初中一元一次方程教案

2024-06-02 版权声明 我要投稿

初中一元一次方程教案(精选13篇)

初中一元一次方程教案 篇1

欢迎来到福建教师招考信息网,福建中公教育考试网提供真实可靠的福建教师招聘、教师资格证考试最新资讯,包括招考公告、考录进程、考试培训、面试辅导、资料下载等。我们在福建教师招考信息网等着你回来。

小编推荐>>> 教师考试面试备考指导|13个学科教案【汇总篇】(按住ctrl点击即可查看)

一、教学目标

【知识与技能】能利用方程解决实际问题。

【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

二、教学重难点

重点:建立电话计费问题的方程模型。难点:建立电话计费问题的方程模型。

三、教学过程 1.导入新课

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2.对问题的初步认识

问题1:下面表格给出的是两种移动电话的计费方式:

你了解表格中这些数字的含义吗? 师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢? 师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。3.对问题的深入探究

问题3:通过大家的讨论,你对电话计费问题有什么新的认识? 师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为t min(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

师生活动:教师提出问题,学生思考并制作表格,教师巡视。教师请学生填写下面的表格,其他同学适当补充。

观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗? 师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。

教师追问:

(1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

(3)当主叫时间“大于150min且小于270min”或“大于270min且小于350min”时,分别选择哪种计费方式比较省钱?

对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

问题5:综合以上的分析,可以发现:

当?时,选择方式一省钱;当?时,选择方式二省钱。师生活动:教师提出问题,学生思考并回答。4.小结

请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致可以包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法?你又哪些收获? 5.巩固应用

利用我们在“电话计费问题”中学会的方法,探究下面的问题。

如何根据复印的页数选择复印的地点使总价比较便宜? 师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。6.布置作业 课本习题1,3。

四、板书设计

实际问题与一元一次方程 例题: 分类讨论: 总结:

五、教学反思 略

初中一元一次方程教案 篇2

1.教学内容解读。一元一次方程是七年级上册第五章的内容,主要包括以下几点:一元一次方程的概念,方程的解,以及求解“一元一次方程”。一元一次方程是初中阶段方程的基础,也是初中生学习方程知识的起始课程。在小学的时候已经学习过方程以及解的概念,但是并没有学习过几元几次,一元一次方程给了初中生这个概念,是学生学习其他方程的基础,因为在初中学习的过程中,许多方程都会变成一元一次方程来求解,这个方程在人们的认识中发挥着重要的作用。小学也涉及到一些方程,在小学学习的基础上我们可以进一步认识一元一次方程,这对以后的数学学习有着重要的意义。

2.重点难点教学。方程的主要内同概念以及检验方法是主要的难点,方程的检验方法,这个比较复杂是主要学习的难点。

通过学习一元一次方程,想让学生了解到一下知识点:首先,需要了解一下方程的概念和知识点,根据所学内容进一步观察思考概括及归纳,进一步培养了学生的高度概括能力并且能够更好地了解一元一次方程的意思。其次,让学生自主学习,理解方程的意思,进一步了解一元一次方程的数量关系,让学生学会在阅读中思考问题,根据相关意思列出对应的方程。最后,了解方程的解的概念,使方程从一般到特殊,进一步培养学生的理解能力,和实际做题经验,学生可以自学一元一次方程的解,了解解的条件,从一般到特殊进而提高学生的解题能力和培养学生独立思考的能力。学生深刻体验解的范围,一步一步提高,首先确定解的范围,最后体验解的方法,培养学生的思辨学习能力。

二、解题方法

1.应用题。应用题包括行程问题、工程问题,利润率通过化解问题,变繁为简。比如说行程问题,路程等于速度和时间的乘积。解决这一类的应用题可以这样理解,首先搞清楚知识点之间的内在联系,解题方法以及解题步骤,培养学生的思维能力和逻辑推理能力从而找出他们之间的本质联系,进一步补充说明,学生明白了解题思路,什么复杂的应用题也都可以找出规律,任何问题都不在话下,根据掌握的公式,解决需要解决的问题,提高自身的能力,能够独立思考独立解决问题。

2.一题多变。在应用题教学过程中学生们首先对应用题有一个具体的了解,然后在这道应用题的基础上对原来的应用题进行改编,这样不仅可以开动脑筋还能对原来应用题有一个更深刻的了解。比如说这样一道应用题,原题是这样的一个生产队有早稻田400亩,共收稻谷340000斤,平均亩产多少斤?这是求平均数的基本问题,通过启发又可以发现如果总量没有直接告诉我们,那么可以先求出总产量,这道题又可以改编成这种形式,一个生产队有早稻田400亩,分两组收割,第一组收稻谷180000斤,第二组收160000斤,那么可以提问平均亩产多少斤?因为方程的形式并不是一层不变的,学生可以在已知应用题的基础上进行进一步改动加工,变出一道新的应用题,这样学生就可以在旧的知识的基础上得到新的东西,拓展思路开阔视野,激发潜力,对应用题有一个新的认识,更能深刻的把握应用题,提高学习应用题的浓厚兴趣。

3.一题多解。应用题是培养学生解决问题分析问题的能力,对应用题的解决方法越多越有利于学生培养自己的分析能力,只要能够给出自己合理的解题步骤,就不会束缚思想,这样更能进一步培养学生的独立思考能力。比如说这样一道试题,甲乙两个人在400米的环形跑道上练习长跑,同一时间同一地点向相同的方向出发,已知甲的速度是8米每秒,乙的速度是10米每秒。那么请问甲跑了几圈以后乙就可以超过甲一圈?一种解题方法是每秒比甲多跑10-8=2米,要想超过一圈,即多跑400米,需要400/2=200秒,而甲跑一圈需要400/8=50秒,200秒的时间甲可以跑200/50=4圈,另一种方法是:当甲跑了一圈的时候用的时间是400/8=50秒,乙跑一圈时候用的时间是400/10=40秒,乙比甲少用了50-40=10秒,想多跑一圈则少用的时间可以累计到甲跑一圈的时候那么多那就是50/10=5圈,这个时候甲就是跑了5-1=4圈。从不同的角度出发去寻找问题的最多解,让学生在不同的解法当中获得了启发,作为老师应该及时的鼓励学生,让学生继续钻研,这样的方法可以提高学生分析问题解决问题的能力,真正地达到了一元一次方程的目的。

三、结语

通过一元一次方程的学习可以让学生们对方程的应用有一个具体的了解,通过应用题作为主要内容,培养了学生分析问题解决问题的能力,让学生大胆地提出自己的看法,用一元一次方程解决实际问题,这是一种很有效的方法,在教学的时候并不是立刻就能看出效果的,需要学生长久的去努力,时间长了,学生的分析能力、推理判断能力就会有一个逐渐的提高,通过一元一次方程的了解,我们可以独立思考一些实际问题,学生的智力也会进一步提高。这是一个十分重要的问题,值得我们大家去研究。

参考文献

[1]陈丽.初中数学中一元一次方程的教学研究[J].中小学电教(下),2011,(08).

[2]林坚,邬建芬,俞凯.起始教学贵在创新——“一元一次方程应用”起始教学实录及评析[J].中国数学教育,2011,(11).

初中数学一元一次方程教学浅探 篇3

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2016)06A-0089-01

一元一次方程是人教版七年级数学中一个重要的代数教学的开始,其重难点主要是找出题目中的相等关系,从而快速列出方程式,解出答案,并且知识点的掌握程度关系着以后代数方程的学习。因此,教师要做好一元一次方程的基础性教学,让学生在学习一元一次方程知识的过程中增长知识,提高学生的学习能力,发展学生的智力。

一、巧妙设置问题,激发探索兴趣

初中生的好奇心更具理性化,想要抓住学生的兴趣焦点,必须要深入了解学生感兴趣的事物,并以此类事物为教学题材,巧妙设置问题情境来引入新课。在具体的教学中,笔者通过多方面的调查和了解,最终决定以其他课程为载体,找准一元一次方程和其他学科知识的有效连结点,巧妙运用其他学科知识,准确刻画方程中的等量关系,引导学生探究情境中包含的数量关系,激发学生的兴趣以及对问题的探索欲,接着再及时引入新概念,顺利导入新课。

笔者先是运用了古诗“巍巍古寺在山林,不知寺内几多僧。三百六十四只碗,看看用尽不差争。三人共食一碗饭,四人共吃一碗羹”进行导入,再利用多媒体技术展示了诗中的情景,其后让学生们算算“寺内几多僧”。大家众说纷纭,有的说“三个人用一个碗吃饭,用364除以4就可以得出”;有的说“四个人用一个碗喝羹,用364除以3也可以得出”。学生们的意见各不相同,此时笔者引导学生找出诗中的等量关系,最后列出一元一次方程的等式,解决了“几多僧”的问题,顺利引入了一元一次方程的概念。

在以上过程中,笔者通过引入诗句,创设了诗中的情境,激发了学生的探索兴趣,学生积极地参与到课堂中来,纷纷发表了对问题的看法,活跃了课堂氛围,为教学内容的有效导入提供了良好的条件,最后成功导入了新知识点。

二、教学贴近生活,提高生活技能

数学教学的最终目的是服务于生活。因此,在具体的教学设计中,教师应贴近生活,选取一个实用性强、学生较为熟悉的生活情境为例来展开教学。如人们在一些商场、超市门前经常会见到“打折”“降价”“甩卖”等促销标语,教师可以将此融入到一元一次方程的教学中,让学生能够理性对待商场的打折促销,以生活为载体,用数学来增强学生认识数学的重要性,掌握销售的盈亏奥秘,培养学生的生活技巧,提高学生的生活技能。

笔者根据“一元一次方程”的教学内容,设计了这样一个情境问题:百货商店在周末某一时间以每件60元的价格卖出两双运动鞋,其中一双盈利25%,另一双鞋亏损25%。卖这两双鞋总体上是盈利还是亏损或是不盈不亏?有的学生说不盈不亏,有的学生说盈利了,有的学生说亏损了。在学生出现思维冲突时,笔者引导学生以小组为单位展开合作交流,找出题目中的等量关系,用一元一次方程来求出进价,从而确定商家的盈亏。在一元一次方程教学中,生活题材的情境问题设置能够引发学生共鸣,有助于学生理解和记忆知识,进一步培养学生的生活技能,达到学以致用的教学目的。

三、练习举一反三,拓展思维能力

练习是课堂上不可缺少的教学环节。如何设计课堂练习,让其起到活跃学生思维,让学生熟练掌握知识点,是教师要着重考虑的问题,也是难点。首先教师要深入了解学生对一元一次方程知识点的掌握情况,以便于更好地设计针对性的练习。其次,根据学生的情况,分层次、逐级性地设计练习题目,由易到难,力争做到一题多解、一题多变。最后,让学生对题目的解法进行自由地交流与讨论,使学生充分融入课堂,在互相讨论中学会对知识点举一反三,达到真正掌握知识点的目的。

笔者在教学概念、找相等关系等内容后,设置了如下练习:甲、乙两人都以不变的速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的3/2倍。他们什么时候相遇?在学生顺利解决这一个问题后,笔者展开了变式训练。

变式一:经过多久两人第二次相遇?

变式二:若两人在同一地点同时出发相向而行,他们什么时候第一次相遇?

以上课堂练习,笔者在了解学生对知识的掌握程度后,对练习进行了阶梯式的设计,由易到难,循序渐进地启发学生的思维能力,让学生积极地融入到练习讨论中,踊跃地发表自己的看法,在解决变式练习中学会举一反三,真正得到思维上的拓展。

总之,教师要注意学生在掌握概念的准确性,同时还要结合实际生活的知识点并积极结合各自例子,让学生从各方面、多角度理解知识,引导学生在生活中挖掘数学知识,完善数学方法。

一元一次方程教案 篇4

授课:张福仁 地点:七年级 教学目标:

1.知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

2.过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

3.情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,•列出简单的一元一次方程,并会估计方程的解.

2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

3.关键:找出能表示实际问题的相等关系.

教具准备 投影仪.

教学过程

一、情境导入:

1、德国世界杯足球赛场为长方形足球场,周长为310米,长和宽之 差 为25米,足球场长与宽分别是多少米?

提问:你会用算术方法解决这个问题吗?不妨试试列式。

提问:设球场长度为X米宽度用含x的式子表示为 米.根据“长方形周长=(长 + 宽)×2”,你能列出方程吗?

2、青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车在冻土路段的速度为每小时80千米,非冻土路段的速度为每小时110千米,全程行驶时间为12小时,你能算出列车经过的冻土路段有多少千米吗?

提问:设列车经过的冻土路段为X千米,非冻土路段行驶路程为 千米,可得到方程?

提问:分析数量关系,找相等关系是关键,试试看,你能找到吗?

相等关系:冻土路程+非冻土路程=全程 冻土行驶时间+非冻土行驶时间=全程行驶时间

学生讨论完成。

二、新课:

观察前面得到的两个方程有什么共同特点?

答:

1、只含有一个未知数

2、这未知数的指都为

1含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程

“ 一元”是指一个未知数;

“一次”是指未知数的指数是一次.

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长 24cm 的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

分析:设再经过x月这台计算机的使用时间达到规定的检测时间,•根据每月再使用150小时,那么x月共使用150x小时.

能表示这个问题的相等关系是什么?

相等关系是:已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.

从而列出方程:1700+150x=2450.

找出表达问题意义的相等关系是列出方程的关键.

以上分析过程可归纳为:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).

列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.

填空1、4×()=24 2、2 ×()-1=

5如:方程 1、4x=24 2、2x-1=5当x为何值时,等号左右两边相等?

通过观察可知:

1、当x=6时;

2、当x=3时:

像这样,能使方程左右两边的值相等的未知数的值,叫做方程的解

巩固练习:

1.环形跑道 400cm ,沿跑道多少周,可以跑3 000m ?

设沿跑道跑x周,可以跑 3000m,根据相等关系──x周共长 3000m .

所以列方程:400x=3000,2.如果设买甲种铅笔x枝,那么买乙种铅笔(20-x)枝,买甲种铅笔用去0.3x元,乙种铅笔用去0.6(20-x)元,相等关系是:

两种铅笔共用了9元钱,由此可列方程.

0.3x+0.6(20-x)=93、方程 的解为()

A、-3 B、12 C、-12 D、4、方程x=3是下列哪个方程的解?()

A、3x+9=0 B、x=10-4x

C、x(x-2)=3 D、2x-7=125、x=1 000和2 000中哪一个是

方程0.52-(1-0.52)x=80的解?

小结:本节课学了哪些内容?哪些方法?

解一元一次方程 教案 篇5

(一)----合并同类项与移项(第1课时)

教学目标:

1、知识与技能目标:①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。②

学会合并同类项,会解“ax+bx=c”类型的一元一次方程。

2、过程与方法目标:能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程。

3、情感态度与价值目标:初步体会一元一次方程的应用价值,感受数学文化。

教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程。

教学难点:分析实际问题中的已知量和未知量,找出相等关系,列方程。

教学过程:

引入:“方程”史话

活动1

① 复习1:学生回答方程、一元一次方程、等式的性质。

② 复习2:列方程解应用题的相关步骤。

③ 复习3“合并同类项”: 练习:合并同类项(1)x+2x+4x(2)5y-3y-4y(3)4a-1.5a-2.5a(教师用幻灯片

展示练习题,学生独立完成后口答,老师点评)。

活动2

展示问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机?(教师展示问题,学生自主分析提出问题让学生参与讨论,自主探究,合作交流)

教师展示问题:设问1:如何设未知数?

设问2:题目中的相等关系是什么?

设问3:如何列方程?

引导学生分组讨论、回答,师生共同整理:“合并”使方程变得简单,通过化简,使得方程更接近x=a的形式。活动3讲解例题5例1:解下列方程:(1)8x-2x-4x=2(2)2xx68

2设计环节:你敢挑战吗?

活动4小试牛刀 解下列方程:

(1)5x2x9(2)x

23x

27(3)3x0.5x10(4)7x4.5x2.535 7x2.5x3x1.5x15463(由学生到黑板挑战这道题)

活动5 探究例

2、有一列数,按一定规律排列成1,-3,9,-27,81,-243,„,其中某三个相邻数的和是-1701,这三个数各是多少?

教师展示问题(学生讨论):

设问1:从符号和绝对值两方面观察这列数的排列规律?

设问2:如设三个相邻数中的第1个数为x,则另外两个数怎样用含x的式子表示?

设问3:本题的相等关系是什么?(引导学生分组讨论、回答)

进一步提问:此题你想到了几种做法?(由学生到黑板完成)

学以致用练习:某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元。前年的产值是多少?(学生完成练习)

对应前面的引子:数学家阿尔•花拉米子的“对消与还原”。

活动6小结归纳,布置作业,拓展深化

(1)你今天学习的解方程有哪些步骤?

(2)合并同类项在解方程的过程中起到了什么作用?

布置作业:

1、课本91页第1、5两题

2、(补充作业)三个连续整数之和为36,求:这三个整数分别是多少?

3、选做题(课后延伸)请欣赏一首诗:

太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;

解一元一次方程教案 篇6

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的.项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

初中一元一次方程教案 篇7

关键词:初中数学,一元一次不等式,教学策略

数学教师应该明确, 数学教学不应该局限于数学知识的灌输与教授, 更重要的是培养学生思维的灵活性, 使学生能够利用数学知识间的连带关系举一反三, 善于利用知识间的联系灵活运用, 发现问题、解决问题。学生一旦具备了良好的数学思维能力, 就能够产生主动学习的想法、自主探究的欲望, 从而获得身心上的满足感。初中一元一次不等式教学应该建立在学生已有的知识结构之上, 只有这样才能提高学生的学习效率。

一、基于已有知识引导性教学

数学这门学科不仅具有明显的理性、科学性特征, 而且呈现出一定的系统性、知识关联性等特点, 知识之间联系紧密, 形成了一条不可错位的链条。基于数学学科这样的特点, 教师要积极利用知识间的联系, 并善于教育与引导学生发现知识之间的联系, 灵活利用所学知识探究新知识、解决新问题, 这样才能达到培养学生数学思维能力的目标。

在一元一次不等式教学中, 教师应该从学生已有的知识结构出发, 通过巧妙地迁移、引导使学生自然发现新规律, 利用旧规律探索新问题。

例如:一元一次不等式的教学可以将一元一次方程作为知识储备, 构建起两个知识点间的桥梁, 使学生能够利用一元一次方程的性质理解和探究一元一次不等式, 通过这种方式帮助学生学习、缓解学习压力, 使学生感受到数学这门学科的奇妙。

设计教学流程:红红和芳芳同时从家出发去学校, 在距离学校最后200米时, 红红开始以5m/s的速度向学校飞奔, 此时落在她后面20米的芳芳需要以怎样的速度飞奔才能确保同红红同步到达学校?

学生看到这个问题, 会结合以前学过的知识, 会自然而然地列出一个一元一次方程, 求得未知数x的数值就是所要求的问题。

此时, 教师可以改变题目的问:落在她后面20米的芳芳需要以怎样的速度飞奔才能确保比红红提前到达学校?

学生借助前面已经列出的一元一次方程, 对应列出一个一元一次不等式, 也就是将前面的等号变成不等号。

这一过程就是巧妙迁移、自然引导的过程, 学生会自然地了解并掌握一元一次不等式的性质和特点。

二、联系现实生活科学引导

数学作为一门自然科学, 是用来解释自然生活规律的学科, 数学知识的形成源自人们对现实生活中各种规律的探索与总结, 同时会随着现实生活的变化发展而不断发展, 人们将从生活中研究出来的规律又运用到现实生活中。学生数学学习显而易见需要以现实生活为基础, 而且新的课程教学目标改革也明确了数学教学应该服务于现实生活、发挥实际作用的想法。数学教师要积极把握这一教学目标与方向, 善于从学生自身的生活经历出发, 使学生感受到数学与客观现实生活之间的紧密关联。

然而, 与小学初等算术相比, 初中数学呈现出更加抽象、复杂的特点, 学生无法明确数学与现实生活中的联系, 也就感受不到数学学习的真正意义, 然而, 教师要善于发现和建立这种联系, 善于以现实生活为基础, 通过巧妙灵活的方法将抽象知识同现实生活联系起来, 化抽象为形象, 由此激发学生的数学学习热情, 提高学生的数学学习效率。

例如:对于一元一次不等式的学习, 教师可以广泛引入生活元素, 将与学生现实生活中最常见的问题或现象与一元一次不等式的性质或知识联系起来。

如:商场选购不同价格衣服的优惠问题。

教师为学生设计题目:A、B两家商场同样的服装标有一样的价钱, 然而, 两家商场实行各自的促销方案:

A商场 : 买100元衣服后再采购的衣服可以享受原价90%的优惠待遇,

B商场 :购买50元后 , 再购买的衣服则依照原价95%收费。

作为买者怎样选购才能享受最多优惠?

思维步骤:

1.购买额<50元, 两个商场的花销状况 。

2.50<购买额<100, 两个商场的花销状况。

3.购买额>100元, 两个商场的消费状况。

从第三种情况入手:

假设:总共采购金额为x (x>100) 元, 当A商场买东西花钱少, 那么列出以下不等式:50+ (x-50) 95%>100+ (x-100) 90%

求得:x>150

因此, 当购买额在150元以上时, A店购物花销少。

思维过程:100<总共采购金额<150, 哪家商场花销小? (B商场消费小) 总共采购金额正好达到150元, 哪家商场购物花销小? (花销相同)

1.购买额<50元或>150元, A、B商场花销相同。

2.50<购买额<150, B商场花销较小。

3.购买额>150, A商场花销较小 。

以上就是一元一次不等式的运用过程, 体现了在现实生活中的应用, 对现实问题的解决。

三、兴趣教学, 逐步引导

为了减少数学学习的枯燥性, 教师要善于从兴趣的角度对学生进行引导、教育。兴趣是学生学习成功的基础, 有兴趣才能有学习。教师必须积极把握学生的心理特点, 兴趣爱好, 以及情趣倾向等, 将抽象难懂的知识通过形象的生活呈现出来, 从学生的兴趣出发进行逐步引导, 从而收获良好的教学效果。

例如:可以将不等式知识同学生的日常生活, 如:运动会、生活起居及课后生活等联系起来, 让学生通过这些生活实例发现问题、运用知识、掌握规律, 从而获得知识学习乐趣, 提高学习效率, 达到良好的学习效果。

初中数学一元一次不等式是一个重要的知识项目, 教师要积极采用科学的教学方法, 为学生创造良好的学习条件, 使学生能够更加投入地学习, 自觉进入学习状态, 产生浓厚的数学学习兴趣, 从而取得良好的学习效果。

参考文献

[1]许文倩.还数学的美丽面孔, 让学生为之折腰[J].现代阅读:教育版, 2012.

一元一次不等式与一元一次方程 篇8

1. 概念

只含有一个未知数且未知数的指数是1的方程,叫做一元一次方程.其一般形式是ax+b=0(a、b为常数,a≠0).

例如,①2x+1=0是一元一次方程;②-1=0不是一元一次方程(因为未知数x的指数是-1);③x2-2=0不是一元一次方程(因为未知数x的指数是2);④x+y=6不是一元一次方程(因为含有x、y两个未知数).

只含有一个未知数且未知数的指数是1的不等式,叫做一元一次不等式.

例如,①2x-5<0是一元一次不等式;②x+3≥-1是一元一次不等式;③+2≤0不是一元一次不等式(因为未知数x的指数是-1).

2. 结果的表示形式

一元一次不等式的解集表示的是能使不等式成立的未知数的取值范围;一元一次方程的解可表示为x=a(a为常数).如一元一次不等式2x-6>0的解集为x>3;一元一次方程2x-6=0的解为x=3.

3. 解的个数

一元一次不等式的解可能有无数个,而一元一次方程的解一般只有1个.

如一元一次不等式2x-4>0的解集是x>2,x可以取大于2的任何实数;一元一次方程2x-4=0的解是x=2,也就是只有当x=2时2x-4=0才成立.

4. 求解的步骤

解一元一次不等式的步骤一般是去分母,去括号,移项,合并同类项,系数化为1.与解一元一次方程不同之处在于系数化为1时,如果不等式两边同乘(或除以)一个负数,不等号要改变方向.

例1解一元一次不等式->1.

解: 去分母,得2(x+4)-3(3x-1)>6.

去括号,得2x+8-9x+3>6.

移项,得2x-9x>6-3-8.

合并同类项,得-7x>-5.

系数化为1,得x<.(注意不等号的方向)

5. 解应用题的方法

用一元一次不等式解应用题的方法与列一元一次方程解应用题的方法相似.主要步骤有:审题,设元,找出主要的不等关系,列不等式,解不等式,检验作答.

例2一次“保护环境”知识竞赛共有20道题,答对1道题得10分,答错或不答,每题扣5分.至少要答对几道题得分才不少于80分?

分析:答对的题的得分减去答错或不答题所扣的分数应不少于80分,据此可列不等式.

解: 设答对了x道题,则答错或不答的题是(20-x)道,列出不等式

10x-5(20-x)≥80.

解得x≥12.

答:至少要答对12道题得分才不少于80分.

解一元一次方程移项教案 篇9

教学目标:学会用移项的解方程 教学重点:学会用移项的解方程

教学难点:正确解方程,化方程为x=a的形式 教学地点:同民中学七(3)班 教学时间:2012年11月23日 授课人:申秋芳 教学过程:

一、复习导入

1.等式的性质以及它的作用。2.解方程:x+2x+4x=140

5x-2x=9 3.用2中的解题方法能否求解下列方程? 6x-7=4x-5

3x+7=32-2x 方程的两边都有含x的项和不含字母的常数项,怎样才能使它向 x=a(常数)的形式转化呢?这就是本节课要讨论的问题,也就是用“移项”的方法来解方程。

二、新课讲解:

例1解方程x – 7 = 5 解1:方程两边都加7,得 x-7+7=5+7

x=5+7

x=12 检验:将x=12代入方程得,左边=12–7=5, 右边=5,左边=右边

所以x=12是原方程的解.x–7 = 5

从左移右改变符号 x = 5 +7 x = 12

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项”.下面我们用框图表示解方程3x+7=32-2x的流程 上面解方程中“移项”起到了什么作用? 作用:把同类项移到等式的某一边,以进行合并.解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”.例2 解方程 6x-7=4x-5

0.5x-2.8=x-0.3 解:移项,得

6x-4x=7-5

合并同类项,得 2x=2

化系数为1,得 x=1

三、隋堂练习Ⅰ

运用移项的方法解下列方程:(1)2x+5=7-3x

(2)xx2323161 3Ⅱ.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从7+x=13,得到x=13+7 ×

改:从7+x=13,得到x=13–7(2)从5x=4x+8,得到5x–4x=8 √

Ⅲ.小明在解方程x–4=7时,是这样写解的过程的: x–4=7=x=7+4=x=11(1)小明这样写对不对?(2)应该怎样写? 解:解方程的格式不对.正确写法: x–4=7

x=7+4

x=11

四、课堂小结 解方程的步骤:

(1)移项

(等式性质1)

(2)合并同类项

一元一次方程应用题教案 篇10

-----多角度寻找题目中的等量关系与列方程

主讲教师:刘露莲

【教学目标】

1.弄清楚题目中各数量之间的关系,找出等量关系。

2.能根据题意设未知数,列出相应的方程,并明白列方程的实质。

3.通过用一元一次方程解决生活中的实际问题,让学生感受到数学和我们的生活息息相关,从而增强学生使用数学的意识和对数学的兴趣。

【教学重、难点】

重点: 将实际问题转化为数学问题,找出等量关系 难点: 明白列方程的实质。【教学方法】

采用探究、合作、交流等教学方式完成教学。

【教学手段】

多种媒体辅助教学.【教学流程】

一、复习引入 :找等量关系并列出方程 1.某数的三分之一比这个数小1,求这个数。2.某数与7的和的四分之一是10,求这个数。3.某数的30%与5的差是8,求这个数。

4.某数的30%与5的差的三分之一等于3,求这个数。

5.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?(方法一)(方法二)

6.一个数的3倍与(-9)的绝对值的和恰好等于这个数的6倍,求这个数。

7.甲组4名工人1月完成的总工作量比该月人均定额的4倍多20件,乙组5名工人1月完成的总工作量比该月的人均定额的6倍少20件。

(1)设月人均定额为X件,则甲组人均生产量为 乙组人均生产量为(2)若两组工人人均生产量相等,可列方程为(3)若甲组人均生产量比乙组多2件,可列方程为(4)若甲组人均生产量比乙组少2件,可列方程为

8.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。9.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。

10.某厂今年产值为600万元,今年比去年增长了20%,求去年的产值。11.某商品进价为200元,按标价的九折卖出后,利润率为35%,求标价。

12.已知三个连续奇数的和为105,求这三个奇数。归纳小结:找等量关系主要应,注意关键词语。(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,它们的比是……”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。(3)基本的数量关系与公式:路程=速度×时间,行船问题:V顺=V静+V水 V逆= V静-V水,飞行问题:V顺=V静+V风,V逆=V静-V风,工作总量=工作效率×工作时间,长方形周长=2(长+宽)等等。(4)理解文字找等量关系。会找等量关系,咱们解应用题就成功了一半。

二、小组尝试:(小组活动)

例4 某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?

思考:

(1)你能在问题中把表示等量关系的语句找出来,并用等式进行表示吗?(2)你准备设哪个未知数

等量关系:旧工艺的废水排量=环保限制的最大量+200;

新工艺的废水排量=环保限制的最大量—100; 新工艺的废水排量:旧工艺的废水排量 = 2:5 解:设新、旧工艺的废水排量分别为2x t和5x t.根据废水排量与环保限制最大量之间的关系,得

5x-200=2x+100(问:等号两边代表哪个数量)移项,得

5x-2x=100+200

合并同类项,得

3x=300

系数化为1,得

x=100

所以 2x=200,5x=500.答:新旧工艺产生的废水数量分别为200 t和500 t.三、归纳小结:

通过刚才咱们一起探究的过程,咱们来总结一下运用方程解决实际问题的一般过程。1.审题:分析题意,找出题中的数量关系及其等量关系(也就是将实际问题转化为数学问题); 2.设元:选择一个适当的未知数用字母表示(例如x); 3.列方程:根据等量关系列出方程; 4.解方程:求出未知数的值; 5.检验6.答。而我们知道前3步是咱们用方程解应用题的制胜关键,接下来咱们重点练习前3个步骤。

四、课堂检测(回答:列方程的实质是什么?)

1.某科技兴趣小组共32人,其中男生与女生的人数之比为3:5,问男、女生各有多少人?

2.一个三角形三边长度的比为3:4:5,最短的边比最长的边短4 cm,则这个三角形的周长是多少?

3.某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求这批树有多少棵.4.某工人在一定时间内加工一批零件,如果每天加工44个就比规定任务少加工 20个;如果每天加工50个,则可超额10个.求规定加工的零件数和计划加工的天数.

(附加题)5.一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求 两城之间的距离。

(附加题)6.小聪从家到学校,如果每分钟走100米,就会迟到3分钟;如果每分钟走150米,就会早到3分,问小聪每分钟走多少米才能按时到校

一元一次方程学习的核心 篇11

纵观方程内容,在一元一次方程的学习中。达到如下目标是必须的。

1.经历现实问题数学化的过程,感受形成方程模型、解方程和运用方程解决实际问题的过程。切身体会方程是刻画现实世界的一种有效模型。

其中,形成方程模型(建立数学模型)是核心。解方程是方法,而运用方程解决实际问题是目的。

2.通过观察、归纳得出等式的性质,能利用等式的性质探究一元一次方程的解法,进而掌握一元一次方程的解法。

3.了解一元一次方程及其相关概念,会解一元一次方程,体会解法中蕴涵的化归思想。

4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示相等关系”,体会建立数学模型的思想。

5.通过探究实际问题与一元一次方程的关系,进一步体验利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。

为此。需要把握一元一次方程学习的核心,在操作中感悟、体会,在理解中掌握。

一、不能死记硬背方程的概念,必须亲身经历一元一次方程概念的抽象过程,密切联系代数式等内容理解方程的相关内容

在初中数学中,方程是最基础的核心内容之一,包括一元一次方程、二元一次方程(组)、一元二次方程、分式方程等。

其中,一元一次方程是最简单、最基本的方程。内容排在“有理数”和“整式的加减”之后。主要包括一元一次方程的有关概念、解法和应用(包括其中的化归思想和模型思想)。通过本章的学习,我们的代数运算能力和数学建模能力将得到进一步提高。其实,小学的知识不仅涉及形如ax+b的简单代数式,而且已经涉及一元一次方程,诸如2+x=3等。

一元一次方程作为最基础、最重要的方程,能够充分体现方程思想的精髓,即体现在方程概念形成过程中的模型思想、代数抽象思想。以及在解方程之中的化归思想。

对于模型思想、代数抽象思想,我们通过一道中考试题加以说明。

解一元一次方程的技巧 篇12

一、巧约公因数

例1解方程:40×25%= (40-x) ×20%.

解两边约去20%, 得50=40-x, ∴x=-10.

二、巧去括号

分析按常规运算顺序, 应先去掉分母再去中括号, 注意到互为倒数, 因此先去中括号比较简便.

三、巧去分母

分析此题按常规应先利用分数的基本性质将方程中的小数化为整数, 然后按步骤求解, 但我们发现, 巧妙地去掉分母, 从而简化解题过程.

解原方程可化为:

四、巧凑整

分析方程各项未知数的系数和常数项中, 注意到把各项拆开移项凑整, 比直接去分母简便.

五、巧用整体观点移项

分析题目中有两个 (x+1) 和 (x-1) , 可把它们看做整体, 先移项合并, 这样可化难为易.

即3 (x+1) =2 (x-1) , ∴x=-5.

六、巧用整体思想换元

例6解方程:3{2x-1-[3 (2x-1) +3]}=5.

分析把 (2x-1) 看做一个整体用y表示, 则可简化解题过程.

解设2x-1=y,

则原方程可化为3[y- (3y+3) ]=5,

七、巧用公式、法则、定律

例7解方程:2 (3x+1) -3 (6x+2) =- (21x+7) .

分析先去括号, 计算量较大, 仔细观察原方程可发现方程各项都有因式 (3x+1) , 故可逆用乘法分配律来简捷求解.

解原方程可化为:

合并, 得3 (3x+1) =0, 解得

八、巧组合

分析按常规解法方程两边同乘以72化去分母, 运算较复杂, 注意到左边的第一项和右边的第二项中的分母有公约数3, 左边的第二项和右边的第一项中的分母有公约数4, 移项局部通分化简.

化简, 得, 去分母, 得8x-144=9x-99, ∴x=-45.

总之, 解系数比较复杂的一元一次方程, 不要盲目地去分母和括号, 要认真观察系数之间的特殊关系, 找到最简捷的解决办法.

《解一元一次方程》优秀教案 篇13

一、教学内容

课本第89页至第91页.

二、教学目标

(一).知识与技能

理解移项法,并知道移项法的依据,会用移项法则解方程.

(二).情感态度与价值观

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

三、重、难点与关键

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(二).难点:对立相等关系.

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

四、教学过程 (一)、复习提问

1.运用方程解决实际问题的步骤是什么?

2.解方程: + =10.

(二)、新授

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.

1.每人分3本,那么共分出多少本?(3x本)

2.共分出3x本和剩余的20本,可知道什么?

答:这批书共有(3x+20)本.

根据第二种分法,分析已知量与未知量之间的关系.

3.每人分4本,那么需要分出多少本?(4x本)

4.需要分出4x本和还缺少25本那么这批书共有多少本?

答:这批书共有(4x-25)本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

根据这一相等关系,列方程:

3x+20=4x-25

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数=3x+30

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

这批书的总数=4x-25

根据两种分法,这批书的总数是相等的.

所以,列方程3x+20=4x-25.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?

要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即

3x+20 -4x-20 =4x-25 -4x-20

即 3x-4x=-25-20

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

3x+20=4x-25

移项

3x-4x=-25-20

合并

-x=-45

系数化为1

x=46

由此可知这个班共有45个学生.

思考:上面解方程中移项起了什么作用?

答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:

345+20=135+20=155(本)

解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

= (你会解这个方程吗?)

即 - = +

移项,得 - = +

合并,得 =

系数化为1,得x=155.

答:这批书共有155本.

(三)、巩固练习

1.课本第91页练习.

(1)解:移项,得6x-4x=-5+7

合并,得 2x=2

系数化为1,得x=1

(2)解:移项,得 x- x=6

合并,得- x=6

系数化为1,得x=-24

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(1)从3x+6=0得3x=6;

(2)从2x=x-1得到2x-x=1;

(3)从2+x-3=2x+1得到2-3-1=2x-x.

解:(1)错,移项忘了要变号,应改为3x=-6.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.

(3)正确.

四、课堂小结

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

五、作业布置

1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

2.选用课时作业设计.

移项习题课(第4课时)

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程x+21=36得x=________;由10x-3=9得x=______.

二、判断题.(对的打,错的打)

4.移项就是把方程中的某一项移到等号的另一边.( )

5.从6x=1,移项,得x=1-6,x=-5. ( )

6.由方程-4+x=7移项得x=7-4. ( )

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5x-2=7x+8; (4)1- x=3x+ ;

(5)2x- =- +2; (6)- x+6=4x+1;

(7) -x=0.5x-3.

四、解答题.

8.设m=3x-2,n=-2x+3,当x为何值时m=n?

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

(5)x=1 (6)x= (7)x=3

上一篇:探索高效教学模式,打造师生幸福课堂下一篇:局创建优质服务机关先进事迹