数与代数小学初中

2024-07-04 版权声明 我要投稿

数与代数小学初中(精选8篇)

数与代数小学初中 篇1

通过学习《初中数学数与代数》的课程,我对这部分内容有了更深入的体会。

1、初中代数的三大部分内容“数与式”、“方程与不等式”、“函数”是紧密相联系的。“数与式”是“方程与不等式”及“函数”的基础,一次式对应着一元一次方程、二元一次方程及一次函数,二次式对应着一元二次方程和二次函数,分式对应着分式方程和反比例函数。而“方程”与“函数”又是紧密相连,一元一次方程对应着一次函数,分式方程对应着反比例函数,一元二次方程对应着二次函数。认识到了这点,在实际教学特别是初三中考的复习就可以有的放矢了,在教学中应该抓住这三者的联系进行,使学生对这部分知识有个系统性的认识。而要很好地实现这三者的联系教学,我觉得可以以变式练习的形式进行,比如利润问题的解决,当利润已知时,往往是用一元二次方程解决,而当利润未知时,往往要建立二次函数来解决,那么在这种题型中,就可以以改变条件的方式进行变式练习。

数与代数小学初中 篇2

一、新教材编写的长处

第一, 实数及其运算部分, 新课标降低了实数运算的要求, 运算强调“以三部为主”, 二次根式只要求了解概念及其加、减、乘、除运算法则, 会用它们进行有关实数的简单运算, 不要求分母有理化, 采取了够用即可的方法, 但加强了对运算意义的理解.强化了根据问题的需要选择恰当运算方法和运算工具能力的培养, 所以从素养和能力的培养来看, 不是降低了难度, 而是提高了要求.

第二, 整式加减内容放在七年级方程内容前, 整式乘除放在七年级下册, 这样的编排得到广大教师的拥护, 教材对每个知识点的编排, 都是从几个具体的、简单的题目运算出发, 最后归纳出运算性质, 再进一步用于解决实际问题, 这种从具体到抽象, 再由抽象到具体的编排方式, 符合现阶段学生的认知水平.对整式的乘除法, 运算公式减少了, 从而降低了记忆的要求, 给学生留有充分的自主活动的时间和空间, 让学生自己去探索、去发现、去体验, 从而真正理解公式的来源、本质和用途.这部分内容的编排摆脱了过去“从概念到概念, 从公式到计算”的枯燥无味的模式, 有利于提高学生的学习兴趣和学习的主动性, 确保学生扎扎实实地学好代数式最基本、最有价值的主干内容, 也就是“有所为, 有所不为”的辩证法.

二、存在的不足

第一, 常言道, “良好开端是成功的一半”, 七年级《有理数》一章设计对学生学好初中数学在心理上至关重要, 一次次失败的打击无法树立学习的信心, 我在教学中碰到下面例子.

课例一:习题1.4第11题, 一架直升机从高度为450米的位置开始, 以20米/秒的速度上升60秒, 后以12米/秒的速度下降120秒, 这时直升飞机所在高度是多少?该题所要计算的式子 (450+20×60-12×120) 并不难, 但如何正确理解题意, 列出正确式子, 就要求有较强的能力.涉及到数形结合、正负数意义、路程时间速度公式等, 对刚进入初中的学生而言, 困难不小.

课例二:1.5例4 (略)

学生的困难:一是负号的变化影响学生判断, 学生没有信心做出正确选择;二是题目呈现大量数据, 学生有畏难心理;三是教材解题文字说明与式子表达学生不易读懂.

第二, 八年级是初中生身体、心理走向成熟的关键一年, 虽有一定独立能力, 但仍没有摆脱儿童的依赖心理, 八年级上册的内容整体难度比较大, 只有实数一章能让学生感觉轻松些, 但教材在编写中, 把实数的概念和运算都与实际问题紧密联系联系起来, 加强知识间的纵向和横向的联系, 所以学生学习也碰到了不少困难.如:

课例三:《实数》第一节平方根例 (3) , “小丽想用一块面积为400cm2的正方形纸片, …裁出一块面积为300cm2的长方形, …长宽之比为3∶2, 不知能否裁出”.习题第9题“平面内有四个点, 它们的坐标分别是… (2) 求四边形面积; (3) 将四边形向下平移…”.复习题第8至第14题共7小题.

第三, 分式的运算编排在八年级下册, 课程标准提出三方面要求:一是借助分数知识学习分数的运算;二是以描述实际问题中的数量关系为背景, 抽象出分式的概念, 体会分式是刻画现实世界中数量关系的一类代数式;三是结合分式运算将指数的讨论范围从正整数扩大到全体整数, 构建和发展相互联系的知识体系.要求, 在体会数学实际应用中学习分式的运算, 在运算中体会分式的应用, 把两个难点交融在每节课里, 对学生的要求提高了, 我们在实际教学中处理两者关系时感觉困难.分式的许多例题和习题, 教师在教学实践中感觉处理难度大, 变换了多种方式, 但效果不佳, 学生总是在许多关键点理解不透, 学生感觉学习压力大, 如“我真笨”“我怎么总想不到”“数学怎么这么难”.

数与代数小学初中 篇3

[关键词]初中数学 数与代数 教学价值 教学理念 教学方法

一、初中数学“数与代数”的教学价值

(一)培养学生现实应用的能力

通过“数与代数”的学习,学生能够体会到数学与现实生活的联系,认识到数、符号是刻画现实世界数量关系的重要语言,方程、不等式与函数是现实世界的数学模型,从而认识到数学是解决实际问题和进行交流的重要工具,从中感受到数学的价值,初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其他学科学习中的问题,增强应用意识,培养初步的应用能力。

(二)提高学生创新及发现问题的能力

在“數与代数”的学习过程中,通过对现实世界中数量关系及其变化规律的探索,数的概念的建立、扩充以及数的运算,公式的建立和推导,方程的建立和求解,函数关系的探究等活动,激发学生学习数学的兴趣,提高学生解决问题的能力和自信心,初步形成创新意识和发现能力。

(三)帮助学生形成辩证科学的数学观念

在“数与代数”中,不仅知识中存在着正数与负数、加法与减法、乘方与开方、变量与常量、精确与近似等对立和统一,而且在研究过程中也充满已知与未知、特殊与一般、具体与抽象等对立与统一。同时,在变量和函数的研究中,还充满着运动、变化的思想。因此,学习“数与代数”,有助于培养学生的辩证唯物主义观点,有利于学生用科学的观点认识现实世界。

(四)陶冶学生情操,形成良好品质

“数与代数”的学习过程,是学生在教师指导下合作交流、自主探究的过程,在这个过程中,可以培养学生的合作意识和团队精神;“数与代数”的学习还可以培养学生细心严谨、一丝不苟的态度和知难而进、坚忍不拔的品质;“数与代数”内容中蕴含着丰富的数学美,可以培养学生发现美、欣赏美、创造美的能力,陶冶学生的情操。

二、新课标下“数与代数”的教学理念

传统的数学教学,教师是课堂的主宰者、知识的传递者,学生则是知识的接受者。在新课标理念下,教师的角色和教学方式、学生的学习方式都发生了很大变化。

(一)教师角色的转变

在新课标理念下,教师不再是单一的数学知识的传授者,而是学习的组织者、引导者、合作者;不再是课程的被动实施者、执行者,而是课程的开发者、建设者;不再是习题和试题的编制者,而是拥有先进理念、懂得现代教育技术、善于学习和合作的教育理论和实践的研究者。

(二)教师教学方式的变化

教师角色的转变,必将带来教学方式的改变。教学方式改变集中体现在使学生成为学习的主人。这要求教师以学生为中心进行教学设计,教学评价要以学生发展为核心。教师要善于激发学生学习动机,使学生经历数学知识的形成过程,鼓励学生自主探索与合作交流,满足学生的个性化学习需要。

(三)学生学习方式的改变

数学学习活动不能单纯依赖模仿和记忆,应当是一个生动活泼、主动和富有个性的过程。学生应当有充分的时间和空间从事观察、实验、验证等活动,应当独立思考、合作交流。在新课程理念下,学生的学习方式将由单一的接受式学习方式向多样化学习方式转变,自主学习、合作学习、探究学习将成为主要的学习方式。

三、新课程标准下“数与代数”的教学方法

(一)培养学生数感

数感主要表现在:理解数的意义;能用多种方法表示数;能在具体情境中把握数的相对大小关系;能用数表达和交流信息;能为解决问题选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。在教学过程中,教师要创造条件,帮助学生在对现实背景的感受和体验中建立数的概念,使学生具体地理解数的意义。

(二)创设情境,培养学生符号感

符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题。应创设空间,逐步渗透,帮助学生建立符号感。培养学生的符号感,必须有目的、有意识、有计划、有步骤地渗透于数学教学的始终。

(三)主动探究,培养学生的应用意识

学生只有不拘泥于教师提供的案例,而能主动地寻求数学知识的实际背景,才能为知识的应用找到生长点,也才有可能进一步探索其应用,体会数学的应用价值。可以说,主动寻求新知识的实际背景,是增强应用意识的重要一环。尤其是在强调努力把科技成果转化为生产力的今天,主动寻求知识的应用领域,开辟更广阔的应用空间,显得格外重要。

数与代数小学初中 篇4

初中“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。

就具体内容而言,初中数与代数涉及实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,数、形及实际问题中蕴涵的关系和规律的探索,一些有效地表示、处理和交流数量关系以及变化规律的工具等内容。期望通过学习,发展学生的符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。

初中阶段函数部分的内容,主要包括一次函数、二次函数、反比例函数,在这个阶段学习函数,重点就是要借助现实背景,在现实情景中理解函数的概念。而且在研究函数的性质过程当中,重点应该是要利用图象的方法直观地发现函数。例如一次函数有什么特点?二次函数有什么特点?反比例函数呢?此外还有一个非常重要的方面,就是体会函数各种表示之间的联系。例如函数的表示法,我们有表格表示,就是具体的看有一个 x 怎么和 y 对应,另外就是有解析式表示,还有图象表示。以前在传统的教学当中,可能这个解析式的表示我们用的比较多,表格、图象表示用的比较少,不管在标准的实验稿当中还是修订稿中,我们都要关注函数的图象表示,借助函数的图象来研究函数的性质,这是一种非常直观的办法。同时在这个修订版的标准当中,也强调了对自变量取值范围的讨论,应该结合具体的实际问题,在实际问题中讨论自变量取值范围,而不是说泛泛地、一般性地讨论自变量的定义域、值域。

函数是中学数学里第一个正式研究“变化”过程的内容,是研究运动变化的重要数学模型。《新标准》对函数内容具体地的学习要求如下:探索简单实例中的数量关系和变化规律,了解常量、变量的意义。结合实例,了解函数的概念和三种表示法,能举出函数的实例。能结合图像对简单实际问题中的函数关系进行分析。能确定简单实际问题中函数自变量的取值范围,并会求出函数值。能用适当的函数表示法刻画简单实际问题中变量之间的关系。结合对函数关系的分析,能对变量的变化情况进行初步讨论。

函数是非常有价值的内容,首先变量之间的关系在现实世界当中就是普遍存在的,如何研究变量之间的关系,从数学上解决这个问题,它的工具就是函数。所以对于学生来讲,利用函数的方法解决现实问题,实际上是从常量的数学走到变量的数学,像在方程中,x 表示未知数,它实际上不是变量,其实它是一个常量。在函数当中就不一样,它可能是自变量,也可能是因变量,所以从这个角度来讲,从学生的思维角度来讲,它是一种飞跃,而且通过变量的学习,学生可以逐渐地形成辩证唯物主义的思想。

通过变量之间关系的学习有助于培养学生的理性思维,因为学习函数,就要表示变量之间的关系,它有一个很重要的作用,就是利用函数的关系进行预测,或利用函数的关系进行计算,未知的点可以通过函数关系把它计算出来。我们预测人口,如中国二十年以后的人口数量问题,可以根据对以前人口的统计、对数量进行分析,根据它的变化规律来进行预测。进行计算也是函数非常重要的一个应用,我们根据函数的变化规律,看其中某一些位置的点的函数值是多少等等。另外由于在函数学习的过程当中,我们非常重视函数的图象表示,所以对培养学生的几何直观函数也是非常重要的载体。通过直观分析函数的性质,学生可以对函数的增减性,或者是周期性等等都能够有很好的认识。

从常量到变量数学的过渡阶段,学生从小学阶段就已经开始。到了初中阶段,学生又接触到一些新的知识,他们逐渐在丰富的自己的认识。如我们在教学中也曾经向学生出示这样的一些图象,向学生提出问题:这些图象都可以刻画什么?

不同的学生有着不同的一些想法。你能不能够在现实生活中找到这样的函数的一个实际背景或实例?例如第一个图象,学生可能会说是匀速行驶的汽车的时间和路程之间的关系,也有学生会举例子说,如果苹果一斤是 2 元钱,这个图表示的是苹果斤数和总价的关系,这些例子都是比较朴素的。不妨再来看看第八个图,有的学生会说,这个是向水桶中注水,最后达到了上限还要再注,时间与水面高度的关系;还有同学举例子说,将 20 度的水加热,加热到沸腾;有的学生是说从甲地出发到了某地之后,这个车坏了怎么修也修不好;还有的说是弹簧的承重有一个限度,但它超过这个限度之后,长度就已经超过了弹簧的承受能力,长度就不变了。当然这些所举的例子都还需要再斟酌。有的学生会说是小明的体温,开始逐渐上升,最后持续高烧,这也是一种可能的情境。有非常多的学生都提出自己的想法,用来解释以上图象,即是说他们能够从现实生活中挖掘出丰富的现实情景,去解释各种各样的函数关系,我想在这样一个过程中学生们就能真正体会到函数图象的价值。这是在用解析式表达、学习函数性质、应用函数解决问题等等之外的收获。可能我们首先应该让学生感受到的就是:函数离我们这么近,其实它就是这么普通。这样,函数的连续性、函数的取值范围等在学生的理解中也就更简化,更容易被他们所接受。

函数还有一个作用,体现在解方程中。即方程可用函数的方法去解,如果一个方程,我们不能用已学的的方法去解。例如三次方程,我们的学生还没有学,就不会解,但是我们可以画一下它的图象,然后就可以以此来大致的估计一下它的解的范围,对它的解形成一些初步的认识。实际上在初中,方程、不等式还都可以看成函数的一种特殊情况。

另外函数这一研究变量关系的方法,实际上对于其他的学科,如物理、化学、经济及一些文科都有非常重要的作用,都是非常有力的工具。因此学好函数这部分内容,搞好函数这部分的教学,在初中代数中是非常重要的。

数与代数小学初中 篇5

数与代数

一、数的意义:

1、整数:像—

3、—

2、—1、0、1、2、3……这样的数统称为整数。整数的个数是无限的。没有最小的整数,也没有最大的整数,自然数是整数的一部分。

2、自然数:用来表示物体个数的数。像1、2、3、4、5……叫做自然数。一个物体也没有用0表示。自然数的个数是无限的,最小的自然数是0,没有最大的自然数。

3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。

4、小数的分类:

(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。

(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。

(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。

(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。

5、计数单位:个、十、百、千、以及十分之

一、百分之

一、千分之一?都是计数单位。

6、数位:各个计数单位所占的位置叫做数位。

7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。

8、整数和小数数位顺序表:

9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。

(2)分数的分类:真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子等于分母的分数叫做假分数,假分数≧1

10、百分数:表示一个数是另一个数的百分之几的数叫做百分数,百分数也叫百分率或百分比。百分数的分数单位是1%。百分数的分母是100。

每天拿出读一读、记一记,预祝大家考出理想成绩!

11、分数和百分数的关系:分数既可以表示一个数(后面可加数量单位);也可以表示两个数的比(两数之间的关系)。而百分数只表示一个数占另一个数的百分比(两数之间的关系),不能表示具体的数。因此百分数不带单位。

12、正数和负数:像1/

3、+2、0.5、+4.5…这样的数叫做正数;像―1/

2、―5.5、―6…这样的数叫做负数。

(不能认为:一个数的前面加上“+”号这个数就是正数,也不能认为:一个数的前面加上“—”号这个数就是负数)。比如:“—a”这个数我们就不能判断是负数,因为a可能:是正数、是负数、0都有可能;所以我们无法判断。

自然数是等于或大于0的整数,也可以说是不小于0的整数,既是非负整数。0既不是正数也不是负数。

二、数的读法和写法。

1、读法:从高位到低位,一级一级的往下读,每一级末尾的0都不读出来,其他数位的连续的几个0都只读一个。

2、写法:从高位到低位,一级一级的往下写,哪一个数位上一个单位也没有,就在那个数为上写0。

(一)、小数的读法与写法:

读法:通常是整数部分按整数的读法去读,小数点读作“点”,小数部分按从左向右的顺序只读出数字。

写法:写小数时,整数部分按整数部分的写法去写,小数点写在个位的右下角,小数部分按从左向右的顺序

依次写出每一个数位上的数字。

(二)、分数的读法与写法:

读法:读分数时,先读分数的分母,再读“分之”最后读分子。读带分数时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。(分数线的读法:“分之”),写法:写分数时,要先写分数线,再写分母,最后写分子,写带分数时,要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。

(三)、百分数的读法与写法:

读法:百分数的读法与分数相同。

写法:百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。写百分数时,先写分子,再写百分号。

(四)、数的大小比较:

1、整数的大小比较:比较两个整数的大小,首先要看它们的位数,如果位数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,相同数位上的数大的那个数就大;每天拿出读一读、记一记,预祝大家考出理想成绩!

2、小数的大小比较:先比较它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百分位上的数大那个数就大。…以此类推。

3、分数的大小比较:分母相同的分数,分子大的那个分数就大;(因为分母相同,分数单位就相等,分子大的就意味着含有的分数单位多。);分子相同的分数相比较,分母小的那个分数大。(分子相同含有的分数单位数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,先通分,转化成同分母分数后,再比较大小。

4、正数和负数的大小比较:负数都比正数小。0大于一切负数,0小于一切正数。

5、两个负数相比较:如果a>b(a、b均为正数),则-a<-b。就是在不看负数符号的情况下:数大的那个数反而小。

三、数的性质:

1、分数的性质:分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。(注意:分数的分单位有变化,分子、分母都有变化)

2、约分和通分:把一个分数化成和原分数相等的,且分子分母都比原分数小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,叫做通分。

3、最简分数:分子和分母只有公因数1的分数叫做最简分数。

4、小数的基本性质:小数的末尾添上或去掉0,小数的大小不变。(注意:小数的位数有变化,精确度有变化。)

5、小数点的位置移动引起小数的大小变化规律:小数点每向右移动一位、两位、三位,这个数就扩大到原来的10倍、100倍、1000倍???;小数点每向左移动一位、两位、三位,该数就缩小到原数的1/

10、1/100、1/1000???。

四、数的改写:

1、把多位数改写成以”万“或者以”亿”单位的数。

(1)直接改写:把多位数改写成以”万“或者以”亿”单位的数,先把原来的小数点向左移动4位或者8位,再在数后面加上“万”或“亿”字,中间用“=”连接。

(2)省略尾数改写成近似数:先用“四舍五入法”省略万位或者亿位后面的尾数,再在这个数的后面写上“万”字或者“亿”字。得出的是近似数,中间用“≈”连接。

2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,中间用“≈”。

3、小数、分数、百分数的互化:

小数化成分数方法:先看小数点后面有几位小数,就在1的后面添上几个0做分母,原来的小数去掉小数点后做分子。能约分的要约成最简分数。

分数化成小数方法:用分子除以分母。

每天拿出读一读、记一记,预祝大家考出理想成绩!

小数化成百分数的方法:把小数的小数点向右移动两位,(位数不足时用0补足)同时在后面添上“%”。

百分数化成小数的方法:把百分数的分子的小数点向左移动两位,同时去掉后面的“%”。

百分数化成分数的方法:先把百分数的改写成分母是100的分数,然后约成最简分数。

分数化成百分数的方法:先把分数化成小数,在把小数化成百分数。

4、判断一个分数能否化成有限小数的方法:一个最简分数,如果分母中除了含有质因数2和5以外,不含有其它质因数,这个分数就能化成有限小数;如果分母中含有了2和5以外的其他质因数,这个分数就不能化成有限小数。

五、数的整除:

1、整除:整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说数a能被数b整除。(也可以说b能整除a)。

2、因数和倍数:如果a×b=c(a、b、c都是非0整数)那么a、b就叫做c的因数,c就叫做a、b的倍数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、公因数和最大公因数:几个数的公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

4、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的那个数叫做这几个数的最小公倍数。

5、求两个数的最大公因数的方法:一般采用列举法,就是把两个数的因数一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个数最大公因数。也可以采用短除法。

短除法求最大公因数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所得的商就是这两个数的最大公因数。如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。

6、求两个数的最小公倍数的方法:一般也采用列举法,把两个数的倍数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍数,其中最小的那个公倍数就是这两个数的最小公倍数。也可以采用短除法。

短除法求最小公倍数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,所 得的商写在横线下的相对应的位置,如果两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是这两个数的最小公倍数;如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商连乘起来,所得的积就是这两个数的最小公倍数。

7、求两个数的最大公因数和最小公倍数的特殊方法: 每天拿出读一读、记一记,预祝大家考出理想成绩!

如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。

如果两个数是互质数,则它们的最大公因数是1,最小公倍数是这两个数的乘积。

8、奇数和偶数、在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数,最小的偶数是0,最小的奇数是1。9、2、5、3的倍数的特征。

(1)2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

(2)5的倍数的特征:个位上是0或5的数都是5的倍数。

(3)3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

10、质数和合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。质数有且只有两个因数,合数至少有三个因数。1既不是质数也不数合数。

11、质因数与分解质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。把一个合数用质数相乘的形式表示出来,就是分解质因数。

12、分解质因数的方法:把一个合数分解质因数,通常用短除法,分解质因数时,先用这个合数的质因数(通常用最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续下去,直到得出商是质数为止,然后把各个除数和最后的商写成连乘的形式。

13、大于0的自然数的分类方法:(1)根据是否是2的倍数,自然数可分为:奇数和偶数。(2)根据所含因数的个数,自然数可分为:

1、质数、合数。

六、数的运算:

1、加法的意义:把两个数(或几个数)合并成一个数的运算。

2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。

3、乘法的意义:(1)一个数乘整数,就是求几个相同加数和的简便运算。

(2)一个数乘小数,可以看作是求这个数的十分之几、百分之几…是多少?

(3)一个数乘分数,就是求这个数的几分之几是多少。

4、除法的意义:已知这两个数的积和其中的一个因数,求另一个因数的运算。

5、计算方法:

6、加法的计算方法。

每天拿出读一读、记一记,预祝大家考出理想成绩!

(1)整数和小数:相同数位对齐,从低位加起,哪一位上的数相加满十,要向前一位进1。(2)分数:同分母分数相加,分母不变只把分子相加。异分母分数相加,先通分,再按照同分母分数加法法则进行计算。

7、减法的计算方法:

(1)整数和小数:相同数位对齐,从低位减起,哪一位上的数不够减,从前一位退1,在本位上加10后再减。

(2)分数:同分母分数相减,分母不变,只把分子相减。(分子之差做分子)异分母分数相减,先通分,再按照同分母分数减法法则进行计算。

8、乘法的计算方法:

⑴整数乘法的计算方法:相同数位对齐,从末尾乘起,用第二个因数的每一位上的数去乘第一个因数,用哪一位的数去乘,乘得的积的末尾就要和那一位对齐,最后把每次乘得的积的相加。

⑵小数乘法的计算方法:计算小数乘法,末尾对齐,先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的末尾起向左数出几位,点上小数点。

⑶分数乘法的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母(能约分的要先约分)。

⑷除法的计算方法:整数除法的计算方法:从被除数的高位除起,除的时候,除数有几位数就先看被除数的前几位,如果前几位不够除,再多看一位,除到被除数的哪一位,就把商写在哪一位的上面,每次除得余数必须比除数小。

⑸小数除法的计算方法:除数是整数的小数除法,要按照整数除法的计算方法去除,商的小数点要和被除数的小数点对齐。如果除到被除数的末尾仍有余数,就在余数的末尾添上0继续除。除数是小数的除法:先移动除数的小数点,使它变为整数,除数的小数点向右移动几位,被除数的小数点也要向右移动相同位数(位数不够时,在被除数的末尾用0补足),然后按除数是整数的小数除法的计算方法进行计算。

⑹分数除法的计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

倒数:乘积为1的两个数互为倒数。

七、四则运算的验算方法:

1、加法的验算方法(1)用加法验算:调换两个加数的位置再加一遍。

(2)用减法验算:和—一个加数=另一个加数。

2、减法的验算方法:(1)用加法验算:差+减数=被减数。

(2)用减法验算:被减数—差=减数。

3、乘法的验算方法:(1)用乘法验算:调换两个因数的位置再称一遍。

(2)用除法验算:积÷一个因数=另一个因数。每天拿出读一读、记一记,预祝大家考出理想成绩!

4、除法的验算方法:(1)用乘法验算:如果没有余数,商×除数=被除数,如果有余数,商×除数+余数=被除数。

(2)用除法验算:被除数÷商=除数 或(被除数-余数)÷商=除数

八、0与1在四则运算中特性:

a+0=a a×0=0 0÷a=0 a-0=a a×1=a

a-a=0 a÷1=a 1÷a=1/a(在上面算式中a作除数时a≠0)

九、运算定律:

1、加法的交换律:a+b=b+a

2、加法的结合律:a+b+c=a+(b+c)

3、乘法的交换律:a×b=b×a

4、乘法的结合律:a×b×c=a×(b×c)

5、乘法的分配率:(a+b)×c = a×c+b×c

十、运算性质:

1、减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c

2、除法的运算性质(除数不为0):a ÷(b×c)=a÷b ÷c

a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c

十一、运算顺序:

1、加法和减法叫做一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,后算第一级运算。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

十二、解决问题:

1、复合应用题:用两步或两步以上计算来解答的应用题。分析此问题,一般采用分析法或综合法。

分析法:从要求问题入手,逐步找出解答问题所需要的信息,求得问题的解决。

综合法:从已知条件入手,利用已知条件看能解决什么问题,从而求得问题的解决。

2、解决问题的一般步骤:首先理解题意,找出已知条件何所求问题;其次。分析数量关系,确定先 算什么,再算什么,最后算什么;再次,确定每一步该怎样算,列出算式,算出得数;最后进行检验,写出答案。

3、几种常见的数量关系: 每天拿出读一读、记一记,预祝大家考出理想成绩!

(1)路程=速度×时间(2)总价=单价×数量(3)工作总量=工效×时间

(4)总产量=单产量×数量(5)收入--支出=结余(6)利息=本金×利息×时间

十三、式与方程:

1、用字母表示数的意义:用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。

2、用字母代表数的作用:

(1)用字母代表任何数。(2)用字母表示常见的数量关系。(3)用字母表示运算定律。(4)用字母表示计算公式。

3、(1)数字与字母、字母与字母相乘时,乘号可以简写成“?”或者省略不写。数与数相乘,乘号不能省略。

4、等式与方程:表示相等关系的式子叫做等式。含有未知数的等式叫做方程。

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程中未知数的过程叫做解方程。

5、等式的性质:(1)等式两边都加上或减去同一个数,左右两边仍然相等。

(2)等式两边都乘上(或除以)同一个不为零的数,左右两边仍然相等。

(3)根据等式的性质可以解方程。

6、列方程解应用题的步骤:(1)找出未知数并用X表示。

(2)找出应用题中数量间的相等关系,并更具等量关系列出方程。

(3)解方程,求未知数的值。

(4)检验写答语。

十四、常见的计量单位及其进率:

(一)意义:(1)物体的多少、长短、大小、轻重、快慢等。这些可以测定的客观事物的特征叫做量。(2)把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。

(二)常用的计量单位及其进率。

(1)货币单位及其进率:1元=10角 1角=10分

(2)长度单位及其进率: 1千米=1000米 1米=10分米=100厘米

1分米=10厘米 1厘米=10毫米 每天拿出读一读、记一记,预祝大家考出理想成绩!

(3)面积单位及其进率:

1平方千米=1000000平方米 1平方千米=100公顷

1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=1000平方毫米

质量单位及其进率: 1吨=1000千克 1千克=1000克

时间单位及其进率:(1)1年有12个月平年有365天,闰年有366天。

(2)1、3、5、7、8、10、12月是大月,每月31天;4、6、9、11月是小月,每月有30天;二月既不是大约也不是小月,平年二月28天,闰年二月有29天。(3)按四个季度分,1、2、3月份属第一季度,4、5、6月份是第二季度,7、8、9月份是第三季度,10、11、12是第四季度。

(4)每个月分上、中、下三旬,上旬、中旬各有10天,下旬的天数大月11天,小月有10天。闰年二月下旬9天,平年8天

(5)1星期=7日 1日=24小时 1小时=60分 1分=60秒 1世纪=100年

(6)平年闰年判断的方法:公历年份能被4整除,整百,整千年份能整除400的是闰年,反之是平年。

(三)计量单位的改写:

1、名数的意义:计量的结果,要用数表示,并且还要带上单位的名称,通常把他们合起来叫做名数。只带一个名称的叫单名数;带两个或两个以上单位名称的叫复名数。如:2千克50克,8平方米20平方分米5平方厘米。

2、名数的改写:把高级单位的名数改写成低级单位的名数用进率去乘,把低级单位的名数改写成高级单位名数用进率去除。当进率是10、100、1000、…,是也可以把小数点向右(左)移动一位,两位、三位、…。位数不足时,用0补足。

十五、比和比例:

(1)比和比例的意义、各部分名称、基本性质。(2)比和分数、除法的关系

(3)求比值和化简比

《数与代数》学习心得 篇6

楼区东升小学

刘霞

数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。这里结合本人的实际教学谈谈几点体会。

(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”

可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在新课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。数学与现实生活是有着密切联系的。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。

(二)使学生在情境感悟和实践活动中理解数与代数的意义。让学生理解数的意义、建立正确的数的概念通常有两条途径,首先从数的组成去建构;其次再联系实际来体会,把抽象的数的概念与具体的图形结合在一起,从中挖掘和利用概念中的一些直观的成分。数是单纯的抽象符号,而生活实际中的表达表意的数会让学生更好的接受。比如:小棒、方块或计数器上的算珠等等。因此,为了让学生更好的理解数的意义,我们可以利用现实中的有效素材和实践活动来提高学生学习的效率。如我在教一年级学生理解数的意义时,并没有只是简单让学生学习书本上数字,而是让学生在学习的过程中,联系周围的事物数数,让学生描述学校里有多少棵椰子树,多少栋楼、教室里有多少扇门窗、多少张桌椅、多少个学生等等,使得学生能深刻的体会到数具有表示物体数量的作用。

(三)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。这主要体现在解题策略多样化上。对一个问题能从多角度、多层次去思考,对一个问题能想出多种不同的解法,那么就不但可以发展自己的思维能力,还会对这一问题的认识更全面、更深刻,有助于学生创新精神的培养。

数与代数小学初中 篇7

一、运用几何直观,形成数学概念

德国哲学家康德认为:“缺乏概念的直观是空虚的, 缺乏直观的概念是盲目的。”小学生形象思维占主导地位,对知识的理解应该建立在丰富典型的直观表象基础上。因此,把教材中静止的、较难理解的概念,运用几何直观生动形象地呈现出来,使抽象的概念变成看得见的数学知识,有助于学生更直观地理解所学习的内容。

如教学四年级《速度、时间和路程》这节课,速度概念的理解是本节课的教学重点,也是解决相关问题的基础。速度这个词在生活中经常出现, 学生一般也能知道通常说的快慢指的就是速度。但它不同于路程和时间,因为路程这个量是学生能够直观看到,非常明确,时间也是学生常见的,而速度概念比较抽象,是指单位时间内运动的路程,其单位是由长度单位和时间单位两部分复合组成, 这种表示形式学生比较陌生,理解起来有一定的困难。所以,在教学中我充分运用直观图。首先情境导入,学校到书店有300米,小明要走4分钟,小红要走6分钟 ,谁走得快些 ? 学生通过计算 ,发现小明每分钟走75米 ,小红每分钟走50米,小明快些。这时候学生是通过数据的比较解决问题的,对这个数据表示的就是速度,概念的理解还非常模糊。这时候,老师出示两段同样长的线段,表示300米,分别平均分成4份和6份。指出一段就是“每分走多少米”,也就是他们各自的速度,通过每份长短的比较,明白小明的速度比小红要快一些。通过几何直观把速度这个概念具体形象化,帮助学生突破概念理解上的难点,真正把握概念的实质和内涵。

又如《百分数的意义》的教学,这节课的重点是让学生理解百分数的含义,明确是两个量之间的比较关系。教学时可以通过直观图深化理解这一概念。首先出示信息:盐占盐水的30%,让学生在百格图中表示出这个百分数 ,并说一说盐和盐水各指哪一部分。在涂画百格图和两个量的比较中,帮助学生建立起对抽象的20%与相应的直观图的认知联系, 形成相应的认知图式, 这是对任何一个百分数的理解最基本的形象支撑。随后老师要求学生在10等份的线段图上表示出这个30%。追问:为什么平均分成10份,也可以表示出30%? 学生经过思考,得出把10份中的每一份想象成再平均分成10小份,这样整条线段就平均分成100份,而其中的3大份就是30小份,所以同样可以表示20%。这样,在两幅图的比较中帮助学生逐步脱离具体的100份,加深了对百分数意义的理解。在教学中,运用几何直观既能加深学生对知识的理解, 又能培养学生的空间想象能力和用图形语言思考问题的能力。

二、运用几何直观,发现数学规律

几何直观是一种创造性思维, 对于数学中的很多问题,灵感往往来自于几何直观。数学家总是力求把他们研究的问题尽量变成可借用的几何直观问题,使他们成为数学发现的向导。

如教学《积的变化规律》这节课,它是在学生掌握三位数乘两位数的计算方法的基础上进行教学的, 主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从而归纳积的变化规律。因此,一般老师在教学时都是先出示几组算式,通过计算,观察因数和积的特点,初步概括出规律,然后让学生通过举例进行验证,最后运用规律解决问题。当然,这样的教学对凸现学生学习自主性有一定的作用, 但是如果在这节课中与平面图形面积研究相结合, 让学生借助图形的面积变化理解积的变化规律,则不仅更容易掌握知识,而且对学生几何直观的培养有很大的作用。教学中,教师先出示一个长方形,已知它们的长和宽分别为80、60,学生计算出面积为80×60=480。然后长方形的长不变,将宽缩短,让学生估计变化后长方形的面积大约是多少,并说说估计的方法。学生纷纷表示长方形长不变,宽缩小,所以面积也缩小,估计都缩小了3倍。然后验证学生估计是否正确。在这个环节的设计中,学生借助图形的变化意识到,当长方形的长不变,面积随着宽的缩小而缩小。接着长方形长还是不变,将长方形的宽扩大,让学生说说这时候长方形的面积变化。当学生发现面积的变化规律后,老师让学生观察算式进行小结:两个数相乘,这两个数叫因数,其结果叫积。那么你能根据刚才发现的规律,说说算式中因数和积的变化情况吗? 于是,积的变化规律就水到渠成地总结出来。借助长方形面积与长和宽的关系,理解积的变化规律,发展学生的几何直观的意识,并且在估计中发展学生的空间想象能力。

和代数相比,几何给人以生动、直观的形象。因此,正比例意义的学习,可以借助正比例关系图像的学习,让学生体会正比例图像的特点和作用,加深对正比例意义的认识。教学时,通过数据表在坐标系里描点,连成一条直线,然后通过观察图像,使学生了解从这个图像可以直观看到两个量的变化情况,一个量增加,另一个量随之增大。而且明白利用正比例关系图像,不用计算,可以由一个量的值,直接找到对应的另一个量的值,体会正比例图像直观形象的优势。借助几何直观,揭示研究对象的性质和关系, 使思维很容易转向更高级更抽象的空间形式,使学生体验数学创造性工作历程,形成良好的思维品质。

三、运用几何直观,探究计算方法

计算课的教学重点是让学生探究计算方法的过程, 理解算理。运用几何直观理解算理更有效。如在教学《分数乘分数》一课时,可以让学生通过画图,将图与式对应起来,深刻地理解算理。先出示例题:“粉刷工人粉刷完一块墙需要5小时,每小时粉刷这块墙的几分之几呢?”指导学生画一个长方形当做墙,学生很容易就表示出每小时粉刷的是这块墙的1/5(如图1):

师继续问:“那粉刷工人1/4小时粉刷这块墙的几分之几4呢?能在原来的长方形上画一画吗?”学生操作,将1/5继续平均5分成4份,从图中可以清晰地看到每份就是原来这个长方形的1/20(图2), 也就是1/5的1/4就是1/20, 用算式表示是接着让学生继续在纸上表示3/4小时能粉刷多少。学生通过画图, 又写出算式在画图和观察算式的过程中,学生很快得出分数乘法的计算方法。这节课通过画图,把抽象的问题直观地表示出来,把本质的东西显现出来,让学生探究计算方法,理解算理。这样既关注了学生的学习过程,又发展了他们的几何直观能力。

四、运用几何直观,分析数量关系

徐利治先生提出, 几何直观是借助见到的或想到的几何图形的形象关系产生对数量关系的直接感知。利用几何图形的直观对问题中的关系和结构进行表述, 帮助学生分析问题和解决问题,这是一种非常重要的策略。

如教学《用连除解决问题》时,通过情境图(如图3)引导学生在收集和整理信息的过程中发现要解决“每个小圈有多少人”这个问题还需解决一个中间问题,从而学会用连除解决问题,同时建立起解决这类问题的数量关系的模型,并能解释应用,为后续学习解决此类问题打下基础。因为前一节课是学习用连乘解决问题,学生已经有了从不同角度寻找解决问题的策略经验,所以这节课在学生理解题意后,笔者大胆放手让学生直接尝试用不同的方法解决问题。当学生列出三种不同的算式时,提示他们可以尝试用图解释这三种算式所表示的意义,再引导学生观察直观图比较三种算法之间的联系与区别。随后,笔者又出示类似的题目:有400本书要放在2个书架上,每个书架有5层,每层可以放几本书? 要求学生列出算式后用图表示出来,结果他们发现画出的直观图与前一题画出的图是相同的, 明白虽然这两道题目的情境不同,总量不同,但题目中蕴含的数量关系的结构是相同的。最后,笔者又问:像这样的图还可以解决怎样的问题? 借助几何直观把复杂 问题用画 图的形式 表达出来 ,是“去情境 化”的过程,是一个数学建模的过程,它把情境中的数量关系进行提炼,并且直观表达,然后运用这个数学模型解决类似的问题。这样教学,形象思维由图形带来的直觉,增进学生对数学的理解,增强其创造能力。

“数与代数”知识小升初预测卷 篇8

1. 你知道全国小学生的人数吗?这个数是由1个亿、2个千万、8个百万和9个十万组成的,这个数写作(),改写成以“亿”作单位的数是(),四舍五入到“亿”位约是()亿。

2. 能同时被2、3、5整除的最小三位数是(),把它分解质因数是()。

3. 医生给笑笑开了一瓶药,药瓶标签上写着“0.2mg(毫克)×250片”。医生开的处方上写着“每天3次,每次0.6mg,7天为一疗程”。这瓶药大约能用()个疗程。(用四舍五入法取近似值)

4. 没有成活的树苗和已经成活的树苗的比是1∶4,那么成活率是()%,若有320棵树成活,则共植树()棵。

5. 在3.14、31.4%、3.141、π四个数中,最大的数是(),最小的数是()。

7. 5千克比4千克多()%,6吨比()少50%。

8. 3小时20分=()小时

7.05升=()立方分米()立方厘米

9. 某班5名同学的体重分别是:小军23kg,小强21kg,小兵25kg,小丽24kg,小红22kg。如果把他们的平均体重记为0,那么这5名同学的体重分别记为:小军(),小强(),小兵(),小丽(),小红()。

10. “神舟”七号载人飞船于2008年9月25日21时10分成功升空,2008年9月28日17时37分安全着陆。它在空中共飞行了()天()小时()分。

11. 一个小数的小数点向右移动一位后,比原数增加6.3,原来的数是()。

二、想清楚后再作判断,对的画“√”,错的画“×”

1. 一个质数的因数仍然是质数。()

2. 2008年的上半年有181天。()

4. 把5克盐放入100克水中配成盐水,盐水的含盐率是5%。()

5. 一种商品打“八五折”出售,也就是把这种商品优惠了15%。()

三、动动脑筋,考虑好了再选择

1.一个大型体育场最多可容纳观众()人。

A. 50B. 500C. 50000D. 500000

2. 下面的分数中,()能化成有限小数。

A. 第一根长B. 第二根长

C. 两根长度相等

4. 估算下面三个算式的计算结果,最大的是()。

6. 淘气在教室生态角种了一颗豆子。下列单位中,()最适合测量豆子生长的高度。

A. 升B. 千克C. 厘米D. 米

7. 笑笑和淘气放学后一块儿回家。走了一段路程后,笑笑对淘气说:我己走了全程的40%,淘气说:我己走了全程的90%。()先到家。

A. 笑笑B. 淘气C. 无法确定

8. 如果8A=5B,那么A∶B=()。

9. 笑笑今年a岁,淘气今年(a+1)岁。再过5年他们相差的岁数是()。

A. (a+1)岁B. a岁C. 1岁

10. 下列说法中正确的有()。

B. 除数比1小,商就比被除数小

C. 因为0.25+0.75=1,所以0.25和0.75互为倒数

四、考考你的计算能力,你可要细心了

1. 直接写出得数

x+25%x=250

4. 前2题化简比,后2题求比值

5. 估算

0.45×998≈69.859÷7≈

3.85+1.24≈6.55-3.54≈

五、解决下列问题,相信自己会解决得很出色

2. 爱心公园的门票原来每张80元,“六一”期间八折优惠,购买一张门票能省多少元?相当于降价了百分之几?

3. 一个果园去年产了4500千克的苹果,今年因为气候好,比去年增产了二成,今年产了多少千克苹果?

4. 王阿姨买了50000元定期五年的国家建设债券,年利率为3.14%,到期时,她想用利息买一台7500元的笔记本电脑,够吗?

5. 笑笑和淘气从相距4500米的两地同时相向出发,30分钟后相遇。已知笑笑和淘气的速度比是7∶8,笑笑和淘气的速度各是多少?

上一篇:成功来自努力叙事文下一篇:高校图书馆采编部工作计划