初二数学几何证明

2024-05-24 版权声明 我要投稿

初二数学几何证明(推荐13篇)

初二数学几何证明 篇1

E

A

BCD

2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.求证:∠DEC=∠FEC

.3.已知△ABC、△DBE、△CEF是等边三角形,求证:四边形ADEF是平行四边形.A

D

F

BC

4.如图,已知在△ABC中,∠A=90°,AB=AC, ∠B的平分线与AC交于点D,过点C作CH⊥BD,H为垂足。试说明BD=2CH。

A

21C

5.在△ABC中,∠C=90°,AC=BC,过C点在△ABC形外作直线MN,AM⊥MN于M,BN⊥MN于N.

(1)求证:

MN=AM+BN

(2)△ABC内,∠ACB=90°,AC=BC若过C点在△ABC内作直线MN,当MN位于何位置时,AM,BN和MN满足MN=AM-BN,并证明之.

6.“等腰三角形两腰上的高相等”

(1)根据上述命题,画出相关图形,并写出“已知’’“求证”,不必证明.(2)写出上述命题的逆命题,并加以证明.

7.已知:如图,在Rt△ABC中,∠ACB=900,D、E、F分别是AB、BC、AC上的点,DE、DC、DF将△ABC分成四个全等的三角形,△ABC的周长是1 2厘米,求由DF、CD、DE所分成的各个小三角形的周长.

8.如图,∠ABC=∠ADC=90°,E是AC的中点,EF⊥BD,垂足为F.求证:BF=DF.

B

FA

D

C

9.已知,如图正方形ABCD中,E、F分别是AB、BC的中点,AF和DE交于点P. 求证:

CP=CD

10.如图△ABC中,BD⊥AC,CE⊥ AB,垂足分别为D、E,BD、CE相交于H,∠A=60°.DH =2,EH=1(1)求BD和CE的长.

(2)若∠ACB= 45°,求△ABC的面积.

11.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD于E,CF⊥AD于F,点M 是BC的中点.求证:EM=FM

A

B

E

C

12.中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。你能根据这幅“勾股圆方图”证明勾股定理吗?(图中4个直角三角形全等)

13.如图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1A1A2A2A3A7A81,如果把图乙中的直角三角形继续作下去,细心观察图形,认真分析各式,然后解答问题:

A8

A

3ICME-7

21图甲图乙

()12,S1

;(2)13,S2

;(3)14,S3

;„„

(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;

2222

(3)求出S1S2S3S10的值。

1.如图,在△ABC中,∠

A=90°,ABAC,BD平分∠ABC交AC于点D,若AB2cm.求:AD的长,2.在Rt△ABC中,∠C=90°,中线AD的长为7,中线BE的长为4.求:AB的长 3.四边形中,∠A=60

°,∠B=∠D=90°,AB2,CD1.(1)求BC、AD的长(2)

初二数学几何证明 篇2

一、几何推理与图形证明教学的现有问题

一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.

二、定理和重要概念的引入及教学

定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.

例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.

证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.

则:GH=DG.

所以:∠1=∠2,

而∠1=∠4,∠2=∠3=∠5.

所以;∠4=∠5,所以:AF=EF.

乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.

三、学会“读题”,明确题中条件要素

在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].

四、培养学生几何推理思维

1. 三种思维的应用

几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].

2.“动手”做题,辅助线的应用

在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.

例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.

求证:△ABC≌△A'B'C'.

证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.

则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.

所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.

所以:BE=B'E',AE=A'E'

所以:△ABE≌△A'B'E'

所以:∠E=∠E'∠BAD=∠B'A'D'

所以:∠BAC=∠B'A'C'

所以:△ABC≌△A'B'C'

这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.

总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.

参考文献

[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.

[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.

几何推理与数学证明的教学策略 篇3

【关键词】几何推理    数学证明    教学    策略

1前言

有效教学指的是在教学活动中教师遵循一定的教育教学规律,采用各种方式和手段,以尽可能少的时间、精力、教学设施的投入,取得尽可能多的教学效果,实现特定的教学目标,满足社会和个人的教育价值需求而组织实施的活动。提高课堂教学效率是无数教育工作者的共同心愿和奋斗目标,时代要求我们构建一种新型的、高效率的课堂教学模式。教学有没有效益,并不是指教师有没有教完内容或教得认真不认真,而是指学生有没有学到什么或学得好不好。因此,教学策略显得尤为重要。

2教学策略及其特点、分类

教学策略是实施教学过程中的教学思想、方法模式、技术手段这三方面动因的简单集成,是教学思维对其三方面动因的进行思维策略加工而形成的方法模式。

教学策略具有指向性、整合性、可操作性、灵活性、调控性、层次性等特点。所谓指向性,指教学策略是为实际的教学服务的,是为了达到一定的教学目标和教学效果。目标是教学整个过程的出发点。教学策略的选择行为不是主观随意的,而是指向一定目标的。所谓整合性,指教学过程是一个彼此之间相互联系、相互作用的整体,各个教学环节连接紧密,各个教学因素的变化都会起到牵一发而动全身的作用。所谓可操作性,指所有的教学活动并不是一成不变的,一成不变的教学只会让学生感觉枯燥乏味,影响教学效果,因此,必须从学生的整体出发不断调整适合学生的、学生易于接受的教育教学策略。所谓灵活性,指教师在教学活动中具有很强的调控权利,能够从学生的整体利益和教育教学效果出发,适当调整自己的教育教学方法策略,灵活地运用多种教学策略。所谓调控性,是教师在教育教学工作中的调控能力。每一位教师都有自己的教育教学策略和教学风格,最好的教育教学策略是真正适合大部分学生的方式方法,所以,教师在选择教育教学策略时的调控力显得更为重要。层次性指教学具有不同的层次,加涅把教学分为课程级、科目级、单元级和要案级四种水平。

根据各种教学策略的不同特点,可以将其分为产生式教学策略、替代式教学策略、独立学习与小组学习策略和竞争与合作学习策略。

3几何推理与数学证明的教学策略研究

几何推理和数学证明具有抽象性,并且对于毕业生来说,该部分所占分数比例较重,但是掌握了相关的方法策略确实很容易得分,因此,教师必须设计较为良好的教学策略,使学生在短时间内更好地掌握。

3.1讲授法

讲授法是指教师通过口头语言,辅助以板书、挂图、投影等媒体向学生传递语言信息的方法,是一种教师讲、学生听的活动。讲授法的优点是能在短时间内让学生获得大量系统的科学知识;缺点则是学生比较被动,师生都难以及时获得反馈信息,个别差异也很难全面照顾。因为几何定理的符号语言是证明过程中的基本单位,所以首先要采用讲授法教学生,并在讲授的基础上归纳出“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求。 例如定理:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 “一划”就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分,如“直角三角形”“高线”“相似”。 “二画”就是依据定理的内容,能画出所对应的基本图形。“三写”即能用符号语言表达,争取不丢分。

3.2演示法

演示法指借助实物、图片,或使用投影、电视、电影等手段,将要感知的过程或要学习的技能记录下来播放、演示,通过不同形式的直观化方式,增强学生的感性认识,或在已有理性认识的情况下,再通过感性材料深化理性认识的教学方法。借助现代教学媒体,如电影、电视、多媒体计算机等,可以化静态为动态,因而其逼真程度和直观程度更高。学生觉得几何抽象还因为几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤,因此必须采用演示的方法,使学生能够有一个全方位的理解。演示法的具体教学步骤:首先选择各种类型的证明题,根据方法利用进行分类,再将正确的、规范的解答步骤向学生演示,同时给予一道解题方法相似的题目加以巩固。

3.3训练和实践法

训练和实践法是让学生通过一系列设计好的实践活动来进行练习,运用所学知识解决同类任务,以增加技能的熟练程度或增加新能力的方法。使用这种方法的前提是假设学习者在练习之前已基本掌握了与某种训练有关的概念、原理和技能。现代多媒体技术、人工智能技术和虚拟现实技术可以为学习者创设逼真的学习和实践情境,使学习者在真实的情境中进行练习和实践。基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。

4小结

教学策略是教学效果的重要影响因素,结合几何推理与数学证明问题的抽象性和考试相关要求提出的教学策略具有适应性、针对性、灵活性和快捷性。在教育教学工作中,结合学生实际情况,有针对性地创新教学策略,使学生易于接受、牢固记忆,不断促进教育教学工作更好发展。

【参考文献】

[1]和学新.教学策略的概念、结构及运用[J].教育研究.

[2]熊川武.反思性教学[M].上海:上海华师大出版社.

初二几何证明题 篇4

如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x

(1)当PQ∥AD时,求x的值;

(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;

(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。

21.(本小题满分9分)

如图,直线yxm与双曲线y

(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x

(3)直线y2x4m经过点B吗?请说明理由.

(第21题)

28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.

(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);

(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;

(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):

题28(a)图题28(b)图

(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A

出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。

(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;

(2)P是MG的中点,请直接写出点P的运动路线的长。

23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.

(1)求证:△BDF≌△CDE;

(2)若AB=AC,求证:四边形BFCE是菱形.

CE

27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.

(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;

②求证:EP=AE+DP;

(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.

27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;

(2)求证:AB=BC;

(3)如图2所示,若F为线段CD上一点,∠FBC=30º.

DF求 FC 的值.

图1 E C

初二上几何证明题010 篇5

1.C如图,在△ABC中,AB=2AC,AD平分∠BAC,AD=BD.求证:CD⊥AC. A

BC

D

2.C如图,已知D为等边△ABC内一点,P为等边△ABC外一点,BD=DA,BP=AB,∠DBP=∠DBC. 求证:∠P=30°.

A

P

D

BC

3.C如图:AD∥BC,∠1 =∠2,∠3 =∠4,直线DC过点E交AD于点D,交BC于点C,求证:AD + BC = AB.

C E

D123 AB

4.C如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,试说明,△ABC≌△ADE的理由.

AE1DC B

5.C如图,△ABC是等边三角形,点D、E分别在AC、AB上,且AD=BE.求证:∠A=∠1.A

D

E1

BC

中考数学几何证明题 篇6

(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;

第一个问我会,求第二个问。需要过程,快呀!

连接GC、BG

∵四边形ABCD为平行四边形,∠ABC=90°

∴四边形ABCD为矩形

∵AF平分∠BAD

∴∠DAF=∠BAF=45°

∵∠DCB=90°,DF∥AB

∴∠DFA=45°,∠ECF=90°

∴△ECF为等腰Rt△

∵G为EF中点

∴EG=CG=FG

∵△ABE为等腰Rt△,AB=DC

∴BE=DC

∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°

∴△BEG≌△DCG

∴BG=DG

∵CG⊥EF→∠DGC+∠DGB=90°

又∵∠DGC=∠BGE

∴∠BGE+∠DGB=90°

∴△DGB为等腰Rt△

∴∠BDG=45°

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

浅谈几何证明题中线段相等的证明 篇7

一、当被证明的两条线段是交于它们的端点时, 我们可以利用“等角对等边”和“中垂线的性质定理”等知识点来证明, 下面我们来看两个例题.

例1:在△ABC中, AD⊥BC于点D, 且AD平分∠BAC, 求证:AB=AC.

证明:∵ AD⊥BC

∴∠ADB=∠ADC=90°

又 ∵AD平分∠BAC

∴∠BAD=∠CAD

∴∠B=∠C (三角形的内角和为180°)

∴AB=AC

例2:在正方形ABCD中, E为BD上任意一点, 连接EA、EC,

求证:EA=EC.

证明:连接AC交BD于点O

∵ 正方形ABCD中

∴ AC⊥BD, OA=OC

∴ BD为AC的中垂线

又 ∵点E在BD上

∴EA=EC

二、当被证明的两条线段相交时 (端点不重合) 或位置关系明显不平行时, 可以利用证明两个三角形全等的方法来证明线段相等.

例3:在平行四边形ABCD中, E为BC上一点, 且AB=AE,

求证:AC=ED.

证明:∵ 平行四边形ABCD中

∴ AD//BC, AD=CB

∴ ∠DAE=∠AEB

又 ∵ AB=AE

∴∠CBA=∠AEB

∴∠CBA=∠DAE

∴△ABC≌△EAD (SAS)

∴ AC=ED

三、当被证明的两条线段不相交时, 但是从图中可以估计位置关系为平行时, 可以考虑用证明特殊的四边形的方法来证明线段相等.

例4:如图:DB//AC, 且BD=12ACE是AC的中点,

求证:BC=DE.

证明:∵ E是AC的中点, DB//AC

DB=12AC, BD//EC

DB=12ACEC=DB

∴四边形BCED为平行四边形

∴BC=DE

以上我们介绍了三种情况, 并不是都只能利用其中的某一种方法, 我们可以根据题目的条件利用其中的几种方法, 下面我们来看一个利用方法一和方法三解决的题目.

例5:如图:在正方形ABCD中, E为BD上一点, 过点E分别作EF⊥BC、 EH⊥DC垂足为F、H, 连接EA、HF, 求证:AE=HF.

分析:本题要证AE=HF, 如果按上述方法, 我们要证包含线段AE、HF的两个三角形全等, 显然图中没有这样的三角形, 但是根据例1的思路我们可以想到EA=EC, 从而思考是否可以利用EC作中间的转换量, 那需要证EC=HF, 从而可以发现, 只需要证明四边形EFCH为矩形即可.

证明:连接EC、AC交BD于点O

∵ 正方形ABCD中

∴ AC⊥BD, OA=OC, ∠BCD=90°

∴ BD为AC的中垂线

又 ∵点E在BD上

∴EA=EC

又 ∵ EF⊥BC、 EH⊥DC

∴∠EFC=∠EHC=90°

∴ 四边形EFCH为矩形

∴ EC=HF

几个几何定理的纯几何证明 篇8

《中学数学杂志》(初中)2008年第2期刊载的“从一道美国数学竞赛题引出的一组几何定理及代数证法”一文(下称文[1]),由一道美国数学竞赛试题经探索、整合,得到了几个新颖有趣、耐人寻味的几何定理,阅后很受启发. 由于这几个几何定理的独特风格和丰富的内涵,颇显其思考性,而引人入胜. 缺感的是文[1]的代数证法冗长繁琐,不够简约,有失纯几何方法的风采、韵味,并非是“定理的证明用代数法解决更妙”(文[1]). 笔者经思索、探究,得到了文[1]中四个定理的浅显、简明、别致的纯几何证法,现介绍如下,供读者参考(为方便计,定理顺序同文[1]).

定理1 已知:如图1,在以AB为直径的半圆中,正方形CDEF内接于半圆,正方形CGHK内接于△BCF,且边CG在AB上,求证:AC=CG.

分析 由对称性,易知AC=BD.

由射影定理(或相交弦定理的推论),得CF2=AC·BC.

又CF=CD,BC=CD+BD=CD+AC,得CD2=AC(CD+AC),即AC2+CD·AC=CD2.①

由AC=BD,知AG=BG.故点G是半圆的圆心.

参考文献

[1] 曾恒忠,白方奎等. 从一道美国数学竞赛题引出的一组几何定理及代数证法[J].中学数学杂志(初中).2008,(2).

作者简介:令标,男,1962年11月生,中学高级教师,主要从事数学教学及解题研究,已在多家中学数学期刊发表文章数十篇.

中考数学经典几何证明题 篇9

(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;

(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;

(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.B

A

ME

DB

(4)观察图

1、图

2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线

段,并满足(1)或(2)的结论,写出相关题设的条件和结论.3.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=在线段BC上(不与B,C重合)运动,其他条件不变时

BC;③当D

2BH

是定值;④当D在线段BC上(不与B,C重合)BD

BCEC

运动,其他条件不变时是定值;

DC

(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;

F

C

F

图 1图2图

32.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD

于点H,试证明CH=EF+EG;

1D

DC

(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;

(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于

点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;

F

H

BCD

E

4.在△ABC中,AC=BC,ACB90,点D为AC的中点.

(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FHFC,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.

A

A

F

D F

D

E

C B

C

1E

2H

5.如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.

证明.

8.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE

上,且AQ∥PC.(1)证明:PC=2AQ.

(2)当点F为BC的中点时,试比较△PFC和梯形APCQ面积的大小关系,并对你的结论加以证明.

6.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。

探究:线段FG的长与△ABC三边的关系,并加以证明。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。注意:选取①完成证明得10分;选取②完成证明得7分。①可画出将△ADF沿BD折叠后的图形; ②将CE变为△ABC的内角平分线。(如图2)

附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。

9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.

(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;

(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;

(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.CH

G

A图3 图1 图

27.在四边形ABCD中,对角线AC平分∠DAB.

(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.

(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.

(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予

10.已知△ABC中,AB=AC=3,∠BAC=90°,点D为BC上一点,把一个足够大的直角三角板的直角顶点放

在D处.

(1)如图①,若BD=CD,将三角板绕点D逆时针旋转,两条直角边分别交AB、AC于点E、点F,求出重叠部分AEDF的面积(直接写出结果).

(2)如图②,若BD=CD,将三角板绕点D逆时针旋转,使一条直角边交AB于点E、另一条直角边交AB的延长线于点F,设AE=x,重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.(3)若BD=2CD,将三角板绕点D逆时针旋转,使一条直角边交AC于点F、另一条直角边交射线AB于点E.设CF=x(x>1),重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.

2、如图,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,试探究BE与CF的数量关系。

3、如图,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H。猜想线段EH与AC的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。

4、在△ABC中,O是AC上一点,P、Q分别是AB、BC上一点,∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。试说明OP与OQ是数量关系,选择条件:(1)m=1,(2)m=k=1。

2011年中考几何经典证明题

(二)1、如图,△ABC中,∠BAC=90°,AD⊥BC,E为CB延长线上一点,且∠EAB=∠BAD,设DC=kBD,试探究EC与EA的数量关系。

5、如图,△ABC中,AD是BC边上的中线,∠CAD=∠B,AC=kAB,E在AD延长线上,∠CED=∠ADB,探究AE与AD的关系。

高中数学立体几何证明公式 篇10

线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

谈谈如何引导学生证明几何题 篇11

1.从题设和结论找思路

题目拿来,不要急于下手,仔细分析;从题设出发,看能推出什么结论;再看看结论:还需要什么条件,然后往中间凑,这种两头挤中间凑的方法是几何证明题的一种最常用的方法,也是一种很重要的方法。

如7.8节 切线的判定和性质(P91)

例1、已知:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

这题由已知条件OA=OB,就可以推出△OAB是等腰三角形,又由CA=CB,就可以推出OC是等腰△OAB的底边AB边上的高,而结论是要求证直线AB是⊙O的切线,也就是要求证OC上AB,这就立马想到添辅助线连结OC,同已知推出的结论相吻合,到达了求解的目的。

又如7.11节 弦切角(P108)

例2、已知:如图,⊙O和⊙O'都经过A、B两点,AC是OO'的切线,交⊙O于点C,AD是⊙O的切线,交⊙O'于点D.

求证:AB2=BC·BD

这题先从结论来考虑,要求证四条线段AB、BC、BD、AB成等积式,就是看这四条线段所在的△ABC和△DBA是否相似,而要证明两三角形相似,主要是从角度考虑。再来看已知条件,AC是⊙O'的切线,则由弦切角定理,可以得到∠2=∠D.AD是⊙O的切线,可以推出∠1=∠C,而这四个角又刚好分别是那两个三角形的角,这样问题就得到了解决。

再如7·8节 切线的判定和性质(P93)

例2、如图,AB为⊙O的直径。C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

这题要求证AC平分∠DAB,就是要求证∠1=∠2.而已知条件AD⊥DC,DC是切线C是切点,就想到DC垂直于过切点的半径,所以这题应该连结OC(同本节的例1综合在一起得到,在解有关圆的切线问题时,常常需要作出过切点的半径),则可推出AD∥OC,.因此有∠2=∠3,而∠1=∠3,于是得出结论。

像这样的例子这一章还有不少,而且初一、初二的几何课本也有很多我在这儿就不一一赘述了.

2.从知识点找思路

如果上述的方法行不通,那我们就想一想:这个题目它考的是什么知识点?它是在哪一章节里出现的?那我们就从这一节的有关定理、定义入手。

比如P104如何去求证圆的外切四边形的两组对边的和相等这个题目好象不知从何下手,然而,这是7.10切线长定理这一小节的题,我们应该运用这一节的知识点,从切线长定理寻找突破口,于是不难得出AP=AL,BM=BL,CM=CN,DP=DN.再利用等式的性质,就得出了命题的结论.

再比如,P87习题7.2B组第5题

如图:⊙O和⊙O'都经过AB两点,过点B作直线交⊙O于点C,交⊙O于点D,G为圆外一点,GC交⊙O于点E,GD交⊙O'于点F.

求证:∠GEA+∠GFA=180°.

本题也是一样,要求证这两个角互补,那么这两个角是不是邻补角?是不是平行线的同旁内角?是不是圆内接四边形的两个对角?都不是,那怎么办?这个题是出在圆内接四边形这一节,而本节学了圆内接四边形的对角互补,并且任何一个外角都等于它的内对角这个定理。那么这两个角是不是圆内接四边形的外角?这个时候很多同学恍然大悟,纷纷抢着回答:“连结AB”则问题一目了然,∠GEA=∠ABC,∠GFA=∠ABD.于是得出结论。

还有7.4节圆心角、弧、弦、弦心距之间的关系(P72)

例1、如图:点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D.

求证:AB=CD.

这题已经PO是∠EPF的平分线,就应该想到角平分线的性质定理:角半分线上的点到角两边的距离相等,而这题要求证的两条相等线段AB和CD又是⊙O的两条弦,结合这一节课所学的定理的推论马上就想到作出弦AB和CD的弦心距OM和ON,问题又解决了。

3.从辅助线寻找思路

我时常告诉学生,你们可以从一些辅助线寻找突破口。如:7.3节 垂直于弦的直径

在这一小节里,计算有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线。实际上,往往只须从圆心作一条与弦垂直的线段。作了这条辅助线后,那么这条弦的一半、以及弦的弦心距、还有过这条弦的端点的半径这三条线段就构成了一个直角三角形,再通过解直角三角形,得出我们所要求解的线段。如P61 例1、P65 例4、P67 习题7.1 A组第13题、第15题、第16题、以及B组第2、3、4题、P198 复习题七第1、2题等都可以通过三条特殊的线段,解直角三角形,得出我们所要求解的结论。在这里我就不再一一例举了。

以上三点是我在圆这一章的教学体会。笔者始终认为要想使学生学好数学,作为一个中学数学教师,应该从初一抓起,每一个例题都要给学生分析透彻,讲细、讲透,找一些精练的题目给学生做一做、练一练,让学生一步一个脚印,踏踏实实,把基础打扎实、打牢固,这样不至于到了初三,很多同学的几何学不下去。

浅谈初中几何证明的规范书写 篇12

一、几何证明书写中常见的几个问题

1. 书写中直接给出结论

刚刚接触几何证明时, 大多数同学会出现这样的情况, 在证明的过程中, 没有陈述条件的情A况下就直 接给出结 论. 如 :“如图 , 在△ABC 中, AB = AC, ∠ABC, ∠ACB 的平分线交于点D. △BCD是等腰三 角形吗? 请说明理由. ”

学生在证明时, 其中许多学生把“∠ABC = ∠ACB”的结论直接给出, 没有陈述AB = AC这一理由. 我问学生为什么没有先陈述条件, 他们说题目中说AB = AC, 根据“在一个三角形中, 等边对等角”, 可以得出结论. 这是初学几何证明学生的通病, 往往题目中的已知条件没有陈述就直接写出结论.这在几何证明中是不允许的, 也是不符合逻辑的, 在几何证明中必须条件和结论相符, 每一个结论的获得, 一定要阐述充分的理由. 虽然题目中有已知条件, 也必须进行陈述. 一般情况下, 只有对顶角、公共边、公共角之类或者是题目已经给出的已知条件, 在应用时可以直接写出.

2. 不能正确地使用 “∵, ∴”号

几何证明书写过程中最重要的两个符号就是“∵, ∴”, 因此, 正确地使用“∵, ∴”是几何证明书写的关键. “∵”是条件, “∴”是结论. 但是 , 两个符号并不是简单的交替使用 . 比如出现多个条件、前面已经陈述过的条件或者是连续使用“∴”, 这些又怎么办呢?

如 :“如图 , AC, BC交于点O. 已知∠A=∠D = 90°, AC = BD, 试说明OB = OC.”证明过程如下 : “连接BC, ∵AC = BD, ∠A = ∠D = 90°, BC = BC, ∴△ABC≌△DCB.∴∠ACB = ∠DBC. ∴OB = OC.”对于这一几何题的证明中, 连续使用“∴”是初学几何证明的同学的难点. 其实这是一种简写, 现在的教材中的例题以及教师的教学中, 几何证明的书写也大都采用的是简写. 在连续使用“∴”时, 往往前面的结论是后一个结论的条件, 所以可以连续使用“∴”.

一般来说, 对于多个条件的用一个“∵”就可以了, 其余的可以连续写上条件或用文字“且”;前面已经陈述过的条件一般无需重新进行陈述. 至于连续使用“∴”, 则是前面已经获得的结论作为下一个结论证明的条件.

3. 不会合理地书写几何证明的次序

在几何证明的过程中, 有些同学证明的过程比较零乱, 虽然满足结论的条件已经全部写出来了, 但是却不能把证明的过程有序地表达出来. 或者是拿到题目, 经过分析觉得能做, 却又有一种无从下手的感觉, 这是学生在几何证明的书写次序问题上没有把握好. 如:“如图, 点D, E在△ABC的边BC上, 若AD =AE, BD = CE, 求证:AB = AC.”

要证明AB = AC, 先要证明△ABD≌△ACE, 要使两个三角形全等则需要满足AD = AE, BD = CE及∠ADB =∠AEC.

这一证明中, AD = AE, BD = CE可以在证明全等时直接应用则需要放在最后进行陈述, 而∠ADB = ∠AEC这一条件需要通过论证推理后得到的, 需要预先进行证明, 这就是该题的证明次序.

一般情况下, 结论所需的条件, 需要通过证明后得到的, 应当预先进行证明, 然后再书写题目中已经给出的或者是从图形中可以直接应用的条件. 像已知条件中有三角形全等或是平行四边形这样一个条件, 却可以得到多个结论的, 在前面陈述条件后, 如果以后要用到相关的条件, 可以直接给出.

二、教师的教学对策和措施

1. 加强对学生的课外辅导

初中学生的课业负担比较重, 经调查大多数同学的作业是不订正的, 或者是不自觉地进行订正. 作业是巩固知识的一种手段, 而不是目的. 因此, 做作业一定要认真, 特别是课后的订正. 老师在作业的批改上要细, 要到位. 由于学生初学几何证明, 最好每周在批改上抽一次到两次进行面批, 单元测试一定要面批, 指出书写上的不足, 以及如何正确地进行书写. 本人在学生初涉几何证明时就采用了这一措施, 虽然开始教师的工作量是加大了, 但是效果较好, 并且在今后的几何教学中将会更轻松.

2. 课堂教学中板书要规范

课堂教学中的板书尤为重要, 是学生观察和模仿的对象, 一定要条理清晰, 逻辑严密. 并且在学生初学时, 教师不能偷懒, 尽可能的板书要详尽, 不要只给出分析, 不写出证明过程. 同时, 可以根据不同的题型, 让不同程度的学生上黑板进行板演, 或者是由学生说, 老师写. 这样能够及时发现学生书写上的问题, 及时进行纠正, 并予以合理的评价;而且要多加鼓励, 帮助学生树立自信心.

3. 改变传统的教学模式

课堂是教学的主阵地, 课堂教学是老师和学生共同学习交流的重要环节. 传统的课堂教学中, 教师分析证明题时, 往往思路思想化、技巧化, 告诉学生应该这样做, 或者应当那样做, 脱离了学生的认知规律, 忽视了学生的思维过程, 导致学生一听就懂, 一写就错. 为此在引导学生学习中, 必须充分估计学生知识方面的缺陷和学生思维障碍, 让学生发挥, 给学生机会, 揭示他们的思维过程, 充分调动学生学习几何证明的积极性.

初二数学几何证明 篇13

经典题(一)

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

求证:CD=GF.(初二)

A

F

G

C

E

B

O

D2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

A

P

C

D

B

求证:△PBC是正三角形.(初二)

D2

C2

B2

A2

D1

C1

B1

C

B

D

A

A13、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.

求证:四边形A2B2C2D2是正方形.(初二)

A

N

F

E

C

D

M

B4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

经典题(二)

1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.

·

A

D

H

E

M

C

B

O

(1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.(初二)

·

G

A

O

D

B

E

C

Q

P

N

M2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.

求证:AP=AQ.(初二)

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

·

O

Q

P

B

D

E

C

N

M

·

A

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

P

C

G

F

B

Q

A

D

E

求证:点P到边AB的距离等于AB的一半.(初二)

经典题(三)

1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

A

F

D

E

C

B

求证:CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

E

D

A

C

B

F

求证:AE=AF.(初二)

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

D

F

E

P

C

B

A

求证:PA=PF.(初二)

O

D

B

F

A

E

C

P4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)

经典题(四)

A

P

C

B1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.(初二)

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.

求证:∠PAB=∠PCB.(初二)

P

A

D

C

B3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)

C

B

D

A4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且

AE=CF.求证:∠DPA=∠DPC.(初二)

F

P

D

E

C

B

A

A

P

C

B

经典难题(五)

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.

A

C

B

P

D2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

A

C

B

P

D3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

E

D

C

B

A4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

经典题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

2.如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得

△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150

所以∠DCP=300,从而得出△PBC是正三角形

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=

FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和

∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,从而可得∠A2B2

C2=900,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典题(二)

1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。

3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。

由于,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。

4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。

由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。

从而可得PQ=

=,从而得证。

经典题(三)

1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。

推出AE=AG=AC=GC,可得△AGC为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A

EC=750。

又∠EFC=∠DFA=450+300=750.可证:CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。

由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。

3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。

令AB=Y,BP=X,CE=Z,可得PC=Y-X。

tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得证。

经典难题(四)

1.顺时针旋转△ABP

600,连接PQ,则△PBQ是正三角形。

可得△PQC是直角三角形。

所以∠APB=1500。

2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:

AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:

=,即AD•BC=BE•AC,①

又∠ACB=∠DCE,可得△ABC∽△DEC,既得

=,即AB•CD=DE•AC,②

由①+②可得:

AB•CD+AD•BC=AC(BE+DE)=

AC·BD,得证。

4.过D作AQ⊥AE,AG⊥CF,由==,可得:

=,由AE=FC。

可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。

经典题(五)

1.(1)顺时针旋转△BPC

600,可得△PBE为等边三角形。

既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小L=;

(2)过P点作BC的平行线交AB,AC与点D,F。

由于∠APD>∠ATP=∠ADP,推出AD>AP

又BP+DP>BP

和PF+FC>PC

又DF=AF

由①②③④可得:最大L<

2;

由(1)和(2)既得:≤L<2。

2.顺时针旋转△BPC

600,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。

既得AF=

=

=

=

=

=。

3.顺时针旋转△ABP

900,可得如下图:

既得正方形边长L

=

=。

4.在AB上找一点F,使∠BCF=600,连接EF,DG,既得△BGC为等边三角形,可得∠DCF=100,∠FCE=200,推出△ABE≌△ACF,得到BE=CF,FG=GE。

推出

△FGE为等边三角形,可得∠AFE=800,既得:∠DFG=400

又BD=BC=BG,既得∠BGD=800,既得∠DGF=400

上一篇:活动方案部署下一篇:研究院助理工作职责