?122.5700mm,
8EI1
?12?(L?a)
?30.6425mm, ?qa?
22EI??1
2
wC?163.4267?122.5700?30.6425?10.214mm。
方法二(图乘法):将原有荷载分解为如图4-c左方所示的三种荷载,画出相应的弯矩图。同时,在
C处加上向上的单位力,画出其弯矩图。各弯矩图如图4-c右方所示。故有:
EI1wC?
qa(
q(L图 4-c
121q3
R(L?a)?(L?a)?(L?a)??(L?a)2?(L?a)?(L?a) 23324
qa211??2a?qa2?
?(L?a)?(L?a)??qa?L????L?a?(L?a), ??
2??2?2?322
(L?a)2
故有 wC?8R(L?a)?q(3L2?2La?a2)。
24EI1
1
将 R?q(L?a) 代入上式,即可得
2
(L2?2La?5a2)(L?a)2? wC?(L2?2La?5a2)(L?a)2?10.214mm。 3
24EI12Ebh
??
wC 为正,说明竖杆的长度应比基本长度H更长。记竖杆的长度为 H??H??,竖杆的横截面
积为A2,由于竖杆为压杆,故有协调条件:
②
?1
???RH???RHR?R
??????ww故有
???11???????C??C??①
???EAEAEAEA2?2???2???2
4?
34659.9?10004RH
??w??10.214?10.572mm。 C
Eπd295
?103?π?362所以,应取立柱高度
- 14 -
H??H???1010.57mm。 ① (4-7)
下面校核立柱的安全性。由于立柱承受压力,故考虑其柔度。由已知,?p??s,
①
① 故撑杆是大柔度杆 ,应该考虑其稳定性。记 I2 为撑杆横截面惯性矩,由于轴力 FN2?R,故有
Fcr?
③ (4-8)
n?R所以撑杆安全。由此看来,选定 H??1010.57mm 是合适的。
结论:截取圆杆长度 H??1010.6mm,使之处于铅垂位置,在离右端 a?417.9mm 处与横梁强行安装。这样制成的结构具有最大的许用荷载 [q]?34.35kN/m。
①
[q]34.35
??17.18。 (4-9)
[q0]2
(3) (本小题2分
)每块金属板的分布荷载
即加上支撑后结构最多可以放置17块金属板。①
注意:求解本题考生可能会采取以下不够完备的方案。可参考如下评分标准:
方案1(本方案6分) 在B端加高度 H?1000mm 的竖直撑杆,如图4-d 所示。
这种情况下,协调条件为
② ①
3HI1Hbh31000?40?603
??5.1808?
10?4。 式中, ???23323
π?36?1600A2LπdL
图 4-d
弯矩最大值出现在固定端,
1?4?
?1.0016。 式中,
1??
① 容易看出,?体现的是竖杆弹性的影响。上述计算表明,这个影响是非常微小的,忽略它所引起的误差小于0.2 ?。这样,强度条件可简单地写为
Mmax3qL2?s
?max?。 ??
W4bh[n]由此可得许用荷载
①
- 15 -
因此,在这种情况下,最多可以放置4块板材。①
方案2(本方案10分) 在B端加上高度大于H?1000mm的竖直撑杆,利用装配应力的方案,如图4-e 所示。
由于竖杆变形对强度的影响很小,故忽略。设右端支座的支反力为 R ,撑杆比 H?1000mm 多出?,根据右端B处的协调条件可得:
②
33EI
故有 R?qL?3?。
8L
由此可得左端支反力及支反力偶矩
1
F?qL?R, m?qL2?RL。
2
由此可知,弯矩峰值出现在A、K两个截面上(如图4-f)。由
FRqL?RR
? 即 ?,
LssLss??
可得 s?
图 4-e
R
。
q
x
① ①
最佳的 ? 值,应使 MA?MK,即
R212
qL?RL?,
22q即 R2?2qLR?(qL)2?0。 可得 R?(2?1)qL。
将上式代入R的表达式即可得最佳的 ? 值:
(82?11)qL4(82?11)qL4
。
???
2Ebh324EI
①
可得这种情况下的许用荷载
②
因此在这种情况下,最多可以放置6块板材。①
同时,竖杆在 H?1000mm 的基础上应该增加的长度为
②
方案3(本方案12分) 未考虑预应力,但考虑了竖杆左右平移的方案。
若不考虑预应力,如图4-g 所示,也不考虑立柱的变形,那么C处就相当于增加一个铰。显然C处支座的支反力 RC 随着a的位置的变动而变化;或者说,这种情况下,可以调整的因素只剩下a。
- 16 -
根据C
② ①
①
C ①
K ①
由于可调因素只有a,故不可能取 MK??MA??MC。最佳的 a 值,应使 MA?MC ①,即
11
q?L
2?2La?a2??qa2,
28
即 5a2?2La?L2?0。
故有 ②
图 4-g
注意上式与式 (4-3a) 中的 a?417.9
mm 相比,向中部靠近了约 46mm。
① 根据上述结果可以算出,当 MA?MC 时,
1
MK?7?26qL2?MA。
100
1
由此可知,MA?MC?7?2qL2 是这种情况下的最大弯矩。
50
1
可以看出,在B处铰处于 a?6?1L 位置上时,如果铰再往左移,则 MC 将会增加;如
5
1
果铰再往右移,则MA将会增加。因此,MA?MB?7?2qL2 是B处铰移动时所可能产生
50
的最小弯矩。
??
?
??
??
用弯曲强度条件,
① 便有
[q]27.89
??13.94。
[q0]2
这意味着,板材放置14块有困难。同时还可以看出,若将铰换为立柱,实际上使C处的竖向位移的刚性约束变为弹性约束,许用荷载将再次略略降低,因此最多放置13块的结论比较合适。①
- 17 -
?max
Mmax3(7?26)qL2?s???,
来源:考试吧(Exam8.com)2009-5-12 【考试吧:中国教育培训第一门户】 模拟考场
评卷说明:
①评卷前,要进行试评,确立各等次的例文;评卷时,要求三位教师独立评阅,分数取平均值,保留小数点后一位。
②评阅全部试卷时,请以二等、三等之间45分为基准,根据作文实际上下浮动。满分作文的比例不少于全部作文的5%。
③评阅每份试卷时,首先确定等次,然后根据所评等次的基准分,上下浮动。
④字迹美观、卷面整洁的作文在相应等次的基准分上加1-2分;字迹潦草、卷面不整洁的作文在相应等次的基准分上扣1-2分。
⑤作文中出现低俗的、不规范的语言以及使用外语表达等情况,要在相应等次的基准分上扣1-2分。
⑥评阅有争议的作文时,要慎重对待,要集体讨论、评定其等次和分数,要鼓励学生自由、有创意的表达。
⑦错别字、标点符号错误,每两个扣1分,扣至3分为止。
评阅时请注意:
(1)作文(1)可写记叙性、描写性、抒情性或议论性的文章,也可写迟子建《会唱歌的火炉》的读后感。
(2)作文(2)不要求学生必须引用材料中的文字,但是所表达的情感态度要与材料一致。
25、评分标准:
①满分:60分。
在所有作文中相对完美(符合学生年龄特点和语言表达能力,不以文学作品为衡量标准)的文章。
②一等:56-59分,基准分57分。主旨鲜明,表达有文采。
特色评分:感情真挚、立意新颖、构思新颖、语言富有个性等方面有一项突出的作文即可评为一等。
③二等:46-55分,基准分50分。主旨鲜明,表达较有文采。
④三等:36-45分,基准分40分。主旨明确,表达清楚。
⑤四等:36分以下,基准分30分。主旨不明确,表达不清楚。
透过这份评卷说明和评分标准,我们可以很好地领会命题者的意图和注意事项。(1)作文(1)可写记叙性、描写性、抒情性或议论性的文章,也可写迟子建《会唱歌的火炉》的读后感。
(2)作文(2)不要求学生必须引用材料中的文字,但是所表达的情感态度要与材料一致。
这份说明值得我们关注,不仅仅在于命题者给出的“评阅时请注意”,尤为重要的是,从中我们可以窥见命题者真正的意图所在,这也是我们审题时要注意的问题,因为审好题是写好作文的前提。虽然现在对文体要求不做具体提示,淡化文体,当然一般情况下诗歌除外。
中考时谁都想得高分,但并不是每一个考生都能得满分,因为只有百分之五的比例。其实中考时,如果作文能获得一等,也就是我们平时常说的“一类文”,也是相当不错的了,它的基准分是57分,范围在56-59之间。中考作文评分标准对一等作文有严格的标准,这就是“主旨鲜明,表达有文采”,除此之外,我们还要特别关注“特色评分”的四个方面:感情真挚、立意新颖、构思新颖、语言富有个性,因为这中间只要“有一项突出的作文即可评为一等”。感情真挚,众所周知,“感人心者莫乎情”,能够感动别人的首先要感动自己。
立意新颖,立意就好比人的灵魂,俗话说“作文先有意”;新颖就是要求文章的立意要有独创性,要言人所未言,发人所未发,或人能知其一,我能知其二,做到人无我有,人有我优。构思新颖,说的就是布局谋篇,因为结构安排得如何,直接影响着文章的质量。文章的结构体现的是作者的思路,这不仅仅是个写作技巧的问题,更是个思想认识的问题。正因为文章体现的是作者的思路,所以文章也就印上作者的烙印,文章风格也随着作者的不同而改变,擅长抒情则抒情,擅长说理则说理,擅长叙事则叙事,不管怎样语言都要讲究文从字顺文采飞扬。
这里要特别注意一点,中考作文不比平时,超越别人是关键,但求新不等同于棋走险招剑走偏锋,我们写作时在求新颖的同时,还要求稳,在稳的前提下力求创新。毕竟作文的评判还需要阅卷者的首肯,即便三人阅卷,也会因争议而导致不同的得分,当然除非你的作文很有创意。因为“评阅全部试卷时,请以二等、三等之间45分为基准,根据作文实际上下浮动。”“评阅有争议的作文时,要慎重对待,要集体讨论、评定其等次和分数,要鼓励学生自由、有创意的表达。”
作文中出现低俗的、不规范的语言以及使用外语表达等情况,要在相应等次的基准分上扣1-2分。这一条也要引起我们的重视。如果作文中出现低俗的语言,只能说明你文化品位不高,文化品位不高,自然难得高分;如果出现不规范的语言,不管是生造词语,还是语句不通顺,抑或语病百出,这都是语文素养不高的体现;即使你的英语再好,也不要忽视这条潜规则,因为这是写作文,而不是考查你英文,用不着在作文里显摆你英语有多棒,当然笔者揣测,此条标准也许和滥用网络语言有关。
【问卷评分标准详细说明】推荐阅读:
合唱比赛评分表及评分标准10-05
酒店评分标准12-07
骨干教师标准评分06-14
器乐大赛评分标准06-28
四级评分标准细则09-19
征文比赛评分标准11-28
军训评分标准表12-22
处方质量评分标准01-15
六一活动评分标准05-29
无菌操作流程评分标准06-18